CONSTRAINING SCALAR LEPTOQUARKS USING COHERENT DATA

ROBERTA CALABRESE

IN COLLABORATION WITH:

J. GUNN, G. MIELE, S. MORISI, S. ROY, P. SANTORELLI

BASED ON:

PHYSICAL REVIEW D 107 (2023) 5, 055039

CONSTRAIN LOW MASS SCALAR LEPTOQUARKS ([10² – 10⁴] GEV) USING COHERENT DATA!

Roberta Calabrese

PROTON DECAY

Leotoquark may cause the proton decay.

 \rightarrow Usually, they have masses around the GUT scale to prevent it

PROTON DECAY

Leotoquark may cause the proton decay.

 \rightarrow Usually, they have masses around the GUT scale to prevent it

PROTON DECAY

Leotoquark may cause the proton decay.

 \rightarrow Usually, they have masses around the GUT scale to prevent it

"diquarks" vertices are the problem!

Are there Leptoquarks that do not exhibit these vertices?

Roberta Calabrese

SEARCHING FOR DIQUARK
q

LQ	$SU(3)_c \times SU(2)_L \times U(1)_Y$	Vertices (a,b,c = 1,2)
S ₃	$\left(\overline{3},3,\frac{1}{3}\right)$	$\overline{Q}_{L}^{a}\epsilon^{ab}\left(\tau^{k}S_{3}^{k}\right)^{bc}L_{L}^{c}$
		$\overline{Q}_{L}^{a}\epsilon^{ab}\left(\left(\tau^{k}S_{3}^{k}\right)^{\dagger}\right)^{bc}Q_{L}^{c}$
<i>S</i> ₁	$\left(\overline{3}, 1, \frac{1}{3}\right)$	$\boxed{\overline{Q}_L^{Ca}} S_1 \epsilon^{ab} L_L^b \qquad \overline{u}_R^C S_1 e_R$
		$\left \overline{Q}_L^{Ca} S_1^* \epsilon^{ab} Q_L^b \right = \overline{u}_R^C S_1^* d_R$
Ra	R_2 $\left(3, 2, \frac{7}{6}\right)$	$\overline{u}_R R_2^a \epsilon^{ab} L_L^b$
<u> </u>		$\overline{e}_R R_2^{a*} Q_L^a$
$\widetilde{R_2}$	$\left(3,2,\frac{1}{6}\right)$	$\overline{d_R}\widetilde{R_2}\epsilon^{ab}L_L^b$
$\widetilde{S_1}$	$\left(\overline{3}, 1\frac{4}{3}\right)$	$\overline{d}_R^C \tilde{S}_1^* d_R$

Università degli studi di Napoli "Federico II"

SEARCHING FOR DIQUARK
q

		Phys.Rept. 641 (2016) 1-68
LQ	$SU(3)_c \times SU(2)_L \times U(1)_Y$	Vertices (a,b,c = 1,2)
<i>S</i> ₃	$\left(\overline{3},3,\frac{1}{3}\right)$	$\overline{Q}_{L}^{a}\epsilon^{ab}\left(\tau^{k}S_{3}^{k}\right)^{bc}L_{L}^{c}$
		$\overline{Q}_{L}^{a}\epsilon^{ab}\left(\left(\tau^{k}S_{3}^{k}\right)^{\dagger}\right)^{bc}Q_{L}^{c}$
<i>S</i> ₁	$\left(\overline{3}, 1, \frac{1}{3}\right)$	$\overline{Q}_{L}^{Ca}S_{1}\epsilon^{ab}L_{L}^{b} \qquad \overline{u}_{R}^{C}S_{1}e_{R}$
		$\overline{Q}_L^{Ca} S_1^* \epsilon^{ab} Q_L^b \qquad \overline{u}_R^C S_1^* d_R$
<i>R</i> ₂	$\left(3,2,\frac{7}{6}\right)$	$\overline{u}_R R_2^a \epsilon^{ab} L_L^b$
		$\overline{e}_R R_2^{a*} Q_L^a$
$\widetilde{R_2}$	$\left(3,2,\frac{1}{6}\right)$	$\overline{d_R}\widetilde{R_2}\epsilon^{ab}L_L^b$
$\widetilde{S_1}$	$\left(\overline{3}, 1\frac{4}{3}\right)$	$\overline{d}_R^C \tilde{S}_1^* d_R$

