Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	0000

QGSKY - Highlights on Catania Unit research work

Vincenzo Branchina

Department of Physics and Astronomy "E. Majorana" University of Catania and INFN, Catania Unit

October 6, 2023

QGSKY - Annual Meeting, Genova, October 5-6 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
•	00000000000	000000	00000	000	0000

Vacuum Stability (2013 - 2019) ... role of Gravity ? ...

Physical Tuning - Physical Swampland (Naturalness: $M_H \& \Lambda_{cc}$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EFT - Wilson - Dimensional Regularization

Kaluza-Klein and Λ_{cc} - Dark Dimension?

Quantum Scale Invariance ... So cheap? ...

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	•00000000000	000000	00000	000	0000

Vacuum Stability

- V. Branchina, E. Messina, PRL 111, 241801 (2013)
- V. Branchina, E. Messina, A. Platania JHEP 1409 (2014) 182
- V. Branchina, E. Messina, M. Sher, PRD 91 (2015) 1, 013003
- V. Branchina, E. Messina, D. Zappalà, EPL 116 (2016)
- V. Branchina, E. Messina, EPL 117 (2017) 61002
- E. Bentivegna, V. Branchina, F. Contino, D. Zappalà, JHEP 1712 (2017) 100
- V. Branchina, F. Contino, A. Pilaftsis, PRD 98 (2018) 7, 075001
- V. Branchina, F. Contino, P. M. Ferreira, JHEP 1811 (2018) 107
- V. Branchina, E. Bentivegna, F. Contino, D. Zappalà, PRD 99 (2019) 9, 096029

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

earches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
	00000000000	000000	00000	000	0000

One-loop Higgs Effective Potential - RG improved Potential

$$\begin{split} V_{\mathrm{lloop}}(\phi) &= -\frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\phi^4 + \frac{1}{64\pi^2} \left[\left(m^2 + \frac{\lambda}{2}\phi^2\right)^2 \left(\ln\left(\frac{m^2 + \frac{\lambda}{2}\phi^2}{\mu^2}\right) - \frac{3}{2} \right) + \right. \\ &+ 3\left(m^2 + \frac{\lambda}{6}\phi^2\right)^2 \left(\ln\left(\frac{m^2 + \frac{\lambda}{6}\phi^2}{\mu^2}\right) - \frac{3}{2} \right) + \frac{6g^4}{16}\phi^4 \left(\ln\left(\frac{\frac{g^2}{4}\phi^2}{\mu^2}\right) - \frac{5}{6} \right) + \\ &+ 3\frac{(g^2 + g'^2)^2}{16}\phi^4 \left(\ln\left(\frac{\frac{1}{4}(g^2 + g'^2)\phi^2}{\mu^2}\right) - \frac{5}{6} \right) - 12g_t^4\phi^4 \left(\ln\frac{g_t^2\phi^2}{\mu^2} - \frac{3}{2} \right) \right] \\ & V_{\mathrm{eff}}(\phi) \sim \frac{1}{4}\lambda_{\mathrm{eff}}(\phi)\phi^4 \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Rese	arch	es tl	nemes
0			

Vacuum Stability

Physical Tuning 000000 DIM R

Higher dim 000 Scale Invariance

Bounce - flat spacetime - S. Coleman

$${\cal S}[\phi]=\int d^4x \, \left[{1\over 2} (\partial_\mu \phi)^2 + V(\phi)
ight]$$
 ; false vacuum $\phi_{
m fv} o$ true vacuum $\phi_{
m tv}$.

