Probing a unified model for the origin of UHECRs and neutrinos with X-ray observations

Shigeru Yoshida

International Center for Hadron Astrophysics

Chiba University

The updated limit of neutrino flux in PeV-EeV range with IceCube

Before start.....

CHIBA UNIVERSITY

The UHE Cosmic Background Radiations The UHE Cosmic Ray + Neutrino Energy Fluxes

Shigeru Yoshida : CRIS-MAC 2024

The UHE Cosmic Background Radiations The UHE Cosmic Ray + **Neutrino Energy** Fluxes

Shigeru Yoshida : CRIS-MAC 2024

The UHE Cosmic Background Radiations The UHE Cosmic Ray + Neutrino Energy Fluxes

Shigeru Yoshida : CRIS-MAC 2024

The scorebook of The scorebook of hre they UHE Endividual transient astronomical object classes					
μ.,	Energetics F	iducial ${f v}$ flux	Acceleration	Escape $ au_{p\gamma}$	Survival $\zeta \lesssim 0.4(A/56)^{-0.22}$
jetted TDE Biehl+ 2018	Challenging $\xi_{CR} = 100 - 1000$	$egin{array}{c} OK \ au_{p\gamma} \gtrsim 0.1 \end{array}$	OK with nuclei $\xi_B \gtrsim 10^{-2} (z/10)^{-2}$	$\begin{array}{c} OK \\ \tau_{p\gamma} \lesssim 1 \ (A/2Z)^4 \end{array}$	Maybe
TDE wind Murase+ 2020	$\begin{array}{c} OK \\ \xi_{CR} = 1 - 10 \end{array}$	Challenging $\tau_{p\gamma} \gtrsim 0.1$	Maybe $\xi_B \gtrsim 1(z/10)^{-2}$	$\begin{array}{c} OK \\ \tau_{p\gamma} \lesssim 3 \; (A/2Z)^4 \end{array}$	OK
Low L GRB Murase+ 2006	Maybe $\xi_{CR} = 10 - 100$	$\begin{array}{c} OK \\ \tau_{p\gamma} \gtrsim 0.03 \end{array}$	OK with nuclei $\xi_B \gtrsim 10^{-2} (z/10)^{-2}$	$\begin{array}{c} OK \\ \tau_{p\gamma} \lesssim 1 (A/2Z)^4 \end{array}$	OK
Engine-driven S Zang+ 2019	$N OK \xi_{CR} = 0.1 - 1$	Challenging $\tau_{p\gamma} \gtrsim 0.03$	Maybe $\xi_B \gtrsim 1(z/10)^{-2}$	$OK \\ \tau_{p\gamma} \lesssim 3 \ (A/2Z)^4$	OK

<u>Yoshida & Murase PRD 2020</u> <u>Yoshida & Murase 2024</u>

Side Note: This is a one-zone model

The most likely target photons are in X-ray range in the relativistic plasma flows

$$\varepsilon_{\gamma 0}^{\prime} \approx \frac{(s_{\Delta} - m_p^2)}{4} \frac{\Gamma}{\varepsilon_{p 0}}.$$

$$\Longrightarrow \quad \varepsilon_X = 15 \left(\frac{\Gamma}{10}\right)^2 \left(\frac{\varepsilon_p}{1PeV}\right)^{-1} \text{keV}$$

Lorentz factor of (jet) plasma

The generic neutrino source scheme via photo-hadronic framework

The generic neutrino source scheme via photo-hadronic framework

Here is the issue – the *degeneracy*

Neutrino flux

based upon <u>Yoshida & Murase PRD (2020)</u>

$$\bigotimes \begin{array}{c} \xi_{CR} \times B \times L_X \times (\sqrt{L_X}, 1) \times f(\Gamma) \\ \uparrow & \uparrow & \uparrow & \uparrow & \\ \text{We want to know} \\ \text{this} & \uparrow & \text{This could be any value!} \\ \text{We need to determine/constrain this} \\ \text{MW observation/} \\ \text{theory could tell} \end{array}$$