Roberta Calabrese

SEARCHING FOR DIQUARK
<i>q</i>
• • • • · · · · LQ
q

		Phys.Rept. 641 (2016) 1-68
LQ	$SU(3)_c \times SU(2)_L \times U(1)_Y$	Vertices (a,b,c = 1,2)
	S_3 $\left(\overline{3}, 3, \frac{1}{3}\right)$	$\overline{Q}_{L}^{a}\epsilon^{ab}\left(\tau^{k}S_{3}^{k}\right)^{bc}L_{L}^{c}$
<i>S</i> ₃		$\overline{Q}_{L}^{a}\epsilon^{ab}\left(\left(\tau^{k}S_{3}^{k}\right)^{\dagger}\right)^{bc}Q_{L}^{c}$
S_1 $(\overline{3},$	(-1)	$\overline{Q}_{L}^{Ca}S_{1}\epsilon^{ab}L_{L}^{b} \qquad \overline{u}_{R}^{C}S_{1}e_{R}$
	$\left(3,1,\frac{1}{3}\right)$	$\overline{Q}_L^{Ca} S_1^* \epsilon^{ab} Q_L^b \qquad \overline{u}_R^C S_1^* d_R$
<i>R</i> ₂	$\left(3,2,\frac{7}{6}\right)$	$\overline{u}_R R_2^a \epsilon^{ab} L_L^b$
		$\overline{e}_R R_2^{a*} Q_L^a$
$\widetilde{R_2}$	$\left(3,2,\frac{1}{6}\right)$	$\overline{d_R}\widetilde{R_2}\epsilon^{ab}L_L^b$
$\widetilde{S_1}$	$\left(\overline{3}, 1\frac{4}{3}\right)$	$\overline{d}_R^C \tilde{S}_1^* d_R$

Roberta Calabrese

OUR CHOICE

We minimally extend the Lagrangian to include the relevant interactions

CASE 2: *R*₂

Roberta Calabrese

OUR CHOICE

We minimally extend the Lagrangian to include the relevant interactions

OUR CHOICE

We minimally extend the Lagrangian to include the relevant interactions

Additionally, we assume $\Delta_{1,2}$ to couple only with the first generation of quarks to avoid the constraints from Flavor Changing Neutral Currents

Roberta Calabrese

CEvNS & LEPTOQUARKS

Through **FIERZ TRANSFORMATIONS** we

obtain the following effective Lagrangian

$$\mathcal{L} \sim -\frac{g^2}{2m_{\Delta}^2} (\overline{\psi_N} \gamma^{\mu} P_R \psi_N) (\overline{\nu} \gamma_{\mu} P_L \nu)$$

It has a $V - A$ AXIAL

STRUCTURE!

CONSTRAINTS

In this case, we assume Δ to couple with v_e and v_{μ} with the same coupling. Other scenarios were considered!

Roberta Calabrese

CONCLUSIONS

- We use Coherent Elastic Neutrino-Nucleus Scattering data to constrain scalar Leptoquarks in wide mass range
- ★ We consider Scalar Leptoquarks that does not present
 - "diquarks" coupling
 - \rightarrow they do not contribute to proton decay
- ★ Our constraints are competitive with the ones coming from LHC, IceCube, LEP, and DIS.

