Antonella Castellina INAF, Osservatorio Astrofisico di Torino INFN, Sezione di Torino, Italy

STATE AND ARRANGEMENT

Multimessenger astrophysics at the Pierre Auger Observatory

1

AVIOLANS

13th Cosmic-Ray International Studies and Multi-**13th CRIS-MAC 2024 13th CRIS-MAC 2024** 13th Conference

TANN BOWN MONTH

Hadronic interactions beyond human-made

Particle physics beyond the Standard Model

UHECR Physics

Sources

- how do CR propagate in space?
- features of the magnetic fields
- what are they
- study of their evolution
- how CR are accelerated to such ultra-high energies

Propagation

Particle Physics at UHE

4

Provides the largest exposure to UHE photons

Diffuse flux of UHE photons Steady photon point sources Follow-up searches in coincidence with transients

Diffuse flux of UHE neutrinos Steady neutrino point sources Follow-up searches in coincidence with transients

Allows studies on UHE neutrinos

…on Galactic neutron sources

and searches on BSM effects (not covered here, see O.Deligny talk at this conference)

Auger Observatory: measures charged UHECRs

Energy spectrum Nuclear composition Anisotropies Iinformation on UHE hadronic interactions

@K.H.Kampert

4

 Pampa Amarilla (Malargüe, Argentina 17 Countries >400 members

91661 Water-Cherenkov stations:

- 24 telescopes, 1-300 FoV
- 3 High Elevation Telescopes, 30-60⁰ FoV

<u>Engineering arrays:</u>

- SD1500 : 1600, 1.5 km grid;
- SD750: 61, 750 m grid

BRAZIL

- SD433: 19, 433 m grid

Q 4 Fluorescence sites:

- AERA: 153 radio antennas
- UMD: 24 underground mun detectors

Geolocalization: (−69.0° longitude, −35.4° latitude)

AugerPrime: exploiting the richness of extensive air showers

More insight in the mass composition + increased statistics

Measure of the longitudinal development of the extensive air showers (EAS) while crossing the atmosphere ➡*Fluorescence telescopes*

perromany ny pira measurements and applying new unarysis to performing hybrid measurements and applying new analysis techniques

Discrimination between the electromagnetic and muonic components of the EAS ➡Water Cherenkov Stations and *Scintillators* ➡*Larger dynamic range to measure high particle densities closer to the core*

 $\sqrt{+40}$, 000 km² sr yr ✓ Multi-hybrid events : FD, SD, SSD, RD, UMD

Phase 1 : data taking from 2004 to end of 2021 ✓ Over 120, 000 km2 sr yr for anisotropy studies ✓ Over 90, 000 km2 sr yr for spectrum studies

Phase 2 - the AugerPrime upgrade Data taking from 2025 to >2035…

…2022-2024 transition period (commissioning) to AugerPrime

Measure of the radio emission of EAS ➡*Radio antennas*

Direct measure of the muonic component ➡*Underground detectors*

6

Astrophysical interpretation (energy spectrum+mass composition)

Basic scenario:

-
-
-

1/ a hard HE component with low rigidity cutoff 2/ a soft LE component with unconstrained rigidity cutoff 3/ a (possible) additional component

In all cases the observed energy spectrum and composition at Earth is best described by

Composition getting heavier Cutoff mostly due to source effects rather than GZK Much reduced flux of cosmogenic neutrinos and photons

Detecting neutrinos in Auger

Neutrino-induced air showers:

- deep showers
- em+μ component at ground

They can be identified by

- selecting inclined showers
- with large electromagnetic component
- Large Area over Peak (~1 for muonic showers)

Among inclined showers we select

- Earth-skimming (ES): 900-950
- Downgoing at high angle (DGH): 750-900
- Downgoing at low angle (DGL): 600-750

Search for a diffuse flux of neutrinos

Energy (eV)

➡No candidates found; best sensitivity slightly below 1018 eV ■Background very low, sensitivity limited by exposure

Auger Coll., JCAP 10 (2019) 022 UHECR2022

➡Constraints on models assuming proton composition: independent confirmation of result from composition analysis ■Exclusion of a significant part of the (z,m) parameter space from non observation of neutrinos

Constraints to neutrino models

Blue line: fluxes obtained with approx. analytical approach (Yoshida et al.)