Bounce $\phi_b(r)$: solution to EOM w/ O(4) symmetry.

$$\ddot{\phi}(r) + \frac{3}{r} \dot{\phi}(r) = \frac{dV}{d\phi} \qquad b.c.: \ \phi(\infty) = \phi_{\rm fv} \ ; \ \dot{\phi}(0) = 0$$

Decay rate : $\Gamma = \frac{1}{\tau} = T_U^3 \frac{B^2}{4\pi^2} \left| \frac{\det' \left[-\partial^2 + V''(\phi_b) : \right]}{\det \left[-\partial^2 + V''(v) \right]} \right|^{-\frac{1}{2}} e^{-B} \equiv D e^{-B}$

Vacuum Stability

Physical Tuning 000000 DIM F

Higher dim 000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Scale Invariance

Bounce - Gravity - Coleman-de Luccia

$$S[\phi, g_{\mu\nu}] = \int d^4x \sqrt{g} \left[-\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + V(\phi) \right]$$

$$O(4) \text{ symmetry} \rightarrow ds^2 = dr^2 + \rho^2(r) d\Omega_3^2$$

Bounce : $\phi_b(r)$ and $\rho_b(r)$ solution of EOMs :

$$\ddot{\phi} + 3 \frac{\dot{\rho}}{\rho} \dot{\phi} = \frac{dV}{d\phi} \qquad \dot{\rho}^2 = 1 + \frac{\kappa}{3} \rho^2 \left(\frac{1}{2} \dot{\phi}^2 - V(\phi) \right)$$

with boundary conditions : $\phi(\infty) = \phi_{\mathrm{fv}}$ $\dot{\phi}(0) = 0$ ho(0) = 0

Flat versus Curved Spacetime

$$au_{
m flat} \sim 10^{639}\, T_U$$
 ; $au_{
m grav} \sim 10^{661}\, T_U$

Gravity tends to stabilize the vacuum

All this is nice ... but ... there is a surprise around the corner \Rightarrow

earches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
	00000000000	000000	00000	000	0000

Add New Physics at the Planck scale

$$V(\phi) = V_{ ext{eff}}(\phi) + rac{\lambda_6}{6}rac{\phi^6}{M_P^2} + rac{\lambda_8}{8}rac{\phi^8}{M_P^4}$$

Decoupling: $\phi_{\text{inst}} \sim 10^{11} \text{ GeV} << M_P \Rightarrow \text{suppression } \frac{\phi_{\text{inst}}}{M_P} \text{ expected (!?!?)}$

But ... decoupling applies to **perturbative phenomena** ... false vacuum decay **non-perturbative phenomenon!** \Rightarrow No suppression ϕ_{inst}/M_P

New Physics at M_P can have a strong impact on au

consider $\lambda_6 < 0$ and $\lambda_8 > 0$...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Researches	themes
0	

Vacuum Stability

Physical Tuning 000000 DIM REG

Higher dim 000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Scale Invariance

Impact of New Physics on au

E. Bentivegna, V. Branchina, F. Contino, D. Zappalà, JHEP 1712 (2017) 100

λ_6	λ_8	$ au_{ m flat}/T_U$	$ au_{ m grav}/T_U$
0	0	10 ⁶³⁹	10^{661}
-0.15	0.25	10 ¹⁸⁶	10 ⁵¹²
-0.3	0.3	10^{-52}	10 ²⁸⁷
-0.45	0.5	10 ⁻⁹³	10 ¹⁷³
-0.7	0.6	10^{-162}	1047
-1.2	1.0	10^{-195}	10^{-58}
-1.7	1.5	10^{-206}	10^{-106}

Gravity tends to stabilize the EW vacuum (τ_{grav} always higher than τ_{flat}) However, New Physics has strong impact ...

How comes???

Researches themes O Vacuum Stability

Physical Tuning 000000 DIM RI 0000 Higher dim 000 Scale Invariance

Bounces & New Physics - flat spacetime case

New bounce $\phi_b^{NP}(r) \Rightarrow$ New action $S[\phi_b^{NP}(r)] \Rightarrow$ New $\tau \sim e^{S[\phi_b^{NP}(r)]}$

- Blue curve: bounce profile with $\lambda_6 = \lambda_8 = 0$, i.e. with SM alone.
- Yellow curve: bounce profile with $\lambda_6 = -0.3$ and $\lambda_8 = 0.3$.
- Green curve: bounce profile with $\lambda_6 = -0.01$ and $\lambda_8 = 0.01$.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	0000

Bounce solution with New Physics - curved spacetime

E. Bentivegna, V. Branchina, F. Contino, D. Zappalà, JHEP 1712 (2017) 100

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Blue curve: bounce profile with $\lambda_6 = \lambda_8 = 0$, i.e. with SM alone.
- Yellow curve: bounce profile with $\lambda_6 = -0.03$ and $\lambda_8 = 0.03$.
- Green curve: bounce profile with $\lambda_6 = -0.04$ and $\lambda_8 = 0.04$.