Here is the issue – the *degeneracy*

Neutrino flux

based upon <u>Yoshida & Murase PRD (2020)</u>

$$\bigotimes \begin{array}{c} \xi_{CR} \times B \times L_X \times (\sqrt{L_X}, 1) \times f(\Gamma) \\ \uparrow & \uparrow & \uparrow & \uparrow & \\ \text{We want to know this} & & & \\ \text{this} & & & & \\ \text{We want to know this} & & & \\ \text{We need to determine/constrain this} \\ \text{Ww observation/theory could tell} & & & \\ \end{array}$$

Search for X-ray signals associated with neutrino events!

Neutrino and X-ray stacking search

the both facilities monitor all-sky and the data has been archived

2keV-10keV

Neutrino and X-ray stacking search

the both facilities monitor all-sky

Х

A neutrino event

0.5keV-4keV

The UHE Cosmic Background Radiations L_x (2-10 keV) 5x10⁴⁶ erg/s (low luminosity GRB-like) **The expected neutrino diffuse flux**

The parameter dependence of the diffuse flux $\xi_{CR}=10$

For a given n_0 [Mpc⁻³] and Γ

$$\Phi_{v} \propto \xi_{CR} \times L_{X} \times (\sqrt{L_{X}}, 1)$$

You can determine this!

Now we know this by the stacking analysis

We know this by the I³ diffuse data

The most likely CR loading factor favored by the diffuse flux data

For a given n_0 [Mpc⁻³] and Γ

$$\Phi_{v} \propto \xi_{CR} \times L_{X} \times (\sqrt{L_{X}}, 1)$$
You can determine this!
Now we know this
by the stacking analysis
example
We know this
by the I³ diffuse data

We have determined $\xi_{CR}(n_0,\Gamma)$

The most likely CR loading factor favored by the diffuse flux data

For a given n_0 [Mpc⁻³] and Γ

$$\Phi_{v} \propto \underbrace{\xi_{CR}}_{You \ can \ determine \ this!} \times L_{X} \times (\sqrt{L_{X}}, 1)$$
Now we know this
by the stacking analysis
example
We know this
by the l³ diffuse \ data

We have determined $\xi_{CR}(\mathbf{n}_0, \Gamma)$

The most likely UHECR Luminosity favored by the diffuse flux data

For a given n $_{
m 0}$ [Mpc⁻³] and Γ

$$\Phi_{v} \propto \xi_{CR} \times L_{X} \times (\sqrt{L_{X}}, 1)$$

$$\int_{\text{You can determine this!}}^{\text{Now we know this}} \sum_{\substack{\text{Now we know this} \\ \text{by the stacking analysis}}} \sum_{\substack{\text{example} \\ L_{X} = 5 \times 10^{46} \text{ erg/s}}} L_{X} = 5 \times 10^{46} \text{ erg/s}}$$

$$L_{UHECR}^{\varepsilon_{CR} \ge 10 \text{ PeV}} (n_{0}, \Gamma)$$

$$L_{UHECR}^{\varepsilon_{CR} \times L_{X}}$$

The Excluded parameter space for UHECR sources determined by UHECR energetics

$$\begin{split} n_0 \xi_{CR} L_X \lesssim Q_{UHECR} \\ \lesssim 9 \times 10^{44} \mathrm{erg} \, \mathrm{Mpc^{-3} \, yr^{-1}} \\ \varepsilon_{CR} \ge 10 \, PeV \end{split}$$

Otherwise these sources would overproduce UHECRs!

The Excluded parameter space for UHECR sources determined by UHECR energetics

$\begin{aligned} n_0 \xi_{CR} L_X &\lesssim Q_{UHECR} \\ &\lesssim 9 \times 10^{44} \, \mathrm{erg} \, \mathrm{Mpc^{-3} \, yr^{-1}} \\ &\epsilon_{CR} \geq 10 \, PeV \end{aligned}$

Otherwise these sources would overproduce UHECRs!