11

Point like sources of neutrinos

In Sept. 2017, IceCube observed a 290 TeV ν from the direction of TXS 0506+56 during a flaring state [Science 361, 146 (2018)]

Source is \sim 21% $T_{\rm sid}$ in our FoV, but it was not at the time of neutrino detection

Neutrinos from TXS 0506+56

Auger Collaboration,ApJ 902 (2020) 105

Auger Collaboration, JCAP 11 (2019) 004

Energy range complementary to that of IceCube and Antares

Unmatched sensitivity to EHE neutrinos in the Northern hemisphere

Steady sources

Detecting photons in Auger

Photon-induced air showers are almost purely electromagnetic:

- deeper X_{max}
- ^μ-poor
- steeper lateral ditribution
- spreaded in arrival time

13

Discrimination Methods

Different observables combined into a single discriminator Candidate cut: median of the discriminant distribution (50% efficiency) Measured and simulated events passing the cut are compared

Detecting a diffuse flux of photons in Auger

Search for a diffuse flux of photons

Eld Limits provided across 4 decades in energy

■Start closing the gap to the smaller air-shower experiments

■Below 10¹⁸ eV: most stringent limits available

➡At the highest energies, most optimistic models of cosmogenic photon flux can be probed and excluded

Using AugerPrime exposure up to 2035

Neutrinos and photons from gravitational mergers

First direct GW signal : GW150914

- \bullet D_{GW} ~ 410 and 440 Mpc
- position few 100 deg²
- inferred source : BBH merger
- EM signal detected (Fermi-GRB, ZTF) but not significant enough 3 and 1 M \odot released in GW [@LIGO and Virgo Coll, PRL116 (2016) 061102 & 241103]

Image: LIGO/Leo Singer (Milky Way image: Axel Mellinger)

- 1.36-2.26 and 0.86-1.36 M \circ released in GW
- $D_{GW} \sim 40^{+8}$ -14 Mpc
- position few 31 deg²
- inferred source : BNS merger
- multimessenger observation !!!

wope +10.9 h LIGO/ Virgo Fermi/ **GBM** DLT40 -20.5 d IPN Fermi / **INTEGRAL** [@LIGO and many others.... ApJL 848 (2017) L123]

• >90 GW observations from LVC since the first run, from BBHs, BNSs, NSBHs

First GW signal from NS merger: GW170817

• msec Magnetar remnant late production from UHECRs interactions with ambient photons and baryons [e.g. K.Fang et al., Astrop.J. 849 (2017) 153]

LVC, ANTARES, IceCube, Auger, ApJL 850 (2017) L35

Follow-up of GW170817 in neutrinos

- Source in the field of view of ES neutrino search
- No UHE neutrino candidates found in either coincidence windows $(\pm 500$ sec around the GW or in the 14 days period after it)
- Limits on the total emitted energy in the range 10¹⁷-2.5 10¹⁹ eV
	- *+500 s : < 6.9 10-4 M*⊙ *+14 days : < 2.3 10-2 M*[⊙]
- Lack of detection consistent with expectation from a short GRB viewed at off-axis angle >200

17

BBH Follow-up: stacked neutrino searches

Look for time and directional coincidence with 83 BBH events from LIGO/Virgo runs O1-O3 —> automatic follow-up search !

 \Box Limits (90% C.L.) on the total energy emitted in neutrinos in the range $E_{\nu}=[10^{17}$ -2.5 10¹⁹] eV *~5.2 1051 erg (~ M*⊙*c2/ 300) independent of the time window*

 \Box Limits are >2 orders of magnitude below the radiated GW energy (~ $M_{\odot}c^2$)

➡ No candidates, limits provided across 4 decades in energy

L.Perrone, EPJ Web of Conf.283, 04004 (2023) (Paper ready for submission)

Look for time and directional coincidence with 91 GW events from LIGO/Virgo runs O1-O3

Search region

- $-\Omega_{50\%}$ solid angle contour in localization of the GW source
- Two mutually exclusive time windows: 1000 s centered at t_{GW} and 1 day after it

Auger Coll., Astrop.J.952 (2023) 91

- attenuation of UHE photons (λmax~few Mpc)
- Separation of γ from overwhelming hadronic background

4 regions in distance and localization (not mutually exclusive)

- ‣ best region for observation if sources are closeby (IV)
- ‣ a candidate at large distance (I,II) could point to new physics

