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MOTIVATION
ØStudy of influence of gravity on vacuum energy

ØSearch for permanent effects («memory» effects)

ØRelationship with the cosmological constant problem

ØUse of Schwinger’s approach to clearly disentangle particle
creation effects from polarization effects

ØHandling of divergences by means of analytic continuation



OUTLINE

ØGRAVITATIONAL BACKGROUND AND CASIMIR CAVITY
ØPROPER-TIME SCHWINGER’S APPROACH
ØSTATIC CASIMIR EFFECT

vFlat background (a consistence check)
vBianchi Type-I background

ØHANDLING THE DIVERGENCES
ØTHE GRAVITATIONAL WAVE CASE
ØCONCLUSIONS



GAVITATIONAL BACKGROUND
Starting point: Bianchi-I spacetime
(the simplest generalization of FLRW universe)
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[35]).
We will manage the divergences arising during the cal-

culations by means of a renormalization procedure based
on the analytic continuation technique (see, e.g., [36]).

We will show that, once the gravitational perturba-
tion is over (i.e., in the far future), a small shift in the
vacuum energy is found as a consequence of the inter-
action. The time-dependent background has distorted
the field modes, causing a permanent change in the zero-
point energy of the quantum field confined to the cavity.
This appears as a sort of a gravitational memory of the
Casimir e↵ect.

The paper is organized as follows. In section II we
introduce the time-dependent gravitational background.
Then we solve the Klein-Gordon equation for a mass-
less scalar field, minimally coupled to the gravitational
field and confined to a Casimir cavity, represented by two
large, perfectly reflecting parallel plates, separated by a
small (proper) distance L. In section III we follow the
Schwinger’s proper-time approach, computing the e↵ec-
tive actionW for the quantum field. In section IV we first
check our computations, finding the Casimir energy den-
sity and the attractive force between the plates in the
flat spacetime case. Subsequently, we adopt the same
procedure in the case of a slightly perturbed background
described by a suitable model of time-varying Bianchi-I
spacetime. In section V we discuss the emerging diver-
gences, hence obtaining the Casimir vacuum energy den-
sity as a finite, physical quantity. In section VI we adapt
the present model to a specific case, in which the back-
ground spacetime describes a weak gravitational wave in-
teracting with the Casimir cavity. In Section VII we dis-
cuss the results, also in connection with the Weak Energy
Conditions (WEC) and the Quantum Energy Inequalities
(QEIs) and give some concluding remarks.

In Appendix A we generalize our results, briefly dis-
cussing the case of a confined electromagnetic field. Ap-
pendix B is devoted to the analysis of the interaction
with a gravitational wave propagating at an arbitrary
direction in the reference frame of the Casimir cavity.

The approach followed in Appendix B can be straight-
forwardly applied to more general spacetime backgrounds
as, e.g., Bianchi Type-IX models.

Throughout the paper, unless otherwise specified, use
has been made of natural geometrized units. Greek in-
dices take values from 0 to 3; latin ones take values from
1 to 3. The metric signature is �2, with determinant g.

II. THE GRAVITATIONAL BACKGROUND
AND THE CASIMIR CAVITY

We are interested in a time-dependent background
spacetime, admitting asymptotic minkowskian regions in
the far past and future, so that the definitions of in- and
out-vacua are not ambiguous. On the other hand, time
dependence will allows for particle creation as well as vac-
uum polarization e↵ects. Considering also the possibility

of anisotropies, we will focus on a Bianchi-I spacetime
background. The Bianchi-I universe has zero intrinsic
curvature but non-zero extrinsic curvature. The general
line element is [1, 24]

ds2 = dt2 �
3X

i=1

a2
i
(t)dx2

i
, (1)

namely the simplest generalization of the homo-
geneous spatially flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) universe. The functions ai(t) repre-
sent the directional scale factors along the axes {x, y, z}
in a matter-comoving coordinate frame (with 4-velocity
uµ = �µ0 ). In what follows we will suppose that the
anisotropies are small, so that (1) reads

ds2 = dt2 �
3X

i=1

[1 + hi(t)](dx
i)2, (2)

where the condition

lim
t!±1

hi(t) = 0 (3)

accounts for the asymptotic minkowskian behaviour. For
simplicity, we will also impose the following constraints

max|hi(t)| ⌧ 1, (4)
3X

i=1

hi(t) = 0, (5)

h3(t) ⌘ hz(t) = 0, (6)

(for Bianchi-I type, coordinates can be chosen such that
the spatial metric is diagonal and traceless [37, 38]). As-
sume that the Casimir cavity is oriented in space so that
the plates, each of (proper) area A, are orthogonal to
the z axis, placed at z = 0 and z = L, respectively,
with L representing the (proper) plate separation. The
constraint (6) guarantees that the proper and the coor-
dinate distance between the plates will coincide at any
time. This will allows us to avoid possible complications
due to tidal e↵ects (the more general case in which (6) is
relaxed will be briefly considered in Appendix B and dis-
cussed in section VII). We will consider a massless scalar
field, �(x), satisfying the Klein-Gordon equation

1p
�g

@µ
⇥p

�ggµ⌫@⌫�(x)
⇤
+ ⇠R(x)�(x) = 0, (7)

where ⇠ is a parameter describing the coupling between
the matter field and the background gravitational field
and R(x) is the scalar curvature. In what follows we will
suppose minimal coupling, so that ⇠ = 0. We will also
assume Dirichlet boundary conditions at the confining
plates. To the lowest order, (7) reads

(2+ V̂ )� = 0, (8)

where

V̂ = hx(t)@
2
x
+ hy(x)@

2
y
= h(t)(@2

x
� @2

y
), (9)

directional scale factorsAssume small anisotropies,
satisfying the constraints:
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distance between the plates coincide at any time.

This allows us to avoid possible complications
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For sake of simplicity, assume a massless scalar field,
minimally coupled to the gravitational background
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(throughout the text, a caret will mean that the cor-
responding quantity has to be regarded as an operator)
with h(t) ⌘ hx(t) = �hy(t), [see (5) and (6)].

