The Gravitational Energy-Momentum Pseudo-Tensor in Higher Order Theories of Gravity

Salvatore Capozziello^{1,2}

¹Dipartimento di Fisica "E. Pancini" Universitá di Napoli "Federico II"

²Scuola Superiore Meridionale Napoli

October 5 - 6, 2023

QGSKY National Meeting
Genova

Summary

Summary

We discuss the generalization of gravitational energy-momentum pseudo-tensor to Extended Theories of Gravity, in particular to higher-order theories in curvature invariants. This result is achieved by imposing that the local variation of gravitational action of any order n vanishes under rigid translations. We also prove that this tensor, in general, is not covariant but only affine, that is, it is a **pseudo-tensor**. The pseudo-tensor τ^{μ}_{α} is calculated in the weak-field limit up to a first non-vanishing term of order h^2 , where h is the metric perturbation. The average value of the pseudo-tensor, over a suitable spacetime domain, is obtained. Finally, we calculate the emitted power, per unit solid angle Ω , carried by a gravitational wave in the direction \hat{x} for a fixed wave number k under a suitable gauge. We discuss possible applications of the approach.

Table of contents

- The Energy-Momentum Pseudo-Tensor in General Relativity
- 2 The Energy-Momentum Pseudo-Tensor for Lagrangians of order n
 - Non-covariance of gravitational energy-momentum tensor
- **3** The Energy-Momentum Pseudo-Tensor of $L_{\square^k R}$ Lagrangians
 - Weak field limit of Energy-Momentum Pseudo-Tensor for $L_{\square^k R}$ Lagrangian at the order h^2 in harmonic gauge
 - Particular cases
 - Average of the energy-momentum pseudo-tensor
 - Power emitted by a gravitational radiating source

References

- 1 S. Capozziello, M. Capriolo and M. Transirico, *The gravitational energy-momentum pseudo-tensor of higher-order theories of gravity*, Ann. der Phys. **525**, 1600376 (2017)
- 2 S. Capozziello, M. Capriolo and L. Caso, Weak field limit and gravitational waves in higher order gravity, Int. J. Geom. Methods Mod. Phys. 16 No.03, 1950047 (2019)
- 3 H. Abedi, S. Capozziello, M. Capriolo *Gravitational energy-momentum* pseudo-tensor in Palatini and metric f(R) gravity, Ann. of Phys. **439**, 168796 (2022)
- 4 S. Capozziello, M. Capriolo, G. Lambiase *The energy-momentum complex in non-local gravity*, Int.J.Geom.Meth.Mod.Phys. 20, 2350177 (2023)
- 5 S. Capozziello, M. Capriolo, G. Lambiase *Energy-Momentum Complex in Higher Order Curvature-Based Local Gravity*, Particles 5, 298-330 (2022)

The Energy-Momentum Pseudo-Tensor in GR

- In GR, there is no unanimously accepted definition of energy-momentum of the gravitational field. Some prescriptions have been given by Einstein, Landau-Lifshitz, Papapetrou, Weinberg, and Möller.
- The "non-tensoriality" and the "affine" character of the gravitational energy-momentum "tensor" make the energy and momentum of the gravitational field non-localizable.
- However, it is possible to define the energy-momentum of total gravitational field in an asymptotically flat spacetime almost independently of the coordinates.
- The continuity equation of Special Relativity $\partial_{\mu}T^{\mu\nu}=0$, in GR, becomes

$$abla_{\mu}T^{\mu\nu} = 0 \quad \rightarrow \quad \frac{1}{\sqrt{-g}}\partial_{\nu}\left(\sqrt{-g}T^{\mu\nu}\right) + \Gamma^{\mu}_{\nu\lambda}T^{\lambda\nu} = 0.$$

It is not, in principle, a conservation law.

The Energy-Momentum Pseudo-Tensor in GR

Einstein postulated a local conservation law by introducing a pseudo-tensor $\tau^{\mu\nu}$ related to the energy-momentum of the gravitational field

$$\partial_{\mu}\left(\sqrt{-g}\left(T^{\mu\nu}+ au^{\mu
u}
ight)
ight)=0$$

$$\sqrt{-g}{ au_{\mu}}^{
u}=rac{1}{16\pi}\left(\delta_{\mu}^{
u}L-rac{\partial L}{\partial g^{
ho\sigma}_{,
u}}g^{
ho\sigma}_{,\mu}
ight)$$

depending on the metric $g_{\mu
u}$ and its derivatives, being

$$L = \sqrt{-g} g^{\mu\nu} \left(\Gamma^{\sigma}_{\mu\nu} \Gamma^{\rho}_{\sigma\rho} - \Gamma^{\sigma}_{\mu\rho} \Gamma^{\rho}_{\nu\sigma} \right).$$

The pseudo-tensor $\tau^{\mu\nu}$ does not transform as a tensor under generic coordinate transformations but under affine transformations.

The Energy-Momentum Pseudo-Tensor in GR

From the pseudo-tensor character of $au^{\mu\nu}$, we have:

■ Energy-momentum of the gravitational field, in a given region of the universe, depends on the coordinate system, i.e. it is not localizable.