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	0000

Protections ???

lesearches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
)	0000000000000	000000	00000	000	0000

Gravity with Non-Minimal Coupling

$$S[\phi, g_{\mu\nu}] = \int d^4 x \sqrt{-g} \left[-\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi + V(\phi) + \frac{1}{2} \xi \phi^2 R \right]$$

Again O(4) symmetry:

$$\ddot{\phi} + 3\frac{\dot{\rho}}{\rho}\dot{\phi} = \frac{dV}{d\phi} + \xi\phi R \qquad \dot{\rho}^2 = 1 - \frac{\kappa}{3}\rho^2 \frac{-\frac{1}{2}\dot{\phi}^2 + V(\phi) - 6\xi\frac{\dot{\rho}}{\rho}\phi\dot{\phi}}{1 - \kappa\xi\phi^2}$$

with R given by:

$$R = \kappa \frac{\dot{\phi}^2 (1 - 6\xi) + 4V(\phi) - 6\xi \phi dV/d\phi}{1 - \kappa \xi (1 - 6\xi)\phi^2}$$

 $\xi = 0 \quad \Rightarrow \quad {\rm back \ to \ the \ old \ minimal \ coupling \ EOMs}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Researches themes O Vacuum Stability

Physical Tunin 000000 DIM RE

Higher dim 000 Scale Invariance

New Physics & Non-Minimal Coupling

V. Branchina, E. Bentivegna, F. Contino, D. Zappalà, PRD 99 (2019) 9, 096029

Adding New Physics: $V_{_{NP}} = \frac{\lambda_6}{6} \frac{\phi^6}{M_{_D}^2} + \frac{\lambda_8}{8} \frac{\phi^8}{M_{_D}^4}$, with $\lambda_6 = -1.2$ and $\lambda_8 = 1$ $\xi = 0$ $\xi = 10$ $\xi = 1$ 0.04 0.0015 $\begin{array}{cc} \phi(r)/M_P \\ \mathbb{P} & \mathbb{P} \\ \mathbb{P} & \mathbb{P} \end{array}$ 0.03 0.001 0.02 0.0005 0.2 0.01 1000 1000. 10 000 10 000. 100 000 1000. $(\rho(r) - r)M_P$ $\sim \frac{1}{2}$ rM_P rM_P rM_P

 $\mathsf{For}\ \xi > 1: \quad (\phi_{\scriptscriptstyle NP}(r), \rho_{\scriptscriptstyle NP}(r)) \to (\phi_{\scriptscriptstyle SM}(r), \rho_{\scriptscriptstyle SM}(r))$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Researches themes O Vacuum Stability

Physical Tunin 000000 DIM R

Higher dim 000 Scale Invariance

New Physics & Non-Minimal Coupling

V. Branchina, E. Bentivegna, F. Contino, D. Zappalà, PRD 99 (2019) 9, 096029

Adding New Physics: $V_{_{NP}} = \frac{\lambda_6}{6} \frac{\phi^6}{M_P^2} + \frac{\lambda_8}{8} \frac{\phi^8}{M_P^4}$, with $\lambda_6 = -1.2$ and $\lambda_8 = 1$

ξ	$(au/ extsf{T}_U)$ sм	$(au/T_U)_{NP}$		ξ	(au/T_U) ѕм	$(au/T_U)_{NP}$
-15	10^{736}	10^{736}		0.3	10^{660}	10^{-167}
-10	10^{726}	10 ⁷²⁶		0.5	10^{668}	10 ²³
-5	10 ⁷¹⁰	10 ⁷¹⁰		0.7	10^{674}	10^{346}
$^{-1}$	10^{684}	10^{680}		0.8	10^{676}	10 ⁵¹²
-0.5	10^{677}	10^{600}	•	1	10^{679}	10^{666}
-0.3	10 ⁶⁷²	10 ³⁵⁸		5	10^{709}	10 ⁷⁰⁹
-0.1	10^{666}	10 ⁶⁵		10	10 ⁷²⁵	10 ⁷²⁵
0	10^{661}	10^{-58}		15	10 ⁷³⁵	10 ⁷³⁵

For $\xi > 1 \implies$ washing out of New Physics destabilization: $\tau_{_{\rm NP}} \simeq \tau_{_{\rm SM}}$.