Spatial translation invariance of Bianchi-I spacetime
(1) is broken by the field confinement along the z direc-
tion. Nevertheless, it is still assured along the transverse
direction x and y, so that we can search for solutions of
(8) in the form

�(x) = Nei~p?·~x? sin
⇣n⇡z

L

⌘
⌘(t), (10)

where N =
⇣

2
(2⇡)3L

⌘1/2
is an overall normalization con-

stant, ~p? = (px, py), ~x? = (x, y), and the function ⌘(t)
satisfies

⌘(t) ! e�i!t, h(t) ! 0. (11)

In the remote past (t ! �1), i.e., on lack of gravita-
tional perturbation, the spacetime is Minkowskian and
(10) reduces to the usual mode solution inside the cavity,
namely

�(0)(x) = Nei~p?·~x? sin
⇣n⇡z

L

⌘
e�i!t. (12)

Using (10) in (8) yields, to the lowest order in h

@2
t
⌘ + !2⌘ � (h(t)p2? cos 2✓)e�i!t = 0, (13)

where tan ✓ = py/px, and !2 = p2? + (n⇡/L)2. The
solution of (13) is

⌘(t) = e�i!t +

Z
t

�1
dt0

sin(!(t� t0))

!
h(t0)p2? cos 2✓e�i!t

0
= ↵p(t)e

�i!t + �p(t)e
i!t, (14)

where

↵p(t) = 1 +
i

2!

Z
t

�1
dt0 h(t0)p2? cos 2✓, (15)

�p(t) = � i

2!

Z
t

�1
dt0 h(t0)p2? cos 2✓e�2i!t

0
, (16)

and

�(x) = N
�
↵p(t)e

�i!t + �p(t)e
i!t

�
ei~p?·~x? sin

⇣n⇡z
L

⌘
.

(17)
In the limit t ! +1 we also have

⌘(t) = ↵pe
�i!t + �pe

i!t, (18)

where ↵p and �p can be regarded as the Bogolubov co-
e�cients, connecting the in- and out- vacua, satisfying
the condition |↵p|2 � |�p|2 = 1. To the present order of
approximation we have [1]:

↵p = 1 +
i

2!

Z +1

�1
dt h(t)p2? cos 2✓, (19)

�p = � i

2!

Z +1

�1
dt h(t)p2? cos 2✓e�2i!t. (20)

III. PROPER-TIME SCHWINGER’S
APPROACH

In this section we will follow Schwinger’s proper time
approach [32–34] in order to derive an expression of the

e↵ective action W for the scalar field inside the Casimir
cavity. In presence of a time-dependent gravitational
background, the e↵ective action may become complex. In
such case the real part of W describes phenomena related
to the vacuum polarization, as the (static) Casimir e↵ect,
meanwhile the imaginary part is responsible for particle
production. Actually, in the so-called in-out formalism
the imaginary part of the e↵ective action is related to the
vacuum persistence amplitude

h0 out|0 ini = eiW . (21)

Let us start writing the e↵ective action W

W = lim
⌫!0

W (⌫), (22)

where [30, 32–34]

W (⌫) = � i

2

Z 1

0
ds s⌫�1Tr e�isĤ + const, (23)

and the limit ⌫ ! 0 has to be taken at the end of calcula-
tions. The additional constant is introduced to subtract
divergent terms, hence recovering the required physical
normalization. In (23)

Ĥ = Ĥ0+ V̂ = �p̂20+ p̂2?+
⇣n⇡
L

⌘2
�h(t)p2? cos 2✓, (24)

where p̂0 = i@t, p̂? = �i~r? and the total trace

Tr e�isĤ =

ZX
d4xhx|e�isĤ |xi, (25)

has to be evaluated all over the continuous as well the
discrete degrees of freedom, including those of spacetime.

Spatial translation invariance of Bianchi-I spacetime is broken by field
confinement. However, it is still assured along x and y directions.
We guess:
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ds s⌫�1Tr e�isĤ + const, (23)

and the limit ⌫ ! 0 has to be taken at the end of calcula-
tions. The additional constant is introduced to subtract
divergent terms, hence recovering the required physical
normalization. In (23)
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ds s⌫�1Tr e�isĤ + const, (23)

and the limit ⌫ ! 0 has to be taken at the end of calcula-
tions. The additional constant is introduced to subtract
divergent terms, hence recovering the required physical
normalization. In (23)
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Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =
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Since [~̂p, V̂ ] = 0, we have
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and, taking into account (13)
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(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]
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, (30)

The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find
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IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have
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From (23) and (31) we obtain
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where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving

h✏Casi0 = lim
⌫!0

<e
⇢ p

i

16⇡3/2L

X

n

Z +1

0
ds s⌫�

3
2�1e�is(n⇡

L )2
�
.

(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function

h✏Casi0 = lim
⌫!0

<e
⇢

�(i)�⌫

16⇡3/2L
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L

⌘2⌫�3
⇣(2⌫�3)�(⌫�3/2)

�
.

(35)

4

Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =

Z
d4x

ZX
d↵ hx|↵ih↵|e�is(Ĥ0+V̂ )|↵0ih↵0|xi,

(26)
where |xi ⌘ |t, x?, zi and

ZX
d↵ ⌘

X

n,n0

Z
dp0 dp

0
0 dp?dp

0
?. (27)

Since [~̂p, V̂ ] = 0, we have

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2

⇥ hp0|e�is(�p̂
2
0�h(t)p2

? cos 2✓|p00i,(28)

and, taking into account (13)

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2eis!