If we choose a space-time domain Ω , verifying the

- spatial asymptotic flatness condition where the metric asymptotically joins with continuity with the Minkowski one and fields and derivatives rapidly go to zero, by the Gauss theorem, we can
- define the energy-momentum of the gravitational field plus that of non-gravitational fields, contained in V independently of the coordinate choice as

$$P^{\nu} = \int_{V} \sqrt{-g} \left(T^{0\nu} + \tau^{0\nu} \right) d^3x$$

here V is an infinite spatial hypersurface defined at t constant.

The Energy-Momentum Pseudo-Tensor for Lagrangians of order *n*

S. Capozziello, M. Capriolo and M. Transirico, *The gravitational energy-momentum pseudo-tensor for higher-order theories of gravity*, Ann. Phys. **525**, 1600376 (2017)

In order to calculate the gravitational pseudo-tensor for fourth-order Lagrangians, let us consider the Noether Theorem for rigid translations. Let us define

$$L = L\left(g_{\mu
u}, g_{\mu
u,
ho}, g_{\mu
u,
ho \lambda}, g_{\mu
u,
ho \lambda \xi}, g_{\mu
u,
ho \lambda \xi \sigma}
ight)$$

The variation $\tilde{\delta}$ with respect to the metric $g_{\mu\nu}$ and coordinates x^{μ} is

$$\mathcal{S} = \int_{\Omega} d^4x L \rightarrow \tilde{\delta} \mathcal{S} = \int_{\Omega'} d^4x' L' - \int_{\Omega} d^4x L = \int_{\Omega} d^4x \left[\delta L + \partial_{\mu} \left(L \delta x^{\mu} \right) \right] .$$

Here δ represents the variation with fixed coordinates x^{μ} . An infinitesimal translation is:

$$x^{\prime\mu} = x^{\mu} + \epsilon^{\mu} (x)$$

and the variation of metric tensor is

$$\delta g_{\mu
u} = g'_{\mu
u} \left(x
ight) - g_{\mu
u} \left(x
ight) = - \epsilon^{lpha} \partial_{lpha} g_{\mu
u} - g_{\mu lpha} \partial_{
u} \epsilon^{lpha} - g_{
u lpha} \partial_{\mu} \epsilon^{lpha}$$

The Energy-Momentum Pseudo-Tensor for Lagrangians of order *n*

The metric variation, under global transformations $\partial_{\lambda}\epsilon^{\mu}=0$, is $\delta g_{\mu\nu}=-\epsilon^{\alpha}\partial_{\alpha}g_{\mu\nu}$ and, if we require the action invariant under these transformations, i.e. $\tilde{\delta}\mathcal{S}=0$, for an arbitrary integration domain Ω , we get:

$$0 = \delta L + \partial_{\mu} \left(L \delta x^{\mu} \right) = \left(\frac{\partial L}{\partial g_{\mu\nu}} - \partial_{\rho} \frac{\partial L}{\partial g_{\mu\nu,\rho}} + \partial_{\rho} \partial_{\lambda} \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda}} - \partial_{\rho} \partial_{\lambda} \partial_{\xi} \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda\xi}} \right) + \partial_{\rho} \partial_{\lambda} \partial_{\xi} \partial_{\sigma} \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda\xi\sigma}} \delta g_{\mu\nu} - \partial_{\eta} \left(2\chi \sqrt{-g} \tau_{\alpha}^{\eta} \right) \epsilon^{\alpha}.$$

From the Euler-Lagrange equations, we have:

$$\frac{\partial L}{\partial g_{\mu\nu}} - \partial_\rho \frac{\partial L}{\partial g_{\mu\nu,\rho}} + \partial_\rho \partial_\lambda \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda}} - \partial_\rho \partial_\lambda \partial_\xi \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda\xi}} + \partial_\rho \partial_\lambda \partial_\xi \partial_\sigma \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda\xi\sigma}} = 0 \,.$$

We obtain the continuity equation:

$$\partial_{\eta}\left(\sqrt{-g}\tau_{\alpha}^{\eta}\right)=0$$

for any ϵ^{α} where au^{η}_{α} is the gravitational energy-momentum pseudo-tensor.

The case of Energy-Momentum Pseudo-Tensor for Lagrangians of order 4

The energy-momentum pseudo-tensor for Lagrangians depending on fourth-order derivatives in the metric $g_{\mu\nu}$ is

$$\begin{split} \tau_{\alpha}^{\eta} &= \frac{1}{2\chi\sqrt{-g}} \left[\left(\frac{\partial L}{\partial g_{\mu\nu,\eta}} - \partial_{\lambda} \frac{\partial L}{\partial g_{\mu\nu,\eta\lambda}} + \partial_{\lambda} \partial_{\xi} \frac{\partial L}{\partial g_{\mu\nu,\eta\lambda\xi}} \right. \\ &- \partial_{\lambda} \partial_{\xi} \partial_{\sigma} \frac{\partial L}{\partial g_{\mu\nu,\eta\lambda\xi\sigma}} \right) g_{\mu\nu,\alpha} + \left(\frac{\partial L}{\partial g_{\mu\nu,\rho\eta}} - \partial_{\xi} \frac{\partial L}{\partial g_{\mu\nu,\rho\eta\xi}} + \partial_{\xi} \partial_{\sigma} \frac{\partial L}{\partial g_{\mu\nu,\rho\eta\xi\sigma}} \right) g_{\mu\nu,\alpha\rho} \\ &+ \left(\frac{\partial L}{\partial g_{\mu\nu,\rho\lambda\eta}} - \partial_{\sigma} \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda\eta\sigma}} \right) g_{\mu\nu,\rho\lambda\alpha} + \frac{\partial L}{\partial g_{\mu\nu,\rho\lambda\eta\sigma}} g_{\mu\nu,\rho\lambda\xi\alpha} - \delta_{\alpha}^{\eta} L \right] \end{split}$$

where $\chi=\frac{8\pi G}{c^4}$ is the gravitational coupling and the metric derivatives are up to 7-th order.