 $(D_L < \infty$ and $\Omega_{50\%} < 100 \text{ deg}^2)_{\rm s}$ "class I" $(D_L < \infty$ and $\Omega_{50\%} < 20 \text{ deg}^2$)₁ "class II" $(D_L < 180$ Mpc and $\Omega_{50\%} < 100$ deg²)₁ "class III" $(D_L < 50$ Mpc and $\Omega_{50\%} < 720$ deg²)_{l.s} "class IV"

㸌 searches from GW sources

Search for γ from transients challenged by

No air showers >1019 eV in coincidence with GW time window (in agreement with expected background 0.03 of random showers)

$$
\frac{d\Phi_{\gamma}^{\text{GW}}}{dE_{\gamma}}(E_{\gamma}) = k_{\gamma} E_{\gamma}^{\alpha}
$$
\n
$$
k_{\gamma}^{\text{UL}} = \frac{N_{\gamma}^{\text{UL}}}{\int_{E_{0}}^{E_{1}} dE_{\gamma} E_{\gamma}^{\alpha} \mathcal{E}(E_{\gamma}, \theta_{\text{GW}}, \Delta t)}
$$
\n
$$
\mathcal{F}_{\gamma}^{\text{UL}} = \int_{t_{0}}^{t_{1}} \int_{E_{0}}^{t_{1}} dt \, dE_{\gamma} E_{\gamma} \frac{d\Phi_{\gamma}^{\text{GW}}}{dE_{\gamma}}
$$
\nSpectral γ flue

- First ever limits on y from GW sources at UHE
- ➡ GW170817: best upper limit on the photons energy above 40 EeV, <20% of the GW energy goes to photons
- Expect great improvement from closer GW events

㸌 searches from GW sources

Waiting for AugerPrime high-quality data

WCD/SSD/RD can collect multi-hybrid events with a 100% duty cycle Separation of shower components can be obtained

- by WCD/SSD for events up to ~60⁰
- by WCD/RD for inclined events >60⁰
- by WCD/SSD/UMD extending the mass sensitivity to the lower energies and improving the photons/hadrons discrimination

With the new electronics we will enhance the sensitivity of triggers to electromagnetic signals, specifically for photons and neutrinos using the RD, and the combination of WCD and SSD. WCD and UMD)

The Pierre Auger Observatory is part of the international multi-messenger astrophysics network

13th CRIS-MAC, Trapani 20.06.2024

N ANVISOMADA

AVIO AMERICA HAVI

Automatic Global Coordinate Network (GCN) alerts listener

- SD events update every 15', 3 ν reconstruction analyses running
- Read GCN alerts and look for ν candidates in 90% CL region
- Automatic alert if any findings and possible GCN notice if confirmed

- Alerts from private or GammaCN notices
- High quality SD events shared every few minutes
- SD events in DWF field of view shared
- Plans to include lower energy SD events from infill arrays

AMON and DWF triggering and follow-up partner

Only a strong collaboration among the various communities (GW, γ , v, hadrons) can bring new insights… The different groups interconnections must be

continued and improved

BACKUP

24

derived from model dependent fits of the X_{max} distributions (+ many other measurements)

 \triangleright they provide model dependent information on 400 the mass evolution

Elt provides constraints on source properties, injected masses, interactions/escape

➡A measure completely independent of any assumptions on the primary mass

Auger Coll., Phys.Rev.D102 (2020) 062005 Auger Coll., Eur. Phys. J. C 81 (2021) 966 E.Mayotte, PoS(ICRC2023) 365 and refs.therein

Energy spectrum

Fractions of elements

Detecting a diffuse flux of photons above 5 10¹⁶ eV

-
-
-
- *First measurement of the diffuse photon flux from the Southern hemisphere*

Detecting a diffuse flux of photons above 2 10¹⁷ eV

 \bullet S_{i,comp} depends only on E, X_{max} and geometry, provided from hybrid reconstruction \blacksquare F_u = proxy for muon content, derived from universality properties of EAS

Hybrid events : >65000 after selection cuts Fisher analysis based on Xmax, F_{μ} , E_y

Background estimated from data : background rejection $\sim 10^{-4}$

22 candidates, consistent with expected (30 \pm 15) bckg events

Photons

Fisher

$$
S_{\text{pred}} = \sum_{i=1}^{4} S_i = \sum_{i=1}^{4} f_i(F_{\mu}) S_{i, \text{comp}}
$$

$$
F_{\mu} = \frac{S_{\text{rec}} - \sum_{i} (1 - \alpha_i) S_{i, \text{comp}}}{\sum_{i} \alpha_i S_i}
$$

