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Introduction

oIn cosmology it would be interesting to be able to understand some problems related to
the initial conditions of the universe

* Quantum cosmology gives a description of the initial state of the universe that general
relativity cannot give, but a significant result would be to have a phenomenological
confirmation of its predictions

* So it 1s necessary to have a tool to be able to describe the states of the quantum and
classical universe. In recent years we have insisted a lot on the fact that this 1s achieved
through the tomographic description of these states.

e In fact, through this description we are able to get more information on the relationship
between the classical states. and the quantum states in their asymptotic limit.

* But a phenomenological definition of the tomogram of the universe is necessary to
eventually highlight some aspects of the original quantum state that the current universe
could have inherited.



Overview of the talk

* In this talk I try to outline four steps with which one can attempt to reconstruct the initial
quantum state of the universe using the tomographic approach..

* First step I recall the definitions and the properties of the quantum and classical tomograms

* In the next step I recall some previous results for a universe with only the cosmological
constant and show how these results can be generalised if more general potentials are
considered

* In the third step | show how a tomogram can evolve over time through the transition
probability function that can be defined using the propagators of quantum theory

* Finally, in the fourth step I introduce the definition of the phenomenological tomogram of the
universe and show how through the comparison of this tomogram with the different models
that can be obtained following the procedure of the third step, information on the structure of
the quantum universe can be obtained.

e In the conclusions I discuss the future work to be done
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Definition of quantum and

classical tomograms
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Properties of the tomogram

* Tomograms are marginal probability functions for this
reason the fundamental properties of a tomogram are

* Non negativity WX, u,v) >0
e Normalized JW (X, I, y) e ——1

. 1
* Homogeneity 9 ux, iu, iv) = mW(X,,u, )

* These conditions guarantee their observability.



Uncertainty relations for
quantum tomograms
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Second step

(lassical De Sitter model

(See Louko (1987,1988, L.ouko and Halliwell (1990))
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Tomogram of the universe during
the intflationary stage

+ The classical distribution, we consider all the states
allowed by the Hamiltonian. We don’t choose any
preferred “imitial state”. In a de Sitter universe
distribution function the set of all the allowed states
satistying the Hamiltonian constraint 1s given by a Dirac
delta function

flg.p) =6 (—4p* + g — 1)

+ where ¢ = a* and p = — g and 1 is the cosmological
constant, and the units are chosen appropnately.



How we calculate the classical
tomogram

* Consequently the tomogram 1s obtained applying
W - (X,,u, 1/) =10 (—41192 + Ag — 1)5(X — uq — vp)dqg dp

» applying the rules for the Dirac delta

o the classical tomogram of the de Sitter model 1s
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+ The Wheeler-DeWitt equation 1s

d2
4h? Ag—1 |w(g) =0
FE q w(g) =0.

On the other side guantum tomograms are combinations of the Airy
functions. Their classical limit 1s obtained taking the limit 721 — 0.
We can consider the case with A #0 and 1 #0, but 1«1,
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Some physical conclusions

From these results we see that the tomographic representation of the quantum and
classical states of the universe gives us some interesting results

The first 1s that the decay of the cosmological constant drove the transition of the
quantum universe into the classical one

The second is that quantum fluctuations of spatial curvature generate the classical
perturbations

In certain models such as that of Hawking and Penrose, interference terms can be
generated which should be observed in the spectrum of curvature perturbations

Theretore this is a signature that one should look for to discriminate among the

various models of the mitial state of the universe

C.S. Tomographic analysis of quantum and classical de Sitter cosmological models
Int.].Mod.Phys.D 28 (2019) 16, 2040009



https://inspirehep.net/literature/1780685

General Wheeler-DeWitt equation

for the tomograms

* General solutions can be found in an analytic way only for very
few cases when the potential 1s very simple (linear,
quadratic,...)

* However to study the transition from the quantum to the
classical regimes of the universe it 1s suthicient to determine the
tomograms of the asymptotic solution of the Wheeler-DeWitt
equation (see C.S. Emergent classical universes from imitial

quantum states in a tomographical description
Int.].Geom.Meth.Mod.Phys. 17 (2020) 11, 2050167 e e-Print: 2007.03726 [gr-qc])



https://arxiv.org/abs/2007.03726

[Let us first consider the classical

Hamiltonian
e = (—4p2 + V(q)) and suppose that the Hamiltonian constraint 1s valid

g(g,p) = 6 (—4p* + V(¢))
(=) ol
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but for sake of simplicity we consider 1n the following only
the first case



Classical Tomogram
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Equations

q1) = q(1)(X, p, v) and q(2) = q(2)(X, p, ) are the solutions of the equations
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Cosmological quantum tomograms

, dw(q)
dqg?