The Energy-Momentum Pseudo-Tensor for Lagrangians of order *n*

Let us consider now a general Lagrangian density depending on the $\emph{n}\text{-th}$ derivatives of $\emph{g}_{\mu\nu}$

$$L = L(g_{\mu\nu}, g_{\mu\nu,i_1}, g_{\mu\nu,i_1i_2}, g_{\mu\nu,i_1i_2i_3}, \cdots, g_{\mu\nu,i_1i_2i_3\cdots i_n})$$

The gravitational pseudo-tensor for Lagrangians of order n is

$$\tau_{\alpha}^{\eta} = \frac{1}{2\chi\sqrt{-g}} \left[\sum_{m=0}^{n-1} (-1)^m \left(\frac{\partial L}{\partial g_{\mu\nu,\eta i_0\cdots i_m}} \right)_{,i_0\cdots i_m} g_{\mu\nu,\alpha} \right.$$
$$\left. + \Theta_{[2,+\infty[}(n) \sum_{j=0}^{n-2} \sum_{m=j+1}^{n-1} (-1)^j \left(\frac{\partial L}{\partial g_{\mu\nu,\eta i_0\cdots i_m}} \right)_{,i_0\cdots i_j} g_{\mu\nu,i_{j+1}\cdots i_m\alpha} - \delta_{\alpha}^{\eta} L \right]$$

depending up to 2n-1 derivatives in the metric $g_{\mu\nu}$.

$$()_{,i_0} = 1 \qquad ()_{,i_0\cdots i_m} = \begin{cases} ()_{,i_1} & \text{if} \quad m = 1 \\ ()_{,i_1i_2} & \text{if} \quad m = 2 \\ ()_{,i_1i_2i_3} & \text{if} \quad m = 3 \end{cases} \qquad ()_{,i_ki_k} = ()_{,i_k}$$
 and so on

Continuity Equation

The field equations associated to a generic Lagrangian, in presence of matter, are now $P^{\eta\alpha}=\chi T^{\eta\alpha}$ where

$$P^{\eta\alpha} = \frac{1}{\sqrt{-g}} \frac{\delta L_{\rm g}}{\delta g_{\eta\alpha}} \,, \qquad \text{with the coupling} \quad \chi = \frac{8\pi G}{c^4}$$

From the Lagrangian invariance for rigid translations and from the symmetry of $T^{\eta\alpha}$, we have

$$\partial_{\eta} \left[\sqrt{-g} \left(\tau^{\eta}_{\alpha} + T^{\eta}_{\alpha} \right) \right] = \sqrt{-g} T^{\eta}_{\alpha;\eta}$$

Continuity Equation

$$P^{\eta lpha}_{\;\;;\eta} = 0 \leftrightarrow T^{\eta lpha}_{\;\;;\eta} = 0 \leftrightarrow \partial_{\eta} \left[\sqrt{-g} \left(\tau^{\eta}_{\;\;lpha} + T^{\eta}_{\;\;lpha}
ight)
ight] = 0$$

The conserved quantities are not only the energy and momentum associated to the matter and non-gravitational fields but the overall contribution of these fields plus the energy-momentum of the gravitational field.

Energy-Momentum of the Matter plus Gravitational Fields

Let us now integrate the continuity equation on a spatial domain Σ , which is the foliation of the 4D space-time at a fixed t, where fields and their derivatives go to zero in a sufficiently rapid way on the boundary $\partial \Sigma$. Using the Gauss theorem, the surface integrals go to zero

$$\partial_0 \int_{\Sigma} d^3 x \sqrt{-g} \left(T^{\mu 0} + \tau^{\mu 0} \right) = - \int_{\partial \Sigma} d\sigma_i \sqrt{-g} \left(T^{\mu i} + \tau^{\mu i} \right) = 0$$

The overall contribution of energy-momentum in the volume Σ is defined as

$$P^{\mu} = \int_{\Sigma} d^3x \sqrt{-g} \left(T^{\mu 0} + \tau^{\mu 0} \right)$$

depending on the coordinate choice. These conditions are often realized for isolated systems where it is possible to derive the spatial asymptotic flatness so that P^{μ} is independent of the coordinates and transforms as a 4-vector.