What else in ... Vacuum stability ? ...

• Supergravity embedding

Branchina, Contino, Pfilatsis

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Two Higgs Doublet Model (2HDM) Branchina, Contino, Ferreira

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	00000	00000	000	0000

Physical Tuning

... Naturalness ... Higgs mass ... Cosmological Constant ...

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance		
O	00000000000000	0●0000	00000	000			
Wilson's Lesson							

What is the Wilson's lesson all about?

Theory at $\Lambda \quad \rightarrow \quad$ Theory at $\Lambda/2 \quad \rightarrow \quad ...$

 $S_{\Lambda} \longrightarrow S_{\Lambda/2} \longrightarrow \dots$

Effective Field Theory paradigm

Any QFT is an Effective Field Theory

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
O	0000000000000	00●000		000	0000
		RC flow			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Renormalized theory: defined around a fixed point (critical surface)

... For theories in any dimesion: ..., d = 3, d = 4, ...

d = 3 dimensions : Wilson-Fisher

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
C	00000000000	000000	00000	000	0000

... Wilson's Lesson ...

EFT paradigm is physical and unavoidable

Unless we are considering the TOE

There is no cutoff in the sense that somebody finds disturbing ...

... but rather a (Wilsonian) physical running scale ...

$$\Lambda \rightarrow \Lambda/2 \rightarrow \Lambda/4 \rightarrow \Lambda/8 \rightarrow \dots$$

 Λ is the highest scale \ldots "UV physical cutoff"

... and then? ... Filippo Contino talk ...

... and also ... Arcangelo Pernace talk ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	00000	00000	000	0000

Numerical sol. to RG eq.(1) and Analytical approx. (2): indistinguishable

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Physical Tuning 000000 DIM REG

Higher dim 000 Scale Invariance

Dimensional Regularization & Wilson

Textbook - Dim Reg : powerful technique ... no clear physical meaning (!?!?)

Could be of some help trying to understand ?

I mean ... Could we gain something ?

When we do not understand ... we might force technique(s) to make any sort of amazing prediction ...

 \ldots when we gain control we can make maybe <code>OPPOSITE</code> but robust predictions \ldots

Carlo Branchina, Vincenzo Branchina, Filippo Contino, Neda Darvishi, Dimensional regularization, Wilsonian RG, and the naturalness and hierarchy problem, **Phys.Rev.D 106 (2022) 6, 065007**. ArXiv: 2204.10582 Researches themes O

Vacuum Stability 000000000000000 OOOOOO

DIM REG

Higher dim 000 Scale Invariance

One-loop effective potential ϕ^4

d = integer dimension (no dim reg)

$$V_{1l}(\phi) = V_0(\phi) + \underbrace{\frac{1}{2} \int^{(\Lambda)} \frac{d^d k}{(2\pi)^d} \ln\left(1 + \frac{m_0^2 + \frac{1}{2}\mu^{4-d}\lambda_0 \phi^2}{k^2}\right)}_{\delta V(\phi)}$$

$$\delta V(\phi) = \frac{1}{2} \int^{(\Lambda)} \frac{d^d k}{(2\pi)^d} \ln\left(1 + \frac{M^2(\phi)}{k^2}\right) \equiv \delta V_1(\phi) + \delta V_2(\phi)$$

where

$$\begin{split} M^{2}(\phi) &\equiv m_{0}^{2} + \frac{1}{2}\mu^{4-d}\lambda_{0} \phi^{2} \\ \delta V_{1}(\phi) &\equiv \frac{\mu^{d}}{d(4\pi)^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)} \left(\frac{M^{2}(\phi)}{\mu^{2}}\right)^{\frac{d}{2}} \int_{\frac{M^{2}}{M^{2}+\Lambda^{2}}}^{1} dt \left(1-t\right)^{\frac{d}{2}-1} t^{-\frac{d}{2}} \\ \delta V_{2}(\phi) &\equiv \frac{\mu^{d}}{d(4\pi)^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)} \left(\frac{\Lambda}{\mu}\right)^{d} \ln\left(1+\frac{M^{2}(\phi)}{\Lambda^{2}}\right) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	0000