2

⇥ �n,n0�(2)(p? � p0?)�(! � !0)(29)

(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]

Tr e�isĤ = N2

Z
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Z
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2

, (30)

The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find

Tr e�isĤ =
A

(2⇡)3

Z
dt

Z 2⇡

0
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Z +1

0
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n
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2
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2

. (31)

IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have

h✏Casi = � 1

AL
lim
⌫!0


lim

t!+1

@

@t
<eW (⌫)

�
. (32)

From (23) and (31) we obtain

h✏Casi =
1

2(2⇡)3L
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, (33)

where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving

h✏Casi0 = lim
⌫!0

<e
⇢ p

i

16⇡3/2L

X

n

Z +1

0
ds s⌫�

3
2�1e�is(n⇡

L )2
�
.

(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function

h✏Casi0 = lim
⌫!0

<e
⇢
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⌘2⌫�3
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.

(35)

4

Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =

Z
d4x

ZX
d↵ hx|↵ih↵|e�is(Ĥ0+V̂ )|↵0ih↵0|xi,

(26)
where |xi ⌘ |t, x?, zi and

ZX
d↵ ⌘

X

n,n0

Z
dp0 dp

0
0 dp?dp

0
?. (27)

Since [~̂p, V̂ ] = 0, we have

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2

⇥ hp0|e�is(�p̂
2
0�h(t)p2

? cos 2✓|p00i,(28)

and, taking into account (13)

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2eis!

2

⇥ �n,n0�(2)(p? � p0?)�(! � !0)(29)

(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]

Tr e�isĤ = N2

Z
d4x

Z
d2p?d!
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|↵p(t)|2 + |�p(t)|2

+ 2<e
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, (30)

The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find

Tr e�isĤ =
A

(2⇡)3

Z
dt

Z 2⇡
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. (31)

IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have

h✏Casi = � 1

AL
lim
⌫!0


lim

t!+1

@

@t
<eW (⌫)

�
. (32)

From (23) and (31) we obtain

h✏Casi =
1

2(2⇡)3L
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where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving

h✏Casi0 = lim
⌫!0

<e
⇢ p

i

16⇡3/2L

X

n

Z +1

0
ds s⌫�

3
2�1e�is(n⇡

L )2
�
.

(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function

h✏Casi0 = lim
⌫!0

<e
⇢
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16⇡3/2L

⇣⇡

L
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(35)

NB: the rapidly oscillating term can be removed: R.W.A.



CASIMIR EFFECT
Following Schwinger, let us write the vacuum Casimir energy density as

4

Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =

Z
d4x

ZX
d↵ hx|↵ih↵|e�is(Ĥ0+V̂ )|↵0ih↵0|xi,

(26)
where |xi ⌘ |t, x?, zi and

ZX
d↵ ⌘

X

n,n0

Z
dp0 dp

0
0 dp?dp

0
?. (27)

Since [~̂p, V̂ ] = 0, we have

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2

⇥ hp0|e�is(�p̂
2
0�h(t)p2

? cos 2✓|p00i,(28)

and, taking into account (13)

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2eis!

2

⇥ �n,n0�(2)(p? � p0?)�(! � !0)(29)

(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]

Tr e�isĤ = N2

Z
d4x

Z
d2p?d!
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, (30)

The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find

Tr e�isĤ =
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dt
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IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have

h✏Casi = � 1
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
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From (23) and (31) we obtain
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where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving

h✏Casi0 = lim
⌫!0

<e
⇢ p
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0
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(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function

h✏Casi0 = lim
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(35)

Using

3

(throughout the text, a caret will mean that the cor-
responding quantity has to be regarded as an operator)
with h(t) ⌘ hx(t) = �hy(t), [see (5) and (6)].

Spatial translation invariance of Bianchi-I spacetime
(1) is broken by the field confinement along the z direc-
tion. Nevertheless, it is still assured along the transverse
direction x and y, so that we can search for solutions of
(8) in the form

�(x) = Nei~p?·~x? sin
⇣n⇡z

L

⌘
⌘(t), (10)

where N =
⇣

2
(2⇡)3L

⌘1/2
is an overall normalization con-

stant, ~p? = (px, py), ~x? = (x, y), and the function ⌘(t)
satisfies

⌘(t) ! e�i!t, h(t) ! 0. (11)

In the remote past (t ! �1), i.e., on lack of gravita-
tional perturbation, the spacetime is Minkowskian and
(10) reduces to the usual mode solution inside the cavity,
namely

�(0)(x) = Nei~p?·~x? sin
⇣n⇡z

L

⌘
e�i!t. (12)

Using (10) in (8) yields, to the lowest order in h

@2
t
⌘ + !2⌘ � (h(t)p2? cos 2✓)e�i!t = 0, (13)

where tan ✓ = py/px, and !2 = p2? + (n⇡/L)2. The
solution of (13) is

⌘(t) = e�i!t +
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and
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(17)
In the limit t ! +1 we also have

⌘(t) = ↵pe
�i!t + �pe

i!t, (18)

where ↵p and �p can be regarded as the Bogolubov co-
e�cients, connecting the in- and out- vacua, satisfying
the condition |↵p|2 � |�p|2 = 1. To the present order of
approximation we have [1]:

↵p = 1 +
i
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dt h(t)p2? cos 2✓, (19)

�p = � i

2!
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�1
dt h(t)p2? cos 2✓e�2i!t. (20)

III. PROPER-TIME SCHWINGER’S
APPROACH

In this section we will follow Schwinger’s proper time
approach [32–34] in order to derive an expression of the

e↵ective action W for the scalar field inside the Casimir
cavity. In presence of a time-dependent gravitational
background, the e↵ective action may become complex. In
such case the real part of W describes phenomena related
to the vacuum polarization, as the (static) Casimir e↵ect,
meanwhile the imaginary part is responsible for particle
production. Actually, in the so-called in-out formalism
the imaginary part of the e↵ective action is related to the
vacuum persistence amplitude

h0 out|0 ini = eiW . (21)

Let us start writing the e↵ective action W

W = lim
⌫!0

W (⌫), (22)

where [30, 32–34]

W (⌫) = � i

2

Z 1

0
ds s⌫�1Tr e�isĤ + const, (23)

and the limit ⌫ ! 0 has to be taken at the end of calcula-
tions. The additional constant is introduced to subtract
divergent terms, hence recovering the required physical
normalization. In (23)

