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MOTIVATION

» Study of influence of gravity on vacuum energy
»Search for permanent effects («memory» effects)
» Relationship with the cosmological constant problem

» Use of Schwinger’s approach to clearly disentangle particle
creation effects from polarization effects

»Handling of divergences by means of analytic continuation



OUTLINE

» GRAVITATIONAL BACKGROUND AND CASIMIR CAVITY
» PROPER-TIME SCHWINGER’S APPROACH

» STATIC CASIMIR EFFECT

s Flat background (a consistence check)
¢ Bianchi Type-I background

»HANDLING THE DIVERGENCES
»THE GRAVITATIONAL WAVE CASE
»CONCLUSIONS




GAVITATIONAL BACKGROUND

Starting point: Bianchi-I spacetime
(the simplest generalization of FLRW universe)

Assume small anisotropies,
satisfying the constraints:

Z hi(t) =0,

[(see, e.g., the holy text by Birrell & Davies) ]

3

3

ds® = dt* — Z az (t)dx?

=\

directional scale factors

ds® = dt* = [1+ h;(t)](dz’)’

=1 \ anisotropies

asymptotic Minkowskian
spacetime regions

/Recall that for Bianchi-I type\

4

unambigous definition
of in- and out- vacua

max|h;(t)] < 1

coordinates can be chosen
so that spatial metric is

diagonal and traceless

- )




CASIMIR CAVITY

The requirement hg(t) = h,(t) =0
guarantees that proper and coordinate
distance between the plates coincide at any time.

This allows us to avoid possible complications
arising from tidal effects.

For sake of simplicity, assume a massless scalar field, |
o . . Casimir/—71" (TR
minimally coupled to the gravitational background plates gIBCUURE

1 o, [\/ng“’/&,¢(:€)] +%(x) _ 0 L = proper plate separation

vV —9
A = proper area of the plates




CASIMIR CAVITY — FIELD MODES/1

Assume Dirichlet b.c. B
To the lowest order, KG equation reads ( + V)¢ = 0,

V = ho(£)02 + hy (2)02 = h(£)(% — 2)  anc
h(t) = hy(t) = —hy (f) <mmmm metric perturbation

Spatial translation invariance of Bianchi-I spacetime is broken by field
confinement. However, it is still assured along x and y directions.

We guess: 1/2

o) = N i (125 ) ¥ = ()

L ﬁJ_ — (pxapy)7 fJ_ — (337:9/)

requiring [ n(t) — e "t h(t) — 0. ]




CASIMIR CAVITY — FIELD MODES/2

From KG equation we obtain

- ! in(w(t —t' -, | |
77(75) — e—zwt _I_/ dt, Sln(w( ))h(t/)pi COS Zee—zwt — ap(t)e—zwt T ﬁp(t)ezwt7

d 2 ' / N2 N
ap(t) =1+ 50 / dt' h(t")p7 cos 20,
e - Bogolubov coefficients
Bplt) = —— dt’ h(t)p3 cos 296_275‘“/, in the limit ¢t — +

5 ;

: t
[

tanf = py/px, and w? = pi + (nw/L)

B o) =N (ap(t)e™™! + By (1)) 7 sin (“F7)




PROPER-TIME SCHWINGER’S APPROACH

According to Schwinger, the effective action W reads

total Trace

W = lim W V
—0 / Proper-time Hamiltonian

W(v) = —%/O ds s” 1 Tr e_ZSH + c.t.

In presence of a time-dependent spacetime background, the effective action
W can become complex, being related to the vacuum(persistence amplitud

in the so-called in-out formalism

— particle creation

(0out|0in) = eV

NB: the additional counterterm is introduced to subtract divergent terms,
hence recovering the required physical normalization.



TRACE EVALUATION

The total Trace  Tre ®H :2 d*z(z|e H |z)
has to be evaluated all over the continuous as well the discrete degrees
of freedom, including those of spacetime.

The p-t Hamiltonian reads

. . . 2
H=Hy+V =—p5+p5 + (n%) — h(t)p? cos 20,

Po =10, p1. = —1V L

We get [NB: the rapidly oscillating term can be removed: R.\!\I.A.]