Calculating $\delta V(\phi)$

For any integer d:

$$\delta V_1(\phi) = \frac{\mu^d}{d(4\pi)^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)} \left(\frac{M^2(\phi)}{\mu^2}\right)^{\frac{d}{2}} \int_{\frac{M^2}{M^2 + \Lambda^2}}^1 dt \ t^{-\frac{d}{2}} (1-t)^{\frac{d}{2}-1} = \lim_{z \to d} \left[A_1(z) - A_2(z)\right]$$

where z is complex, and

$$A_{1}(z) \equiv F(z) \cdot \overline{B}\left(1 - \frac{z}{2}, \frac{z}{2}\right) \qquad A_{2}(z) \equiv F(z) \cdot \overline{B}_{i}\left(1 - \frac{z}{2}, \frac{z}{2}; \frac{M^{2}(\phi)}{M^{2}(\phi) + \Lambda^{2}}\right)$$
$$F(z) \equiv \frac{\mu^{z}}{z(4\pi)^{\frac{z}{2}}\Gamma\left(\frac{z}{2}\right)} \left(\frac{M^{2}(\phi)}{\mu^{2}}\right)^{\frac{z}{2}}$$

 \overline{B} and \overline{B}_i are (the analytic extensions of) the Beta functions Both \overline{B} and \overline{B}_i have poles in z = 2, 4, 6, ...

 $\delta V_1(\phi)$ finite \Rightarrow the poles of A_1 and A_2 have to cancel each other

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Researches themes O Vacuum Stability 0000000000000000
 Physical Tuning
 DIM REG
 Higher dim
 Scale In

 000000
 00000
 0000
 0000

Example: $\delta V(\phi)$ in d = 4 dimensions

 $z \equiv 4 - \epsilon$. Expanding in powers of ϵ and M^2/Λ^2

$$\begin{aligned} A_1(4-\epsilon) &= \frac{\mu^{-\epsilon} \left[M^2(\phi) \right]^2}{64\pi^2} \left(-\frac{2}{\epsilon} + \gamma + \ln \frac{M^2(\phi)}{4\pi\mu^2} - \frac{3}{2} \right) + \mathcal{O}(\epsilon) \\ A_2(4-\epsilon) &= \frac{\mu^{-\epsilon} \left[M^2(\phi) \right]^2}{64\pi^2} \left(-\frac{2}{\epsilon} + \gamma + \ln \frac{M^2(\phi)}{4\pi\mu^2} - \frac{3}{2} \right) + \mathcal{O}(\epsilon) + \mathcal{O}\left(\frac{M^2}{\Lambda^2} \right) \\ &- \frac{\mu^{-\epsilon}}{64\pi^2} \left[M^2(\phi) \right]^2 \left(\frac{\Lambda^2}{M^2(\phi)} - \log \frac{\Lambda^2}{M^2(\phi)} \right) \end{aligned}$$

Remember: $\delta V_1(\phi) = \lim_{\epsilon \to 0} [A_1(4-\epsilon) - A_2(4-\epsilon)]$. Adding $\delta V_2(\phi)$

$$\delta V(\phi) = \delta V_1 + \delta V_2 = \frac{\Lambda^2 M^2(\phi)}{32\pi^2} - \frac{\left[M^2(\phi)\right]^2}{64\pi^2} \left(\ln\frac{\Lambda^2}{M^2(\phi)} + \frac{1}{2}\right) + \mathcal{O}\left(\frac{\phi^5}{\Lambda^2}\right)$$

$$\Rightarrow \quad V_{1/}(\phi) = \Omega_0 + \frac{m_0^2}{2}\phi^2 + \frac{\lambda_0}{4!}\phi^4 + \frac{\Lambda^2 M^2}{32\pi^2} - \frac{\left(M^2\right)^2}{64\pi^2} \left(\ln\frac{\Lambda^2}{M^2} + \frac{1}{2}\right)$$

No reference whatsoever to ϵ (of course!) ...