Ĥ = Ĥ0+ V̂ = �p̂20+ p̂2?+
⇣n⇡
L

⌘2
�h(t)p2? cos 2✓, (24)

where p̂0 = i@t, p̂? = �i~r? and the total trace

Tr e�isĤ =

ZX
d4xhx|e�isĤ |xi, (25)

has to be evaluated all over the continuous as well the
discrete degrees of freedom, including those of spacetime.

we find

4

Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =

Z
d4x

ZX
d↵ hx|↵ih↵|e�is(Ĥ0+V̂ )|↵0ih↵0|xi,

(26)
where |xi ⌘ |t, x?, zi and
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Since [~̂p, V̂ ] = 0, we have
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(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]
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The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find

Tr e�isĤ =
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IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have
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From (23) and (31) we obtain
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where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving
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(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function
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CASIMIR EFFECT– flat background (a check)
Ø As a consistence check, consider the flat spacetime case, 

4

Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =

Z
d4x

ZX
d↵ hx|↵ih↵|e�is(Ĥ0+V̂ )|↵0ih↵0|xi,

(26)
where |xi ⌘ |t, x?, zi and

ZX
d↵ ⌘

X

n,n0

Z
dp0 dp

0
0 dp?dp

0
?. (27)

Since [~̂p, V̂ ] = 0, we have

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2
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2
0�h(t)p2
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and, taking into account (13)

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2eis!
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⇥ �n,n0�(2)(p? � p0?)�(! � !0)(29)

(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]
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, (30)

The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find

Tr e�isĤ =
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(2⇡)3

Z
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Z 2⇡
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IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have

h✏Casi = � 1

AL
lim
⌫!0


lim

t!+1

@

@t
<eW (⌫)

�
. (32)

From (23) and (31) we obtain
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where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving

h✏Casi0 = lim
⌫!0

<e
⇢ p

i

16⇡3/2L

X
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0
ds s⌫�

3
2�1e�is(n⇡

L )2
�
.

(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function

h✏Casi0 = lim
⌫!0
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⇢
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⌘2⌫�3
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.

(35)

Ø Integrations in square brackets are readily performed and we find
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Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =

Z
d4x

ZX
d↵ hx|↵ih↵|e�is(Ĥ0+V̂ )|↵0ih↵0|xi,

(26)
where |xi ⌘ |t, x?, zi and

ZX
d↵ ⌘

X

n,n0

Z
dp0 dp

0
0 dp?dp

0
?. (27)

Since [~̂p, V̂ ] = 0, we have

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2

⇥ hp0|e�is(�p̂
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and, taking into account (13)

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
?e�is(n⇡/L)2eis!

2

⇥ �n,n0�(2)(p? � p0?)�(! � !0)(29)

(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]
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Z
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, (30)

The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find

Tr e�isĤ =
A

(2⇡)3

Z
dt
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. (31)

IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have

h✏Casi = � 1

AL
lim
⌫!0


lim
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@t
<eW (⌫)

�
. (32)

From (23) and (31) we obtain
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where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving

h✏Casi0 = lim
⌫!0

<e
⇢ p

i

16⇡3/2L
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0
ds s⌫�

3
2�1e�is(n⇡
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.

(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function

h✏Casi0 = lim
⌫!0
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⇢
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⌘2⌫�3
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.

(35)

Ø The remaining integral can be converted into a Gamma function and 
the infinite sum yields a Riemann zeta-function
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Expanding the trace in terms of the eigenvectors |↵i ⌘
|p0, p?, ni of Ĥ, we write

Tr e�isĤ =

Z
d4x

ZX
d↵ hx|↵ih↵|e�is(Ĥ0+V̂ )|↵0ih↵0|xi,

(26)
where |xi ⌘ |t, x?, zi and

ZX
d↵ ⌘

X

n,n0

Z
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0
0 dp?dp

0
?. (27)

Since [~̂p, V̂ ] = 0, we have

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
2
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2
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and, taking into account (13)

h↵|e�is(Ĥ0+V̂ )|↵0i = e�isp
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2
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(notice that the states |↵i are normalized according to
the standard Dirac prescription: h↵|↵0i = �(↵,↵0), where
�(↵,↵0) is the Kronecker symbol �↵,↵0 if {|↵i} is a dis-
crete set, and the Dirac delta function �(↵ � ↵0) if it is
continuous).
Replacing (29) in (26) and using |hx|↵i|2 = |�(x)|2 we

get [see (17)]

Tr e�isĤ = N2
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Z
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, (30)

The rapidly oscillating term / e�2i!t appearing in the
last term can be discarded in the evaluation of the ac-
tion, since the involved time integration gives a vanishing
mean value (this is known as the rotating-wave approxi-
mation). Performing the integration over the cavity vol-
ume (= AL) we find

Tr e�isĤ =
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(2⇡)3
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IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
One could wonder we are using the word static while con-
sidering a time-varying background. Actually, as we will
see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in
the far future, namely when the time-dependent gravita-
tional perturbation is over. It is just in this limit that

we can recover the static Casimir e↵ect, thus evaluating
possible shift induced by the gravitational interaction.
A näıve reasoning might lead to expect no shift in the
vacuum energy. As we will see, however, this is not the
case.
Following Schwinger’s proper-time approach, we have
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. (32)

From (23) and (31) we obtain
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where use has also been made of the relation |↵p|2 �
|�p|2 = 1, and �p = limt!+1 �p(t) is given by (20).