Non-covariance of gravitational energy-momentum tensor

It is possibile to demonstrate that τ^η_α is not, in general, a covariant tensor but it behaves as a tensor only under affine transformations. This means it is a pseudo-tensor. Let us consider first the particular case with a Lagrangian density of order 2

$$\tau_{\alpha}^{\eta} = \frac{1}{2\chi\sqrt{-g}}\left[\left(\frac{\partial L}{\partial g_{\mu\nu,\eta}} - \partial_{\lambda}\frac{\partial L}{\partial g_{\mu\nu,\eta\lambda}}\right)g_{\mu\nu,\alpha} + \frac{\partial L}{\partial g_{\mu\nu,\eta\xi}}g_{\mu\nu,\xi\alpha} - \delta_{\alpha}^{\eta}L\right]$$

In general, under diffeomorphisms x' = x'(x), it is

$$\tau_{\alpha}^{\prime\eta}\left(x^{\prime}\right)\neq\mathsf{J}_{\sigma}^{\eta}\mathsf{J}_{\alpha}^{-1\tau}\tau_{\tau}^{\sigma}\left(x\right)$$

where the Jacobian matrix and the determinant are defined as

$$\mathsf{J}_{\sigma}^{\eta} = rac{\partial x'^{\eta}}{\partial x^{\sigma}} \qquad \mathsf{J}^{-1}{}_{\alpha}^{\tau} = rac{\partial x^{\tau}}{\partial x'^{\alpha}} \qquad \det\left(\mathsf{J}_{eta}^{lpha}
ight) = J$$

On the other hand, under linear affine transformations

$$x'^{\mu}=\Lambda^{\mu}_{
u}x^{
u}+a^{\mu}\qquad J^{\mu}_{
u}=\Lambda^{\mu}_{
u}\qquad |\Lambda|
eq 0$$

the tensor transforms as

$$\tau'^{\eta}_{\alpha}(x') = \Lambda^{\eta}_{\sigma} \Lambda^{-1\tau}_{\alpha} \tau^{\sigma}_{\tau}(x)$$

Non-covariance of gravitational energy-momentum tensor

$$\begin{split} g_{\mu\nu,\alpha}'\left(x'\right) &= \mathsf{J}^{-1a}_{\mu} \mathsf{J}^{-1b}_{\nu} \mathsf{J}^{-1c}_{\alpha} g_{ab,c}\left(x\right) + \partial_{\alpha}' \left[\mathsf{J}^{-1a}_{\mu} \mathsf{J}^{-1b}_{\nu}\right] g_{ab}\left(x\right) \\ \tau_{\alpha}'^{\eta}\left(x'\right) &= \mathsf{J}^{\eta}_{\sigma} \mathsf{J}^{-1\tau}_{\alpha} \tau_{\tau}^{\sigma}\left(x\right) + \left\{ \text{containing terms} \frac{\partial^{2} x}{\partial x'^{2}}, \frac{\partial^{3} x}{\partial x'^{3}} \right\} \end{split}$$

This results derives from the non-covariance of metric tensor $g_{\mu\nu}$ derivatives. These derivatives give rise to the affine tensor. In general,

$$\begin{split} g'_{\mu\nu,i_{1}\cdots i_{m}\alpha}\left(x'\right) &= \mathsf{J}^{-1\alpha}_{\quad \mu} \mathsf{J}^{-1\beta}_{\quad \nu} \mathsf{J}^{-1j_{1}}_{\quad i_{1}}\cdots \mathsf{J}^{-1j_{m}}_{\quad i_{m}} \mathsf{J}^{-1\tau}_{\quad \alpha} g_{\alpha\beta,j_{1}\cdots j_{m}\tau}\left(x\right) \\ &+ \left\{ \mathsf{containing terms} \ \frac{\partial^{2}x}{\partial x'^{2}}, \cdots, \frac{\partial^{m+2}x}{\partial x'^{m+2}} \right\} \end{split}$$

and

$$\frac{\partial L'}{\partial g'_{\mu\nu,\eta i_0\cdots i_m}} = \mathsf{J}^{-1}\mathsf{J}^{\mu}_{\gamma}\mathsf{J}^{\nu}_{\rho}\mathsf{J}^{\eta}_{\tau}\mathsf{J}^{i_1}_{j_1}\cdots \mathsf{J}^{i_m}_{j_m}\frac{\partial L}{\partial g_{\gamma\rho,\tau j_1\cdots j_m}} \quad \text{tensor densities (m+3,0)}$$
 of weight $w=-1$

from which the non-covariance of tensor τ_{α}^{η} .

The Energy-Momentum Pseudo-Tensor of $L_{\square^k R}$ Lagrangians

Let us calculate now the energy-momentum pseudo-tensor τ_α^η for the gravitational Lagrangian

$$L_{\square^k R} = (\overline{R} + a_0 R^2 + \sum_{k=1}^p a_k R \square^k R) \sqrt{-g}$$

where \overline{R} is the part of curvature Ricci scalar R depending only on $g_{\mu\nu}$ and its first derivatives. If the variation of action $\mathcal{S}_{\square^k R}$ is zero for rigid translations $\tilde{\delta}_{g,x}\mathcal{S}_{\square^k R}=0$ with $g_{\mu\nu}$ satisfying the Euler-Lagrange equations, we have

$$\tau_{\alpha}^{\eta} = \tau_{\alpha|\mathsf{GR}}^{\eta} + \tilde{\tau}_{\alpha}^{\eta} \quad \text{with} \quad \tau_{\alpha|\mathsf{GR}}^{\eta} = \frac{1}{2\chi} \left(\frac{\partial \overline{R}}{\partial \mathsf{g}_{\mu\nu,\eta}} \mathsf{g}_{\mu\nu,\alpha} - \delta_{\alpha}^{\eta} \overline{R} \right)$$