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	0000

 $\leftarrow \quad {\sf Critical \ region \ ... \ Critical \ Surface \ ...}$

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	0000

Kaluza Klein

quotation: "che ci azzecca?"

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	0000

Wilson also for theories with d > 4 dimesions

in particular

Theories with compact extra dimensions: d = 4 + n

• Typically approached as 4D theories with infinite towers of states:

 $m_n = f_n m_{\rm tow}$

• Surprising UV-softness :

Towers contribute $\sim m_{\rm tow}^4$ to Vacuum Energy / Effective Potential

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How is it possible?

 hes themes
 Vacuum Stability
 Physical Tuning
 DIM REG
 Higher dim
 Scale Invariar

 000000000000
 000000
 00000
 00000
 0000
 0000

One-loop Higgs Effective Potential (4D calculation)

$$V_{1l}^{(4)}(\phi) \sim rac{1}{2} \sum_{n=-\infty}^{\infty} \int rac{d^4 p}{(2\pi)^4} \log \left(p^2 + m_s^2(\phi) + \left(rac{n}{R} + q_{i_a}
ight)^2
ight)$$

One way of doing the calculation (not the only one):

Perform (first) the infinite sum; (then) integrate in d^4p with a cutoff Λ

Delgado, Pomarol, Quiros

Each tower contributes :

$$V_{1l}^{(4)}(\phi) = R\left(\frac{m^2\Lambda^3}{48\pi} - \frac{m^4\Lambda}{64\pi} + \frac{m^5}{60\pi}\right) - \sum_{k=1}^{\infty} \frac{e^{-2\pi kmR}(2\pi kmR(2\pi kmR+3)+3)\cos(2\pi kq)}{64\pi^6 k^5 R^4}$$

• Power UV-sensitivity through $m \implies$ canceled by SUSY

No UV-sensitivity through q

\Rightarrow Finite Higgs potential !!!!!!!!!

... Arcangelo Pernace talk

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Researches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
0	000000000000	000000	00000	000	•000

Scale Invariance

quotation: "che ci azzecca?"

Vacuum Stability 00000000000000 Physical Tuning 000000 DIN

Higher dim 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Scale Invariance

Naturalness/Hierarchy problem ... again ...

 $m_{\phi}^2 \sim \Lambda^2 \implies$ Fine-tuning Physical mechanism ??

SUSY, composite models ... No sign of new physics at LHC

Eureka (?!?!): Conformal extension of SM & "Scale-invariant" DR-like reg.

Classically scale invariant d = 4 theory:

$$egin{aligned} \mathcal{L} &= rac{1}{2} \partial_\mu \phi \, \partial^\mu \phi + rac{1}{2} \partial_\mu \sigma \, \partial^\mu \sigma + V(\phi,\sigma) \ V(\phi,\sigma) &= rac{\lambda_\phi}{4} \phi^4 + rac{\lambda_m}{2} \phi^2 \sigma^2 + rac{\lambda_\sigma}{4} \sigma^4 \end{aligned}$$

At quantum level ... breaking of Scale Invariance ... unless ... you are a wizard

Scale-invariant DR $\lambda_i \rightarrow \mu(\phi, \sigma)^{4-d} \lambda_i$ After SSB $\mu = \mu(\langle \phi \rangle, \langle \sigma \rangle)$

Equivalent to change the theory in $d \neq 4$

$$V(\phi,\sigma) \to \tilde{V}^{(d)}(\phi,\sigma) = \mu(\phi,\sigma)^{4-d} V(\phi,\sigma) = \mu(\phi,\sigma)^{4-d} \left(\frac{\lambda_{\phi}}{4}\phi^4 + \frac{\lambda_m}{2}\phi^2\sigma^2 + \frac{\lambda_{\sigma}}{4}\sigma^4\right)$$