A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., �p = 0. The integrations in

the square brackets can be readily performed, giving

h✏Casi0 = lim
⌫!0

<e
⇢ p

i
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(34)
The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ⇣-function

h✏Casi0 = lim
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(35)Ø Performing analytic continuation

5

Performing the analytic continuation (⌫ ! 0) we finally
get [34]

h✏Casi0 = � ⇡2

1440L4
, (36)

the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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=
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Cas

A
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@E(0)
Cas

@L

= � 1
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@ALh✏Casi0
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480L4
. (37)

B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile

h(t) = He��
2
t
2

, (39)

where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
limt!±1 h(t) = 0, thus guaranteeing that the in- and
out- spacetime regions are Minkowskian, so that the
asymptotic definition of the corresponding vacuum state
is unambiguous. Using (20) we have

�p = � iH
p
⇡

2!�
p2?e

�(!/�)2 cos 2✓. (40)

Combining (38) and (40), and performing the integration
over the variables s and ✓, we obtain
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where ⌦2 = p2? +
�
n⇡

L

�2
. The last integral in (41) can be

solved recalling that [39, 40]
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where we have put
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I(⌫) is potentially plagued by singularities. However, in
(43) we may replace I(⌫) with
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which obviously coincides with I(⌫), since ! 2 RI . The
following change of variable

! = �iu, u 2 CI, (46)

yields
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that

we find the well-known results:
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Performing the analytic continuation (⌫ ! 0) we finally
get [34]

h✏Casi0 = � ⇡2

1440L4
, (36)

the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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. (37)

B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile

h(t) = He��
2
t
2

, (39)

where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
limt!±1 h(t) = 0, thus guaranteeing that the in- and
out- spacetime regions are Minkowskian, so that the
asymptotic definition of the corresponding vacuum state
is unambiguous. Using (20) we have

�p = � iH
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Combining (38) and (40), and performing the integration
over the variables s and ✓, we obtain
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where ⌦2 = p2? +
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. The last integral in (41) can be

solved recalling that [39, 40]
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where we have put
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I(⌫) is potentially plagued by singularities. However, in
(43) we may replace I(⌫) with
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which obviously coincides with I(⌫), since ! 2 RI . The
following change of variable

! = �iu, u 2 CI, (46)

yields
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that
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Performing the analytic continuation (⌫ ! 0) we finally
get [34]

h✏Casi0 = � ⇡2

1440L4
, (36)

the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile

h(t) = He��
2
t
2

, (39)

where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
limt!±1 h(t) = 0, thus guaranteeing that the in- and
out- spacetime regions are Minkowskian, so that the
asymptotic definition of the corresponding vacuum state
is unambiguous. Using (20) we have
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where ⌦2 = p2? +
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that
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Performing the analytic continuation (⌫ ! 0) we finally
get [34]

h✏Casi0 = � ⇡2

1440L4
, (36)

the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile

h(t) = He��
2
t
2

, (39)

where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
limt!±1 h(t) = 0, thus guaranteeing that the in- and
out- spacetime regions are Minkowskian, so that the
asymptotic definition of the corresponding vacuum state
is unambiguous. Using (20) we have
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Combining (38) and (40), and performing the integration
over the variables s and ✓, we obtain
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where ⌦2 = p2? +
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solved recalling that [39, 40]
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I(⌫) is potentially plagued by singularities. However, in
(43) we may replace I(⌫) with
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which obviously coincides with I(⌫), since ! 2 RI . The
following change of variable

! = �iu, u 2 CI, (46)

yields
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that
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Performing the analytic continuation (⌫ ! 0) we finally
get [34]

h✏Casi0 = � ⇡2

1440L4
, (36)

the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile

h(t) = He��
2
t
2

, (39)

where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
limt!±1 h(t) = 0, thus guaranteeing that the in- and
out- spacetime regions are Minkowskian, so that the
asymptotic definition of the corresponding vacuum state
is unambiguous. Using (20) we have

�p = � iH
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Combining (38) and (40), and performing the integration
over the variables s and ✓, we obtain
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where ⌦2 = p2? +
�
n⇡

L

�2
. The last integral in (41) can be

solved recalling that [39, 40]
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that

Suppose a metric perturbation
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Performing the analytic continuation (⌫ ! 0) we finally
get [34]

h✏Casi0 = � ⇡2

1440L4
, (36)

the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile

h(t) = He��
2
t
2

, (39)

where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
limt!±1 h(t) = 0, thus guaranteeing that the in- and
out- spacetime regions are Minkowskian, so that the
asymptotic definition of the corresponding vacuum state
is unambiguous. Using (20) we have
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Combining (38) and (40), and performing the integration
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where ⌦2 = p2? +
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solved recalling that [39, 40]
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that

(gaussian profile)

then
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Performing the analytic continuation (⌫ ! 0) we finally
get [34]
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1440L4
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the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile
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where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
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I(⌫) is potentially plagued by singularities. However, in
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which obviously coincides with I(⌫), since ! 2 RI . The
following change of variable

! = �iu, u 2 CI, (46)

yields
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that

Integrations over variables s,  𝜃 and 𝑝&
can be carried on, using also the recipe
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Performing the analytic continuation (⌫ ! 0) we finally
get [34]

h✏Casi0 = � ⇡2

1440L4
, (36)

the well-known result for the Casimir energy density of
a massless scalar field. We point out that that, when
�p = 0, the quantity in curly brackets appearing in (33)
is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
spacetime background.

We can also find the attractive force between the plates

(per unit surface), obtaining
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
II. Looking at (33) we see that the correction to the flat
Casimir result (36) reads
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile

h(t) = He��
2
t
2
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where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
limt!±1 h(t) = 0, thus guaranteeing that the in- and
out- spacetime regions are Minkowskian, so that the
asymptotic definition of the corresponding vacuum state
is unambiguous. Using (20) we have
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that

𝑁𝐵:
1/𝜎 ∼ time duration
of the gravitational
perturbation
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
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Notice that, in (38), n, ! and p? have to be considered as
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an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile
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where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that
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is in itself real. In other words, the e↵ective action W
has no imaginary part. This means that - as previously
recalled - we do not expect particle creation in a flat
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B. Bianchi-I spacetime background