which, in the weak field limit and harmonic gauge, becomes, up to the order h^2 ,

$$\tau_{\alpha|\mathit{GR}}^{\eta} \stackrel{h^2}{=} \frac{1}{2\chi} \left[\frac{1}{2} h^{\mu\nu,\eta} h_{\mu\nu,\alpha} - h^{\eta\mu,\nu} h_{\mu\nu,\alpha} - \frac{1}{4} \delta_{\alpha}^{\eta} \left(h^{\sigma\lambda}_{,\rho} h_{\lambda\sigma}^{,\rho} - 2 h^{\sigma\lambda}_{,\rho} h^{\rho}_{\lambda,\sigma} \right) \right]$$

depending quadratically on first derivatives of metric perturbations $h_{\mu\nu}$. If a source is far, it is $h_{\mu\nu}\sim 1/r$, $h_{\mu\nu,\alpha}\sim 1/r^2$, and $\tau^\eta_{\alpha}\sim 1/r^4$

The Energy-Momentum Pseudo-Tensor for $L_{\square^k R}$ Lagrangians

The Energy-Momentum Pseudo-Tensor for $L_{\square^k R}$ Lagrangians

$$\begin{split} \boxed{\tau_{\alpha}^{\eta} &= \tau_{\alpha|GR}^{\eta} + \frac{1}{2\chi\sqrt{-g}} \left\{ \sqrt{-g} \left(2a_{0}R + \sum_{k=1}^{p} a_{k}\Box^{k}R \right) \left[\frac{\partial R}{\partial g_{\mu\nu,\eta}} g_{\mu\nu,\alpha} \right. \\ &+ \frac{\partial R}{\partial g_{\mu\nu,\eta\lambda}} g_{\mu\nu,\lambda\alpha} \right] - \partial_{\lambda} \left[\sqrt{-g} \left(2a_{0}R + \sum_{k=1}^{p} a_{k}\Box^{k}R \right) \frac{\partial R}{\partial g_{\mu\nu,\eta\lambda}} \right] g_{\mu\nu,\alpha} \\ &+ \Theta_{[1,+\infty[}(p) \sum_{h=1}^{p} \left\{ \sum_{q=0}^{2h+1} (-1)^{q} \partial_{i_{0}\cdots i_{q}} \left[\sqrt{-g} a_{h}R \frac{\partial \Box^{h}R}{\partial g_{\mu\nu,\eta i_{0}\cdots i_{q}}} \right] g_{\mu\nu,\alpha} \right. \\ &+ \sum_{j=0}^{2h} \sum_{m=j+1}^{2h+1} (-1)^{j} \partial_{i_{0}\cdots i_{j}} \left[\sqrt{-g} a_{h}R \frac{\partial \Box^{h}R}{\partial g_{\mu\nu,\eta i_{0}\cdots i_{m}}} \right] g_{\mu\nu,i_{j+1}\cdots i_{m}\alpha} \right\} \\ &- \delta_{\alpha}^{\eta} \left(a_{0}R^{2} + \sum_{k=1}^{p} a_{k}R\Box^{k}R \right) \sqrt{-g} \right\} \end{split}$$

Continuity Equation for $\Box^k R$ gravity

Continuity Equation for $\Box^k R$ gravity

$$\textit{G}^{\eta\alpha}_{;\eta} = 0 \leftrightarrow \textit{P}^{\eta\alpha}_{;\eta} = 0 \leftrightarrow \textit{T}^{\eta\alpha}_{;\eta} = 0 \leftrightarrow \partial_{\eta} \left[\sqrt{-\textit{g}} \left(\tau^{\eta}_{\alpha} + \textit{T}^{\eta}_{\alpha} \right) \right] = 0$$

In other words, the Bianchi identities imply the conservation of gravitational fields + matter. For a spatial domain where fields and derivatives go to zero at boundaries and, in the asymptotic flatness hypothesis, we have

Energy and momentum for $\square^k R$ gravity contained in the volume Σ

$$P^{\mu} = \int_{\Sigma} d^3x \sqrt{-g} \left(T^{\mu 0} + \tau^{\mu 0} \right)$$

where P^{μ} is a 4-vector independent of the chosen coordinates.

Weak field limit of Energy-Momentum Pseudo-Tensor for $L_{\square^k R}$ Lagrangian at the order h^2 in harmonic gauge

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u} \quad {
m with} \quad |h_{\mu
u}| \ll 1 \quad {
m in harmonic gauge} \quad au_{lpha}^{\eta} \stackrel{{
m h.g.}}{=} au_{lpha|GR}^{\eta} + ilde{ au}_{lpha}^{\eta}$$