— 7
tre o =N [ate [@po S (Jay( + 15,008 + 2 (%) )

, NTZ\  _;en2 2 o2
% Sln2( 7 )6 i5P7 o is(nm/L) elsw :




CASIMIR EFFECT

Following Schwinger, let us write the vacuum Casimir energy density as

I .0
(ccus) =~ i |l ZRew ()],
Using W(v) = —%/ ds s* 1 Tre isH
0

we find




CASIMIR EFFECT- flat background (a check)

» As a consistence check, consider the flat spacetime case, 5p = 0.

» Integrations in square brackets are readily performed and we find

1/—5—1 —zs( )2
(€Cas)o —3{}%%% 167T3/2L2/d88 k2 }

» The remaining integral can be converted into a Gamma function and
the infinite sum yields a Riemann zeta-function

(cCas)o = lim §Re{ ()~ (E)QU_BC(zy_s)F(u—s/m}

v—0 167T3/2L L
» Performing analytic continuation (v — 0) we find the well-known results:

7T2 ©0) 1 aAL<€Ca5>O » 2

- 1440LA Cas = " A" 9L 480L*

<€Cas>0

Casimir energy density Attractive force per unit surface



CASIMIR EFFECT— Bianchi-I s-t background/1

The correction to the flat Casimir result now reads:

1 2T +o00 o . .
(0€cas) = 22n )L gl_r%%e{z/ ds s¥~ 1[/d9/ DL dm/ deQ@ezsmezs(m/L) pisw ]}

2,2
Suppose a metric perturbation [h(t) — He ¢ tl NB:
(gaussian profile) 1/0 ~ time duration
p N of the gravitational
perturbation
zH
then By = VT o e~ (@/9)° 0520
p 9 Pl :
Wwo
N J
Integrations over variabless, 8 and p, /+°° ¢"dg T (F*)T (v— )
can be carried on, using also the recipe o (24 C?) 2T (v) C2v—1-n



CASIMIR EFFECT- Bianchi-I s-t background/2

» Correction to Casimir energy density is

(O€cas) = i lim %e{il_”l“(u —3) (£)2V6 }

16702 v—0

[ DIVERGENCES!

Performing a change of variable (w = —i u)
and a Wick rotation, we convert [(v) into

Epstein-Hurwitz zeta-function!

) _/+°° du _uz 1 ) sem—
V) =1 e o2 : . _
0 (u + 6)2 (ng + (u—l—efLQ)V_S « CEH(Sa q ) — Z(n +q ) °

mn
n=1

NB: € — 0 at the end of calculations



CASIMIR EFFECT- Bianchi-I s-t background/3

» Epstein-Hurwitz zeta-function can be analytically continued
(E. Elizalde, J. Math. Phys. 31, 170 (1990))

© 2s
Cen(s,q°) = Z(”2 +¢%)7° = L VT ['(s — 1/2)q_28+1

= 2 2T(s)
2m° 1/2—s - s—1/2
_I_F(S) q ;n Kst_l/Q(Z’]TTLQ)

Modified Bessel function

» Hence, Casimir energy can be written as the sum of three contributions

{ <5€Cas> — <5€C’a5>1 + <5€Ca,s>2 + <5€Cas>3 J




CASIMIR EFFECT- Bianchi-I s-t background/3

» Three contributions to Casimir energy density:

///, (d€cas)1 i mn&m{iVF@/—S)U:M+5F(—V4-5)},\\\

B 32702 v—0 Q—v+7/2 2

2 20146
(0€Cas)2 = H lim %e{i_”ﬁr (V — z) O I'(—v+ 3)},

16702 10 2 9 ] 9—v+4

H? : - —3 L el —7/2
k<5ECCLS>3 =% gli% %e{z 27 (;) zn:n J(V)},/

OO 2u2
J(v) = / du e_a—Qu_”+3/2KV_%(2nLu).
0




INTERLUDE — A few remarks

When working in a flat spacetime background, analytic continuation often
allows to get rid of the divergences usually appearing in the evaluation of the
vacuum energy, thus straightforwardly leading to the physical result
one is looking for.

This is just what happened when computing the Casimir energy density
in flat spacetime.

However, in presence of a time-dependent background, such a mathematical
tool is generally not enough, and further physical considerations are required
in order to remove the emerging infinities.