Scale Invariant-regularized 1-loop correction

Generic d dimensions: 1-loop correction to the effective potential

 $\tilde{V}_{1/}^{(4-)}$

$$\tilde{V}_{1L}^{(d)} = \frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \operatorname{Tr} \log \left(k^2 + \tilde{M}_{(d)}^2\right) = -\frac{\mu(\phi, \sigma)^d}{2} \, \Gamma\left(-\frac{d}{2}\right) \, \operatorname{Tr}\left(\frac{\tilde{M}_{(d)}^2}{4\pi\mu(\phi, \sigma)^2}\right)^{\frac{d}{2}}$$

$$\begin{split} \tilde{M}_{(d),\,\alpha\beta}^2 &= \frac{\partial^2 \tilde{V}_0^{(d)}(\phi,\sigma)}{\partial \alpha \partial \beta} = \mu^{4-d} \left[M_{\alpha\beta}^2 + (4-d) N_{\alpha\beta} \right] \\ N_{\alpha\beta} &= \left[(3-d) \frac{\mu_{\alpha}\mu_{\beta}}{\mu^2} + \frac{\mu_{\alpha\beta}}{\mu} \right] V + \left[\frac{\mu_{\alpha}}{\mu} V_{\beta} + \frac{\mu_{\beta}}{\mu} V_{\alpha} \right] \\ {}^{\epsilon)} &= -\frac{\mu(\phi,\sigma)^{\epsilon}}{64\pi^2} \sum_{s=1,2} \left\{ M_s^4 \left(\frac{2}{\epsilon} - \gamma + \log 4\pi \right) - M_s^4 \left[\log \frac{M_s^2}{\mu^{2-\epsilon}} - \frac{3}{2} \right] + 4M_s^2 N_s \right\} + \mathcal{O}(\epsilon) \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

earches themes	Vacuum Stability	Physical Tuning	DIM REG	Higher dim	Scale Invariance
	00000000000	000000	00000	000	0000

Renormalized Scale Invariant Effective Potential

Counterterms

$$\delta\lambda_{\phi} = \frac{1}{8\pi^{2}\,\overline{\epsilon}}\,\left(9\lambda_{\phi}^{2} + \lambda_{m}^{2}\right)\,\,\delta\lambda_{m} = \frac{1}{8\pi^{2}\,\overline{\epsilon}}\,\left(4\lambda_{m}^{2} + 3\lambda_{m}\lambda_{\phi} + 3\lambda_{m}\lambda_{\sigma}\right)\,\,\delta\lambda_{\sigma} = \dots$$

After cancelling the divergences, taking the limit $\epsilon \rightarrow 0$ we obtain:

$$V_{eff,SI} = V(\phi,\sigma) + \frac{1}{64\pi^2} \operatorname{Tr} M^4 \left(\log \frac{M^2}{\mu(\phi,\sigma)^2} - \frac{3}{2} \right) + \Delta V_{SI}$$

where (we magically have new terms ...)

$$\begin{split} \Delta V_{SI} &= -\frac{1}{16\pi^2} \operatorname{Tr} M^2 N = -\frac{1}{16\pi^2} \left\{ 2 \, V_{\phi\sigma} \left[V \left(\frac{\mu_{\phi\sigma}}{\mu} - \frac{\mu_{\phi}\mu_{\sigma}}{\mu^2} \right) + V_{\phi} \frac{\mu_{\sigma}}{\mu} + V_{\sigma} \frac{\mu_{\phi}}{\mu} \right] \right. \\ &+ V_{\phi\phi} \left[V \left(\frac{\mu_{\phi\phi}}{\mu} - \frac{\mu_{\phi}^2}{\mu^2} \right) + 2 \, V_{\phi} \frac{\mu_{\phi}}{\mu} \right] + V_{\sigma\sigma} \left[V \left(\frac{\mu_{\sigma\sigma}}{\mu} - \frac{\mu_{\sigma}^2}{\mu^2} \right) + 2 \, V_{\sigma} \frac{\mu_{\sigma}}{\mu} \right] \right\} \end{split}$$

... but if we make the calculation according to ...

... these terms magically disappear ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00