$$\begin{split} \widetilde{\tau}_{\alpha}^{\eta} &\stackrel{h^{2}}{=} \frac{1}{2\chi} \left\{ \frac{1}{4} \left(\sum_{k=0}^{p} a_{k} \Box^{k+1} h \right) h^{,\eta}{}_{\alpha} + \frac{1}{2} \sum_{t=0}^{p} a_{t} \Box^{t+1} h_{,\lambda} \left(h^{\eta\lambda} - \eta^{\eta\lambda} h \right)_{,\alpha} \right. \\ &+ \frac{1}{2} \sum_{h=0}^{1} \sum_{j=h}^{p} \sum_{m=j}^{p} (-1)^{h} a_{m} \Box^{m-j} \left(h^{\eta\lambda} - \eta^{\eta\lambda} h \right)_{,\alpha i_{h}} \Box^{j+1-h} h_{,\lambda}^{i_{h}} \\ &+ \frac{1}{4} \sum_{l=0}^{p} a_{l} \Box^{l} \left(h^{,\eta}{}_{\alpha} - \Box h \delta_{\alpha}^{\eta} \right) \Box h + \Theta_{[1,+\infty[} \left(p \right) \left[\left(D_{p} \right)_{\alpha}^{\eta} + \left(F_{p} \right)_{\alpha}^{\eta} \right] \right\} \end{split}$$

where we used the conventions:

$$()_{\alpha i_0} = ()_{\alpha} \qquad h_{\lambda}^{i_0} = h_{\lambda}$$

depending up to the 2p+3 derivatives of metric perturbations $h_{\mu\nu}$ in the hypothesis $h_{\mu\nu}\sim 1/r$. We have $\Box^{p+1}hh^{\eta}{}_{\alpha}\sim 1/r^{2p+6}$.

Weak field limit of Energy-Momentum Pseudo-Tensor for $L_{\square^k R}$ Lagrangian at the order h^2 in harmonic gauge

Here Θ is the Haeviside function and $(D_p)^\eta_\alpha$ and $(F_p)^\eta_\alpha$ are two terms containing the partial derivatives of $\Box^h R$ with respect to $g_{\mu\nu}$ derivatives, when the permutations of the $(\mu\nu)$ and $(\eta i_1 \dots i_{2h+1})$ indices are considered, namely

$$\frac{\partial \Box^{h} R}{\partial g_{\mu\nu,\eta i_{1}\cdots i_{2h+1}}} = g^{j_{2}j_{3}}\cdots g^{j_{2h}j_{2h+1}}g^{ab}g^{cd} \left\{ \delta_{a}^{(\mu}\delta_{d}^{\nu)}\delta_{c}^{(\eta}\delta_{b}^{i_{1}}\delta_{j_{2}}^{i_{2}}\cdots\delta_{j_{2h}}^{i_{2h}}\delta_{j_{2h+1}}^{i_{2h+1}} \right. \\
\left. - \delta_{a}^{(\mu}\delta_{b}^{\nu)}\delta_{c}^{(\eta}\delta_{d}^{i_{1}}\delta_{j_{2}}^{i_{2}}\cdots\delta_{j_{2h}}^{i_{2h}}\delta_{j_{2h+1}}^{i_{2h+1}} \right\}$$

Particular cases p = 0 and p = 1

Let us consider the corrections to $\tilde{\tau}^{\eta}_{\alpha}$ where p is 0 and 1.

For p=0 and $L_g=\left(\overline{R}+a_0R^2\right)\sqrt{-g}$, we get fourth-order gravity where $\tilde{\tau}^\eta_\alpha$ depends up to the third derivatives of $h_{\mu\nu}$ and $\tilde{\tau}^\eta_\alpha=\mathcal{O}\left(1/r^6\right)$

$$\tilde{\tau}_{\alpha}^{\eta} \stackrel{\text{h.g.}}{=} \frac{a_{0}}{2\chi} \left(\frac{1}{2} h^{,\eta}{}_{\alpha} \Box h + h^{\eta}{}_{\lambda,\alpha} \Box h^{,\lambda} - h_{,\alpha} \Box h^{,\eta} - \frac{1}{4} \left(\Box h \right)^{2} \delta_{\alpha}^{\eta} \right)$$

For p=1, that is $L_g=\left(\overline{R}+a_0R^2+a_1R\square R\right)\sqrt{-g}$, sixth-order gravity where $\tilde{\tau}^\eta_\alpha$ depends up to the fifth derivatives of $h_{\mu\nu}$ ed $\tilde{\tau}^\eta_\alpha=\mathcal{O}\left(1/r^6\right)+\mathcal{O}\left(1/r^8\right)$

$$\tilde{\tau}_{\alpha}^{\eta} \stackrel{h^{2}}{=} \frac{1}{2\chi} \left\{ \frac{1}{4} \left(2a_{0} \Box h + a_{1} \Box^{2} h \right) h^{,\eta}{}_{\alpha} + \frac{1}{2} \left(2a_{0} \Box h_{,\lambda} + a_{1} \Box^{2} h_{,\lambda} \right) \left(h^{\eta\lambda} - \eta^{\eta\lambda} h \right)_{,\alpha} \right. \\ \left. + \frac{1}{2} a_{1} \Box \left(h^{\eta\lambda} - \eta^{\eta\lambda} h \right)_{,\alpha} \Box h_{,\lambda} + \frac{1}{2} a_{1} \left(h^{\eta\lambda} - \eta^{\eta\lambda} h \right)_{,\alpha} \Box^{2} h_{,\lambda} \right. \\ \left. - \frac{1}{2} a_{1} \left(h^{\eta\lambda} - \eta^{\eta\lambda} h \right)_{,\sigma\alpha} \Box h_{,\lambda}^{\sigma} + \frac{1}{4} a_{1} \Box h^{,\eta}_{\alpha} \Box h \right. \\ \left. - \frac{1}{4} \delta_{\alpha}^{\eta} \left[a_{0} \left(\Box h \right) + a_{1} \left(\Box^{2} h \right) \right] \Box h + \left(D_{1} \right)_{\alpha}^{\eta} + \left(F_{1} \right)_{\alpha}^{\eta} \right\} \right\}$$