CASIMIR EFFECT— Handling the divergences/1
H2 . . 0.—21/—|—5 5
= gl {0z (a0 2))
. /
» Manifestly divergent, due to the (v — 3) pole.
» Such a term gives an infinite contribution to the Casimir energy,

| Eciy = AL(SEC,)

which is proportional to A, without any reference to the plate separation L.

» Following Schwinger’s argument, such energy has to be normalized to zero.
[ J. Schwinger, Lett. Math. Phys. 24, 59 (1992 ]



CASIMIR EFFECT— Handling the divergences/2

4 )
H2 . -—yﬁ 7 O.—21/—|—6
<5€C’a8>2 — 16702 EIE)I%) %e{z TF (V — 5) o—v+a F(—V a4 3)}
- /

» Uniform spatial density of vacuum energy, independent of L.

» Being interested in vacuum energy dependence on the plate separation,
we can discard this term, again absorbing it in the W countertermes.



CASIMIR EFFECT— Handling the divergences/3

H? . —3 L e —7/2
0€cas)s = = 16702 L 111—% B%e{z o (;) Zn J(V)}’
- . ~

o0 242
J(V)Z/ due_ﬁu_”Jr?’/QKy_%(QnLu). —
0

» By means of analytic continuation (again!) we perform the last integral
in terms of{Whittaker functions}

> Main result:

2 > Ln)2 ' 2
(O€cas) = (0€cas)3 = H Zn_g/Qe( T W_s _x <(0Ln> ) :

215/47T0'1/2L9/2
n=1




CASIMIR EFFECT- The gravitational wave case/1

» As an example, consider the following spacetime metric

ds* = dt* — (14 hy(u))dz® — (1 — hy(u)) dy® — 2hy (u)dzdy — dz2°,

[ hyi(u)=h(t—2) = H6—02(t—2)2]

representing a gravitational plane wave pulse.

If oL < 1, we may expand h(t — z) around z = 0 (one of the plate
locations). So:

2 2 . . . .
. —o0“t ...just like in our previous
h(t - Z) = h(t) = He « Bianchi-I spacetime model!




CASIMIR EFFECT— The gravitational wave case/2

» Thanks to the rapid convergence of the sum, we expand in oL < 1,

H*? Z 9/9 (oLn)? (0Ln)?

n=1
> To the leading order in cLn we find 15H?
<5€C’a3> = :
64/ 2mo3 L7

» Once the gravitational wave pulse is over (t = +0), the total

Casimir energy in the cavity is (in Sl units):
- ™

Ahcer? 675¢3 H?
<ECas> — 3 L —

1440L 2/ 275/23 3
- J

o Atpert ?




SOME REMARKS

Aher? : 675¢3 H?
14403 2v/275/253 3

<ECCLS> —

» It might seem that a sufficiently long gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a change in
its sign, turning the Casimir force in a repulsive one (!).

» Such an occurrence cannot be considered too seriously, since our
calculations have been carried on following a perturbative approach.

675¢3 H?
2v/275/2g3 3

» This requires that: <1 - TAY: H 3L ns.

> For example, with L = 10~% m, and H = 102! m | Atpey < 107" s.




CONCLUSIONS/1

> A gravitational perturbation, leaving Minkowskian the s-t in
the far future causes a permanent shift in the vacuum Casimir
energy («memory» effect)

> Such a shift acts in order to reduce the absolute value of the
(negative) Casimir energy

» Total vanishing or even sign change in the Casimir energy (and
force) are probably ruled out, due to the followed perturbative
approach

»Reduction of the absolute value of the Casimir energy could
recall (or represent) a manifestation of the so-called Quantum

Energy Inequalities (first pionereed by Ford) [see, e.g., L. H. Ford,
M. J. Pfenning and T. A. Roman, Phys. Rev. D 57, 4839 (1998)]



CONCLUSIONS/2

»QEls dictate bounds on the duration of negative energy states, hence
almost preserving the Weak Energy Conditions, violated by Casimir
effect.

» QEls require that WEC violations are small or (as in our case) short-
lived.

»The present approach can be straightforwardly extended to
electromagnetic field, giving — as expected —an extra factor of two.

» Also the analysis can be carried on considering gravitational waves of
arbitrary direction w.r.t. the Casimir cavity.

»The present technique applies also to more general spacetimes as,
e.g., Bianchi-Type IX.
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