Let us now consider the case �p 6= 0, corresponding to
the anisotropic background we have introduced in section
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Notice that, in (38), n, ! and p? have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity �p. For computa-
tional convenience let us assume the metric perturbation
to have a gaussian profile
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where H (with |H| ⌧ 1) represents the amplitude of
the perturbation and 1/� gives a rough estimate of
the time duration of the perturbation. Notice that
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Notice that in (47) u is a purely imaginary quantity, rang-
ing from 0 thru +i1. In order to get rid of the poles of
(47), we have also introduced - as usual - a small quantity
✏ > 0 whose limit ✏ ! 0 we will take at the end of calcula-
tions. We see that the poles of (47) lie at u = �✏ and (as
long as ⌫ > 3) at u = �✏± in⇡

L
, n 2 N � {0}, i.e., to the

left of the imaginary axis in the u�complex plane. Hence,
none of those poles is encountered in the (0;+i1) inte-
gration involved in (47). Consider now the integral Ĩ(⌫)
extended to the whole u-complex plane along a closed
path � = (0;+i1) [ �1 [ (�1; 0), with �1 being a
curve placed at infinity in the u- plane. There being no
poles enclosed by �, the integrand is a holomorphic func-
tion in the considered domain. Taking into account that

Performing a change of variable (𝜔 = −𝑖 𝑢) 
and a Wick rotation, we convert 𝐼 𝜈 into
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where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]
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where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0
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having defined in (53)
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V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)
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which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds
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���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining

Epstein-Hurwitz zeta-function!
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having defined in (53)

J(⌫) =

Z +1

0
du e�

2u2

�2 u�⌫+3/2K
⌫� 7

2
(2nLu). (54)

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining

DIVERGENCES!

𝑁𝐵: 𝜖 → 0 at the end of calculations
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e.g., just twice the result we found in (61). This is due
to the fact that we are considering a gravitational wave
characterized by two polarization states, H+ and H⇥
(with equal amplitudes). This confirms once more what
pointed out in Appendix A. Namely, each polarization
state makes its own contribution to the Casimir vacuum
energy, just as in the electromagnetic case.

The result (B26) has been obtained assuming H+ =

H⇥. Such a constraint can be relaxed (H+ 6= H⇥) and
the calculations are almost the same, although the final
expression is rather cumbersome and not particularly ap-
pealing.
Finally, we point out that the present approach can be

straightforwardly applied also in the case of more gen-
eral background spacetimes as, e.g., in Bianchi Type-IX
models.
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the contribution along �1 is vanishing, we can write

Ĩ(⌫) = i

Z +1

0

du

(u+ ✏)2
e�

2(u+✏)2

�2

X

n

1
⇣
n2 + (u+✏)2L2

⇡2

⌘⌫�3 ,

(48)
where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]

⇣EH(s, q2) =
1X

n=1

(n2 + q2)�s

= �q2s

2
+

p
⇡

2�(s)
�(s� 1/2)q�2s+1

+
2⇡s

�(s)
q1/2�s

1X

n=1

ns�1/2Ks�1/2(2⇡nq), (49)

where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0

h�✏Casi1 =
H2
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, (52)

h�✏Casi3 = � H2
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<e
⇢
i�⌫2⇡⌫�3

✓
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⇡
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n

n⌫�7/2J(⌫)
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, (53)

having defined in (53)

J(⌫) =

Z +1

0
du e�

2u2

�2 u�⌫+3/2K
⌫� 7

2
(2nLu). (54)

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining
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the contribution along �1 is vanishing, we can write

Ĩ(⌫) = i
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(48)
where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]

⇣EH(s, q2) =
1X

n=1

(n2 + q2)�s

= �q2s

2
+
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⇡
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+
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1X

n=1

ns�1/2Ks�1/2(2⇡nq), (49)

where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0

h�✏Casi1 =
H2
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having defined in (53)

J(⌫) =

Z +1

0
du e�

2u2

�2 u�⌫+3/2K
⌫� 7

2
(2nLu). (54)

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining
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where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]

⇣EH(s, q2) =
1X

n=1
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ns�1/2Ks�1/2(2⇡nq), (49)

where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0

h�✏Casi1 =
H2
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having defined in (53)

J(⌫) =
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du e�

2u2

�2 u�⌫+3/2K
⌫� 7

2
(2nLu). (54)

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining

Modified Bessel function

Ø Hence, Casimir energy can be written as the sum of three contributions
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where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]
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where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0

h�✏Casi1 =
H2

32⇡�2L
lim
⌫!0

<e
⇢
i�⌫�(⌫ � 3)

��2⌫+5

2�⌫+7/2
�

✓
�⌫ +

5

2

◆�
, (51)

h�✏Casi2 = � H2

16⇡�2
lim
⌫!0

<e
⇢
i�⌫

p
⇡

2
�

✓
⌫ � 7

2

◆
��2⌫+6

2�⌫+4
�(�⌫ + 3)

�
, (52)

h�✏Casi3 = � H2

16⇡�2L
lim
⌫!0

<e
⇢
i�⌫2⇡⌫�3

✓
L

⇡

◆⌫�5/2 X

n

n⌫�7/2J(⌫)

�
, (53)

having defined in (53)
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2
(2nLu). (54)

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining
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6

the contribution along �1 is vanishing, we can write

Ĩ(⌫) = i

Z +1

0

du

(u+ ✏)2
e�

2(u+✏)2

�2

X

n

1
⇣
n2 + (u+✏)2L2
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(48)
where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]

⇣EH(s, q2) =
1X

n=1

(n2 + q2)�s

= �q2s

2
+

p
⇡

2�(s)
�(s� 1/2)q�2s+1

+
2⇡s

�(s)
q1/2�s

1X

n=1

ns�1/2Ks�1/2(2⇡nq), (49)

where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0

h�✏Casi1 =
H2
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having defined in (53)

J(⌫) =

Z +1

0
du e�

2u2

�2 u�⌫+3/2K
⌫� 7

2
(2nLu). (54)

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining
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the contribution along �1 is vanishing, we can write

Ĩ(⌫) = i
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(48)
where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]

⇣EH(s, q2) =
1X

n=1

(n2 + q2)�s

= �q2s

2
+

p
⇡

2�(s)
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+
2⇡s

�(s)
q1/2�s

1X

n=1

ns�1/2Ks�1/2(2⇡nq), (49)

where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0

h�✏Casi1 =
H2
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having defined in (53)

J(⌫) =

Z +1

0
du e�

2u2

�2 u�⌫+3/2K
⌫� 7

2
(2nLu). (54)

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining

Ø Three contributions to Casimir energy density:



INTERLUDE – A few remarks

When working in a flat spacetime background, analytic continuation often
allows to get rid of the divergences usually appearing in the evaluation of the 

vacuum energy, thus straightforwardly leading to the physical result
one is looking for. 