In the limit A — 0 we apply the WKB method

4h Vgy(g) =0

or V(q) > 0 the solution is
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where A i1s a normalization constant.



WKB approximation
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Laplace method
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which is equivalent to find the peaks of the function
e =dlgiepill i1

We notice that the correlation equations are the same
of equations 1) and 2) of the classical problem



Finally we obtain
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We have the tollowing wave

functions
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General solutions:
W(Xa /’ta I/) = Cl Wl(Xa /’ta I/) = CZ WZ(Xa Iua I/)
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tomograms when there are no interference terms.
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Third step

The probability transition function
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The probability transition function

* The evolution of the tomogram 1s given by the transition probability
function which 1s the propagator of the tomogram.

e We can apply it to the initial tomograms to obtain a model for the present

universe

* We obtain the total propagation probability associating to each
cosmological epoch a function IT and exploiting the associative properties

we can obtain a final Il

(X3, p3, 13, 15, Xy, iy, 0y, 1) = JH(X3,ﬂ3a V3, 13X, o, Uy, )INX, phy, 15, 1, Xy, g, vy, 1)d X, dipy duy, 1

Wfinal(Xﬂ H, U, t) = Jnfinal(Xﬂ H, U, X,v ﬂ,’ I/a t)Winitial(X,a /“t,’ I//)dX, dﬂ, dv'



The tomogram of the universe

Galaxies or better standard candles can be used as probes of the state of the
universe to construct a statistical distribution f, . . (g, p)

Where q is the expansion factor a or any function of it a,a? Ina,z

And p 1s ’ghe corresponding conjugate variable which is a function of ¢ e.g.

a
6ada, H = —
a

They can all be connected by canonical transformations

The correspondmg tomogram of the unlverse by applymg the definition
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In our case this 1s nothing more than an alternative way to describe the statistical
distribution. However it 1s necessary to compare the state of the universe with the
classical and quantum theoretical models



The final step

e The final step 1s to compare the two tomograms %phenomen. (X, U, 1/)
and 7, (X, u.v), taking the single sectors with y, v fixed.

e For example if u = cos ¢, v = sin ¢, we should compare the one
dimensional functions given angle by angle looking for the
model that fits best with the corresponding histograms of

Y shrenomen. (X, 1, v) given at each ¢ .

* Or applying the inverse Radon transform to %, (X, u,v) we

find the corresponding f, (¢,p) and compare 1t with the
phenomenological £, ....(¢,p)



Phenomenology of the initial condition
in the words of J. Hartle*

» The observed features of the universe may not uniquely fix an imitial condition but
one should not exaggerate their weakness.

* The density matrix p = [/Tr(l), where I is the unit matrix, 1s the unique
representation of complete ignorance of the initial condition (i.e. no condition at
all).

e But it also corresponds to infinite temperature in equilibrium p * exp(-H/kT)) —
an 1nitial condition whose implication of infinite temperature today is obviously
inconsistent with present observations.

* The entropy S/k = -Tr(p log p) 1s a measure of the missing information about the
initial state in a density matrix p. Most of the entropy in the matter in the visible
universe 1s in thecosmic background radiation, a number of order S/k = 10780.

* As Penrose [4] has stressed, this is a large number, but infinitesimally small
compared to the maximum possible value of S/k = 107120 if all that matter
composed a black hole.

*Quantum Cosmology: Problems for the 21st Century* James B. HartletPhysics 2001, ed. by M. Kumar and in the Proceedings of the 10th Yukawa-
Nishinomiya Symposium, November 7-8, 1996, Nishinomiya, Japan.



To do list

Tomogram of the CMB considering its interaction with matter through a specific
propagator I1

Determine the potential V(a) in presence of scalar fields and cosmological fluids

How perturbations modify the cosmological tomogram (non homogeneity on
lower scales)

Extend this work to alternative theories of gravity

Tomographic approach to loop quantum gravity and loop quantum cosmology (see

for example Jason Berra-Montiel, Alberto Molgado, Tomography in Loop
Quantum Cosmology, EurPhys.J. Plus 137 (2022) 2, 283 e-Print: 2104.09721 [gr-qc]


https://arxiv.org/abs/2104.09721
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