Average of the energy-momentum pseudo-tensor

In order to derive the emitted power from a radiating gravitational source, we have to average on a space-time region Ω so that $|\Omega|\gg \frac{1}{|k|}$, in short wavelength approximation, to remove integrals containing $e^{i(k_i-k_j)_{\alpha}x^{\alpha}}$, in the harmonic gauge $g^{\mu\nu}\Gamma^{\lambda}_{\ \mu\nu}=0$. We can use the modified gravitational waves derived in S. Capozziello, M. Capriolo and L. Caso, Int. J. Geom. Methods Mod. Phys. 16, 1950047 (2019), namely

$$h_{\mu\nu}(x) = \sum_{m=1}^{p+2} \int_{\Omega} \frac{d^3 \mathbf{k}}{(2\pi)^3} (B_m)_{\mu\nu} (\mathbf{k}) e^{i(k_m)_{\alpha} x^{\alpha}} + c.c.$$
 (1)

where

$$(B_{m})_{\mu\nu}(\mathbf{k}) = \begin{cases} C_{\mu\nu}(\mathbf{k}) & \text{for } m = 1\\ \frac{1}{3} \left[\frac{\eta_{\mu\nu}}{2} + \frac{(k_{m})_{\mu}(k_{m})_{\nu}}{k_{(m)}^{2}} \right] A_{m}(\mathbf{k}) & \text{for } m \geq 2 \end{cases}$$
 (2)

Average of the energy-momentum pseudo-tensor

Here "c.c." stands for the complex conjugate, $A_m(\mathbf{k})$ is the amplitude of m-th modified gravitational waves and $C_{\mu\nu}(\mathbf{k})$ is the transverse polarization tensor of the massless gravitational waves predicted by Einstein.

The trace is

$$(B_m)^{\lambda}_{\lambda}(\mathbf{k}) = \begin{cases} C^{\lambda}_{\lambda}(\mathbf{k}) & \text{for } m = 1\\ A_m(\mathbf{k}) & \text{for } m \ge 2 \end{cases}$$
(3)

and $k_m^\mu=(\omega_m,\mathbf{k})$ with $k_m^2=\omega_m^2-|\mathbf{k}|^2=\mathsf{M}^2$ where $k_1^2=0$ and $k_m^2\neq 0$ for $m\geq 2$. If we average on Ω spacetime region, the following terms vanish

$$\langle (D_p)^\eta_\alpha \rangle = \langle (F_p)^\eta_\alpha \rangle = 0$$

Average of the energy-momentum pseudo-tensor

Average of the energy-momentum pseudo-tensor

$$\langle \tau_{\alpha}^{\eta} \rangle = \frac{1}{2\chi} \left[(k_{1})^{\eta} (k_{1})_{\alpha} \left(C^{\mu\nu} C_{\mu\nu}^{*} - \frac{1}{2} |C_{\lambda}^{\lambda}|^{2} \right) \right]$$

$$+ \frac{1}{2\chi} \left[\left(-\frac{1}{6} \right) \sum_{j=2}^{p+2} \left((k_{j})^{\eta} (k_{j})_{\alpha} - \frac{1}{2} k_{j}^{2} \delta_{\alpha}^{\eta} \right) |A_{j}|^{2} \right]$$

$$+ \frac{1}{2\chi} \left\{ \left[\sum_{l=0}^{p} (l+2) (-1)^{l} a_{l} \sum_{j=2}^{p+2} (k_{j})^{\eta} (k_{j})_{\alpha} (k_{j}^{2})^{l+1} |A_{j}|^{2} \right]$$

$$- \frac{1}{2} \sum_{l=0}^{p} (-1)^{l} a_{l} \sum_{j=2}^{p+2} (k_{j}^{2})^{l+2} |A_{j}|^{2} \delta_{\alpha}^{\eta} \right\}$$

24 / 28

Power emitted by a gravitational radiating source

Let us calculate the emitted power per solid angle Ω radiated in the direction \hat{x}' at fixed **k**. Under a suitable gauge, we have:

$$\frac{dP}{d\Omega} = r^2 \hat{x}^i \left\langle \tau_0^i \right\rangle$$

Assuming the TT gauge for the first oscillation mode k_1 and the harmonic gauge for the other modes k_m

$$\begin{cases} (k_1)_{\mu} C^{\mu\nu} = 0 & \wedge & C^{\lambda}_{\lambda} = 0 & \text{if } m = 1 \\ (k_m)_{\mu} (B_m)^{\mu\nu} = \frac{1}{2} (B_m)^{\lambda}_{\lambda} k^{\nu} & \text{if } m \geq 2 \end{cases}$$