This is just what happened when computing the Casimir energy density
in flat spacetime. 

However, in presence of a time-dependent background, such a mathematical
tool is generally not enough, and further physical considerations are required

in order to remove the emerging infinities. 



CASIMIR EFFECT– Handling the divergences/1

6

the contribution along �1 is vanishing, we can write
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where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]

⇣EH(s, q2) =
1X

n=1
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where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0

h�✏Casi1 =
H2
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having defined in (53)
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V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining

Ø Manifestly divergent, due to the Γ(ν − 3) pole. 
Ø Such a term gives an infinite contribution to the Casimir energy, 

ECas = AL⟨δεCas⟩

which is proportional to A, without any reference to the plate separation L. 

Ø Following Schwinger’s argument, such energy has to be normalized to zero.
[                                                                     ]
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e.g., just twice the result we found in (61). This is due
to the fact that we are considering a gravitational wave
characterized by two polarization states, H+ and H⇥
(with equal amplitudes). This confirms once more what
pointed out in Appendix A. Namely, each polarization
state makes its own contribution to the Casimir vacuum
energy, just as in the electromagnetic case.

The result (B26) has been obtained assuming H+ =

H⇥. Such a constraint can be relaxed (H+ 6= H⇥) and
the calculations are almost the same, although the final
expression is rather cumbersome and not particularly ap-
pealing.
Finally, we point out that the present approach can be

straightforwardly applied also in the case of more gen-
eral background spacetimes as, e.g., in Bianchi Type-IX
models.
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Ĩ(⌫) = i

Z +1

0

du

(u+ ✏)2
e�

2(u+✏)2

�2

X

n

1
⇣
n2 + (u+✏)2L2

⇡2

⌘⌫�3 ,

(48)
where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]
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where s = ⌫ � 3, q = (u+✏)L
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and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as
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having defined in (53)
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V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining

Ø Uniform spatial density of vacuum energy, independent of L. 

Ø Being interested in vacuum energy dependence on the plate separation, 
we can discard this term, again absorbing it in the  W counterterms. 
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where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]
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where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0
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having defined in (53)
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V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining
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where we have made the replacement | � (u + ✏)2| !
(u + ✏)2, since u is now running along the real axis. We
also recognize that the infinite sum in (48) represents a
inhomogeneous Epstein-Hurwitz ⇣�function ⇣EH(s, q2),
which can be analytically continued to give [36, 41]
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where s = ⌫ � 3, q = (u+✏)L
⇡

and the rapidly converging
sum involves the modified Bessel functions, Kµ(z). Use
of (49) allows to explicitly perform the u�integration in
(48). After a tedious but straightforward calculation we
find that I(⌫) is made of three contributions, stemming
from the three pieces composing (49). Correspondingly,
the correction to the Casimir energy density (43) can be
written as

h�✏Casi = h�✏Casi1 + h�✏Casi2 + h�✏Casi3, (50)

where, in the limit ✏ ! 0
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having defined in (53)
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V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows to get rid of the divergences
usually appearing in the evaluation of the vacuum energy,
thus straightforwardly leading to the physical result one
is looking for. This is just what happened in section IV-
B, when computing the Casimir energy density. How-
ever, in presence of a time-dependent background, such
a mathematical tool is generally not enough, and further
physical considerations are required in order to remove
the emerging infinities.

Let us consider in some detail the various contributions
(51)-(53) to the Casimir energy density in the ⌫ ! 0
limit. The first one is manifestly divergent, due to the
�(⌫ � 3) pole. Such a term gives an infinite contribu-
tion to the Casimir energy, ECas = ALh�✏Casi which
is proportional to A, without any reference to the plate
separation L. Following Schwinger’s argument [33], such
energy has to be normalized to zero, so there must be

a term in the additional constant appearing in (23) that
removes it.
The second contribution (52) represents a uniform spa-

tial density of vacuum energy, independent of L. Since we
are interested in vacuum energy dependence on the plate
separation, we can discard this term, again absorbing it
in the constant term appearing in (23).
All we are left with is the last term in (50). Han-

dling this term requires some care. Consider the follow-
ing slightly modified form of the integral appearing in
(53)

J(⌫, ⌫0) =

Z +1

0
du e�

2u2

�2 u�⌫+⌫
0+3/2K⌫�7/2(2nLu), (55)

which obviously reduces to J(⌫) in the ⌫0 ! 0 limit. The
above integral converges provided the following inequal-
ity holds

<e (�⌫ + ⌫0 + 3/2) >
��<e (⌫ � 7/2)

���1 ) ⌫0 > ⌫, (56)

and can be solved [40] in terms of Whittaker functions
Wµ,�(z). We perform the integral (55) assuming that
(56) is satisfied. Subsequently, we exploit analytic con-
tinuation, placing J(⌫, ⌫0) in (53) and taking both ⌫ ! 0
and ⌫0 ! 0, thus obtaining

Ø By means of analytic continuation (again!) we perform the last integral
in terms of Whittaker functions:

ØMain result: 7
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
2⇡�3L7

. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that

675c3H2

2
p
2⇡5/2�3L3

⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
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So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies
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For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Ø As an example, consider the following spacetime metric
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)
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15H2
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p
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So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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2
p
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)
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15H2
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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2
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.

representing a gravitational plane wave pulse. 