What can we do if we see nothing in X-rays?

Neutrino and X-ray stacking search

The lower bound of CR loading factor favored by the diffuse flux data

For a given n_0 [Mpc⁻³] and Γ

$$\Phi_{v} \propto \underbrace{\xi_{CR}}_{Yes,now we get} \times L_{X} \times (\sqrt{L_{X}}, 1)$$

$$f = \underbrace{Ves,now we get}_{Lower Bound!}$$
We know this
by the l³ diffuse data

We have determined $\xi_{CR}^{LL}(\mathbf{n}_0, \Gamma)$

The lower bound of UHECR luminosity favored by the diffuse flux data

For a given n₀ [Mpc⁻³] and Γ

$$\Phi_{v} \propto \underbrace{\xi_{CR}}_{CR} \times L_{X} \times (\sqrt{L_{X}}, 1)$$

$$ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the stacking analysis$$

$$Ferrightarrow for the upper limit is placed by the upper limit is placed by$$

うしん

The Excluded parameter space for UHECR sources determined by UHECR energetics

$n_0 \xi_{CR} L_X \lesssim Q_{UHECR}$ $\lesssim 9 \times 10^{44} \mathrm{erg} \, \mathrm{Mpc^{-3} \, yr^{-1}}$ $\varepsilon_{CR} \ge 10 \, PeV$

Otherwise these sources would overproduce UHECRs!

The line of Q_{UHECR}

The Excluded parameter space for UHECR sources determined by UHECR energetics

$$\begin{split} n_0 \xi_{CR} L_X \lesssim Q_{UHECR} \\ \lesssim 9 \times 10^{44} \mathrm{erg} \, \mathrm{Mpc^{-3} \, yr^{-1}} \\ \varepsilon_{CR} \ge 10 \, PeV \end{split}$$

Otherwise these sources would overproduce UHECRs!

Constraints on B, $\xi_{\rm B}$, and Γ

 $L_x = 5x10^{46} \text{ erg/s}$

$$\Gamma \lesssim 7 \left(\frac{L_X}{5 \times 10^{46} erg/s}\right)^{\frac{1}{3}} \left(\frac{B}{100G}\right)^{\frac{1}{3}}$$

Exclude sources with $\Gamma \gg 1$

Summary

- Xray transients (e.g. LL GRBs) are the most promising candidate of the UHECR neutrino unified origin
- Neutrino Xray multimessenger search will measure/constrain the cosmic ray target <u>Xray luminosity</u> L_x [erg/s]
- The neutrino flux determines the CR loading factor (or L_{UHECR}) for the obtained/upper limit of L_x
- The requirements of UHECR energetics, accelerations, and escape conditions in addition to L_{UHECR} demanded by L_x will provide <u>the solid diagnosis</u> of the UHECR-neutrino unified models.

Backup

Neutrino and X-ray stacking search

For every each of the astrophysical V candidates (by GFU?), we look for any X-ray signal enhancement in the same direction

Neutrino and X-ray stacking search

An example – GRB190829A

1.2 x 10⁴⁶ erg/s (R= 358Mpc)

Suppose the stacking **multimessenger** search tells

$$L_X = 5 \times 10^{46} \text{ erg/s}$$

(we expect this number for low luminosity GRBs)

What is our next move?

Parametrization to describe cosmic-ray/v emissions

py optical depth au_{py} determines neutrino emission brightness

Parametrization to describe cosmic-ray/ ν emissions

Target photon luminosity density An example when B' = 100 [G]

 B^2

 $\propto \frac{1}{8\pi}$

Non thermal X-ray spectrum following **broken power-law** A typical X-ray transient spectrum (e.g. GRB, TDE)