Considering gravitational waves propagating along the +z direction with fixed ${\bf k}$, with the 4D-wave vector given by $k^\mu=(\omega,0,0,k_z)$ where $\omega_1^2=k_z^2$ if $k_1^2=0$ and $k_m^2=m^2=\omega_m^2-k_z^2$ otherwise with $k_z>0$, the averaged tensor components are:

$$\begin{split} \left\langle \tau_0^3 \right\rangle &= \frac{c^4}{8\pi G} \omega_1^2 \left(C_{11}^2 + C_{12}^2 \right) + \frac{c^4}{16\pi G} \left[\left(-\frac{1}{6} \right) \sum_{j=2}^{p+2} \omega_j k_z |A_j|^2 \right. \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \right] \\ &\left. + \sum_{l=0}^{p} \left(l+2 \right) \left(-1 \right)^l a_l \sum_{j=0}^{p+2} \omega_j k_z m_j^{2(l+1)} |A_j|^2 \right] \right]$$

Power emitted by a gravitational radiating source

Let us choose:

■ p = 0, $L_g = (\overline{R} + a_0 R^2) \sqrt{-g}$, fourth-order gravity, with the two modes ω_1, ω_2 , it is:

$$\boxed{\left\langle \tau_0^3 \right\rangle = \frac{c^4 \omega_1^2}{8\pi G} \left[C_{11}^2 + C_{12}^2 \right] + \frac{c^4}{16\pi G} \left\{ \left(-\frac{1}{6} \right) \omega_2 |A_2|^2 k_z + 2a_0 \omega_2 m_2^2 |A_2|^2 k_z \right\}}$$

■ p=1, $L_g=\left(\overline{R}+a_0R^2+a_1R\Box R\right)\sqrt{-g}$, sixth order gravity, with the three modes ω_1,ω_2 , ω_3 , it is:

$$\begin{split} \left\langle \tau_0^3 \right\rangle &= \frac{c^4 \omega_1^2}{8\pi G} \left[C_{11}^2 + C_{12}^2 \right] + \frac{c^4}{16\pi G} \left\{ \left(-\frac{1}{6} \right) \left(\omega_2 |A_2|^2 + \omega_3 |A_3|^3 \right) k_z \right. \\ &\left. + 2 a_0 \left[\left(\omega_2 m_2^2 |A_2|^2 + \omega_3 m_3^2 |A_3|^2 |^2 \right) k_z \right] - 3 a_1 \left[\left(\omega_2 m_2^4 |A_2|^2 + \omega_3 m_3^4 |A_3|^2 \right) k_z \right] \right\} \end{split}$$

Power emitted by a gravitational radiating source

■ p = 2, $L_g = (\overline{R} + a_0 R^2 + a_1 R \square R + a_2 R \square^2 R) \sqrt{-g}$, eighth-order gravity, with the four modes $\omega_1, \omega_2, \omega_3, \omega_4$, it is:

$$\begin{split} \left\langle \tau_0^3 \right\rangle &= \frac{c^4 \omega_1^2}{8\pi G} \left[C_{11}^2 + C_{12}^2 \right] + \frac{c^4}{16\pi G} \left\{ \left(-\frac{1}{6} \right) \left(\omega_2 |A_2|^2 + \omega_3 |A_3|^3 + \omega_4 |A_4|^2 \right) k_z \right. \\ &\quad + 2 a_0 \left[\left(\omega_2 m_2^2 |A_2|^2 + \omega_3 m_3^2 |A_3|^2 + \omega_4 m_4^2 |A_4|^2 \right) k_z \right] \\ &\quad - 3 a_1 \left[\left(\omega_2 m_2^4 |A_2|^2 + \omega_3 m_3^4 |A_3|^2 + \omega_4 m_4^4 |A_4|^2 \right) k_z \right] \\ &\quad + 4 a_2 \left[\left(\omega_2 m_2^6 |A_2|^2 + \omega_3 m_3^6 |A_3|^2 + \omega_4 m_4^6 |A_4|^2 \right) \right] \right\} \end{split}$$

As we go up by two with the order of gravity, through the d'Alembert operator \square , we increase by an oscillation mode ω which corresponds to the conformal equivalence of the theories $\square^k R$ to General Relativity with k+1 scalar fields. See *S. Gottlober, H. J. Schmidt and A. A. Starobinsky, Class. Quant. Grav.* **7** (1990) 893.

Conclusions

- Using the Noether theorem for rigid translations, it is possible to derive the gravitational energy-momentum pseudo-tensor in curvature based gravity theories of any order.
- In the same way, it is possible to obtain the gravitational energy-momentum pseudo-tensor in non-local gravity including □⁻¹R terms (see S. Capozziello, M. Capriolo, and S. Nojiri, Phys. Lett. B 810, 135821 (2020), S. Capozziello, and M. Capriolo, Class. Quant. Grav. 83, 175008 (2021), and S. Capozziello, M. Capriolo, G. Lambiase, IJGMMP 20, 2350177 (2023)).
- It is also possible to derive the gravitational energy-momentum pseudo-tensor in Metric-Affine Gravity, as in Palatini Formalism.
- In general, the method can be used to obtain the gravitational energy-momentum pseudo-tensor in non-metric and teleparallel theories of gravity. See S. Capozziello, M. Capriolo and M. Transirico, Int. J. Geom. Methods Mod. Phys. 15 1850164 (2018).
- According to this approach, it is possible to calculate the power emitted by any gravitational radiating source.
- New gravitational modes can be derived with respect to GR. Possible detection by LISA and ET.