Detecting a diffuse flux of photons above 1018 eV

Detecting a diffuse flux of photons above 1019 eV

SD1500 events : ~50000 after selection cuts Fisher analysis based on Δ and L_{LDF}

Steeper LDF and large risetime of photon-induced showers are used as discriminants

$$
\Delta = \frac{1}{N} \sum_{i} \frac{(t_{1/2}^{i} - t_{1/2}^{\text{bench}})}{\sigma_{t_{1/2}}} \qquad L_{\text{LDF}} = \log_{10} \left(\frac{1}{N} \right)
$$

Huge exposure

Background estimated from data

16 candidates, consistent with expected bckg

Search for point-like sources of photons

attenuation length [Mpc] energy window $\frac{1}{2}$ photons $(36.8%)$ imary + sec. photons (> 36.8% = 0.1 nG rimary photons (1%) 10^{4} 10^{-1} 10 $10²$ initial photon energy [EeV]

Targeted search

- Stacked analysis focussing on 12 target sets (364 candidate sources in total)
- \bullet no significant excess, excluding nearby and steady sources of photons in the EeV range
- Extrapolating the HESS flux : constrains on the continuation of the measured TeV fluxes to EeV energies
- upper limit on cut-off energy at ~ 2 EeV *Auger Coll., ApJ 837 (2017) L25*

- UHECR composition getting heavier with increasing energy
- Neutrino sources beyond the horizon of UHECR sources (e.g.TXS0506+056: ~1.3 Gpc)
- if transient sources, UHECRs arrive much later, due to deflections (uncertainties in EGMF)
- sources producing HE neutrinos could be unable to produce UHECRs and viceversa

Direct correlations may be found with UHE neutrinos, not yet observed **IceCube, ANTARES, Auger, TA, Astrop.J.934 (2022) 164**

3 complementary analyses looking for possible correlations between UHECR (Auger and TA) and HE neutrinos (IceCube and ANTARES) For both the UHECR and ν data sets, the combination of data from the two respective observatories provides a FoV over the entire sky

all results compatible with background hypothesis (Isotropic flux for either UHECR or v)

But

Neutrinos (IceCube, ANTARES) and UHECRs (Auger, TA)

Search for Galactic neutron sources

- no significant evidence for point sources of neutrons
- excess, excluding nearby and steady sources of photons in the EeV range
- Better limits can be obtained by combining objects in the same class (combined p-value)

 \bullet no transient sources are considered, work ongoing

Auger Coll., PoS(ICRC2023) 246

Produced in interactions of UHE protons, but impossible to distinguish from proton-induced showers

Mean travel distance $\phi \sim 9.2 \times (E_{EeV})$ *kpc*

Identification: excess of CRs from a given direction.

12 classe of objects (888 sources)

Effects suppressed for low energy and short travel distances : UHECRs !!!

Modification of CR interactions during propagation: ➡EM : pp cross section modified —> increased mean free path —> less interactions —> more photons expected ■hadronic sector: number of interactions reduced —

Auger Coll., JCAP01 (2022) 023 C.Trimarelli (Auger Coll.), UHECR2022

 10^3

 λ_{LN} / λ_{LI}

 $\frac{1}{\sqrt{2}}$

32

Search for Lorenz invariance violation

$$
E_i^2 - p_i^2 = m_i^2 + \sum_{n=0}^N \delta_i^{(n)} E_i^{2+n} = m_i^2 + \eta_i^{(n)} \frac{E_i^{2+n}}{M_{Pl}^n}
$$

> if LIV lighter nuclear species needed at source to reproduce the composition

Air shower physics

• for $η⁽ⁿ⁾<0$, decay of $π⁰$ can become forbidden if

$$
m_{\pi}^2 + \eta_{\pi}^{(n)} \frac{p_{\pi}^{n+2}}{M_{Pl}^n} < 0
$$

•EM component decreasing, hadronic one increasing

Search for SHDM

Inclined event in radio

Deeper Wider Faster (DWF)

Multi-instrument (> 30) project

- \triangleright Radio through ultra-high energies incl. non-photons (Auger)
- \sim 10 groups observe simultaneously
	- \triangleright Deep+wide-field fast (sampling and analysis) multi-wavelength + multimessenger probing of same field

Auger:

- Full-SD events in DWF field of view shared, no significant coincidences found so far
- Future plan: include smaller sub-arrays of Auger for lower energy events