If we may expand around z = 0 (one of the plate
locations). So:
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)
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p
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.

…just like in our previous
Bianchi-I spacetime model!
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2
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p
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So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.

Ø Thanks to the rapid convergence of the sum, we expand in  
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.

Ø To the leading order in 𝜎𝐿𝑛 we find
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.

Ø Once the gravitational wave pulse is over (𝑡 → +∞), the total
Casimir energy in the cavity is (in SI units):
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2
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p
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So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2
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p
2⇡�3L7

. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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✓
1� 675c3H2

2
p
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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2
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
2⇡�3L7

. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.

Ø It might seem that a sufficiently long gravitational pulse could cause 
the complete vanishing of the Casimir energy, or even a change in 
its sign, turning the Casimir force in a repulsive one (!).

Ø Such an occurrence cannot be considered too seriously, since our
calculations have been carried on following a perturbative approach.

Ø This requires that:

Ø For example, with                          and                                    
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
2⇡�3L7

. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
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So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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2
p
2⇡5/2�3L3
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)
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So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that

675c3H2

2
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⌧ 1, (63)

which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.
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Equation (57) is our main result. Being related to the
real part of the e↵ective action W , h�✏Casi represents a
correction to the static Casimir energy density. In other
words, it is a correction to the so-called vacuum polar-
ization.

Inspection of (57) shows that h�✏Casi, induced by the
chosen time-dependent perturbation (39) of the space-
time background is positive, while the Casimir energy
density is (usually) negative.

We are thus in presence of a sort of memory e↵ect
in the Casimir energy, since the vacuum polarization re-
tains trace of the gravitational perturbation at t ! +1,
when the perturbation has left the cavity. Furthermore,
the correction acts reducing the absolute value of the
Casimir energy. Hence, we expect a tiny reduction of the
Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) di↵er by a factor of two from
the results obtained by Casimir [5] considering an electro-
magnetic field. This is usually ascribed to the presence
of two polarization photon states. We will briefly ana-
lyze the electromagnetic field case in Appendix A, find-
ing that, indeed, also the above discussed memory e↵ect
comes with a factor of two, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Eq. (57) can find application in the interesting case
in which the background spacetime is that of an in-
coming gravitational wave, depicted as a short pertur-
bation propagating along the z direction. In such a case
gµ⌫ = ⌘µ⌫ +hµ⌫ , and once the transverse traceless gauge
has been employed, the spacetime line element reads

ds2 = dt2 � (1 + h+(u)) dx
2 � (1� h+(u)) dy

2

� 2h⇥(u)dxdy � dz2, (58)

with h+(u) and h⇥(u) being the two physical states of
polarization of the wave and u = t � z. Let us assume,
for the sake of simplicity, that the wave has the form
of a linearly polarized, short gaussian pulse (the more
general case of a gravitational pulse, propagating at an
arbitrary direction and with both polarization states will
be discussed in Appendix B), so that h⇥(u) = 0 and

h+(u) ⌘ h(t� z) = He��
2(t�z)2 , (59)

where H can now be interpreted as the gravitational
strain, while � gives a rough estimate of the time du-
ration of the pulse. If �L ⌧ 1, we may expand h(t � z)

around z = 0 (one of the plate locations), considering
h(t� z) as a function of time t only. So we put

h(t� z) ' h(t) = He��
2
t
2

(60)

inside the Casimir cavity. This implies that we can study
the interaction of the confined quantum field with the
gravitational wave just employing the Bianchi-I space-
time model we introduced in section II [42].
Exploiting the rapid convergence of the sum appearing

in (57), we expand h�✏Casi around the small parameter
�L obtaining, to the leading order in (�Ln)

h�✏Casi '
15H2

64
p
2⇡�3L7

. (61)

So, once the perturbation due to the gravitational wave
pulse is over (at t ! +1), the total Casimir energy
inside the cavity can be written [recall (36)]

hECasi = � Ah̄c⇡2
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where we have restored, for clarity, SI units. Notice that
� ' 1

�tpert
, with �tpert being the typical time duration

of the gravitational pulse. Looking at (62) it might seem
that a su�ciently short gravitational pulse could cause
the complete vanishing of the Casimir energy, or even a
change in its sign, turning the Casimir force in a repulsive
one. Although suggestive, such an occurrence cannot be
considered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equation, (14) and (17)], based on
the smallness of the perturbation h(t) in the background
spacetime. In that respect, in order our results can be
considered predictive, it is likely that
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which, in turn implies

�tpert ⌧ H� 2
3L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 10�6 m, and a gravitational wave pulse
having a strain H = 10�21, the above constraint would
give �tpert ⌧ 10�1 s.



CONCLUSIONS/1
Ø A gravitational perturbation, leaving Minkowskian the s-t in 

the far future causes a permanent shift in the vacuum Casimir 
energy («memory» effect)

ØSuch a shift acts in order to reduce the absolute value of the 
(negative) Casimir energy

ØTotal vanishing or even sign change in the Casimir energy (and 
force) are probably ruled out, due to the followed perturbative 
approach

ØReduction of the absolute value of the Casimir energy could
recall (or represent) a manifestation of the so-called Quantum 
Energy Inequalities (first pionereed by Ford) [see, e.g., L. H. Ford, 
M. J. Pfenning and T. A. Roman, Phys. Rev. D 57, 4839 (1998)] 



CONCLUSIONS/2
ØQEIs dictate bounds on the duration of negative energy states, hence

almost preserving the Weak Energy Conditions, violated by Casimir 
effect.

Ø QEIs require that WEC violations are small or (as in our case) short-
lived.

ØThe present approach can be straightforwardly extended to 
electromagnetic field, giving – as expected –an extra factor of two.

ØAlso the analysis can be carried on considering gravitational waves of 
arbitrary direction w.r.t. the Casimir cavity. 

ØThe present technique applies also to more general spacetimes as, 
e.g., Bianchi-Type IX.
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