CONSTRAINTS SHAPE

 $CE\nu NS$ cross section is

$$\frac{d\sigma_i}{dT_{nr}} = \frac{G_F M}{\pi} \left(1 - \frac{\mathrm{MT_{nr}}}{2E_{\nu}^2}\right) Q_{i,\Delta_k}^2$$

$$Q_{i,\Delta_{k}}^{2} = \left(Q_{ii,SM} - Q_{ii,\Delta_{k}}\right)^{2} + \sum_{i \neq j} Q_{ij,\Delta_{k}}^{2}$$

Where

$$Q_{ij,\Delta_1} = \frac{y_{1i}y_{1j}}{4\sqrt{2}G_F} \frac{ZF_Z(|q|^2) + 2NF_N(|q|^2)}{|q|^2 + m_\Delta^2}$$

$$Q_{ij,\Delta_2} = \frac{y_{1i}y_{1j}}{4\sqrt{2}G_F} \frac{2ZF_Z(|q|^2) + NF_N(|q|^2)}{|q|^2 + m_\Delta^2}$$

Università degli studi di Napoli "Federico II"

PRD 107 (2023) 5, 055039

CONSTRAINTS SHAPE

 $CE\nu NS$ cross section is

$$\frac{d\sigma_i}{dT_{nr}} = \frac{G_F M}{\pi} \left(1 - \frac{\mathrm{MT_{nr}}}{2E_v^2}\right) Q_{i,\Delta_{\mathrm{R}}}^2$$

$$Q_{i,\Delta_{k}}^{2} = \left(Q_{ii,SM} - Q_{ii,\Delta_{k}}\right)^{2} + \sum_{i \neq j} Q_{ij,\Delta_{k}}^{2}$$

Where

$$Q_{ij,\Delta_1} = \frac{y_{1i}y_{1j}}{4\sqrt{2}G_F} \frac{ZF_z(|q|^2) + 2NF_N(|q|^2)}{|q|^2 + m_\Delta^2}$$

$$Q_{ij,\Delta_2} = \frac{y_{1i}y_{1j}}{4\sqrt{2}G_F} \frac{2ZF_Z(|q|^2) + NF_N(|q|^2)}{|q|^2 + m_\Delta^2}$$

Università degli studi di Napoli "Federico II"

PRD 107 (2023) 5, 055039

CONSTRAINTS SHAPE

 $CE\nu NS$ cross section is

$$\frac{d\sigma_i}{dT_{nr}} = \frac{G_F M}{\pi} \left(1 - \frac{\mathrm{MT_{nr}}}{2E_v^2}\right) Q_{i,\Delta_k}^2$$

$$Q_{i,\Delta_{k}}^{2} = \left(Q_{ii,SM} - Q_{ii,\Delta_{k}}\right)^{2} + \sum_{i \neq j} Q_{ij,\Delta_{k}}^{2}$$

Where

$$Q_{ij,\Delta_1} = \frac{y_{1i}y_{1j}}{4\sqrt{2}G_F} \frac{ZF_Z(|q|^2) + 2NF_N(|q|^2)}{|q|^2 + m_\Delta^2}$$

$$Q_{ij,\Delta_2} = \frac{y_{1i}y_{1j}}{4\sqrt{2}G_F} \frac{2ZF_Z(|q|^2) + NF_N(|q|^2)}{|q|^2 + m_\Delta^2}$$

Università degli studi di Napoli "Federico II"

CEvNS & LEPTOQUARKS

PRD 107 (2023) 5, 055039 20 Through **FIERZ** N_{exp.} - N_{bck.} CsI $N_{\rm SM}$ **TRANSFORMATIONS** we 15 N_{Δ_1} obtain the following effective Events/PE N_{Δ_2} Lagrangian 10 $\mathcal{L} \sim -\frac{y^2}{2m_{\Delta}^2} \left(\overline{\psi_N} \gamma^{\mu} P_R \psi_N \right) \left(\overline{\nu} \gamma_{\mu} P_L \nu \right)$ 5 It has a *V* – *A* AXIAL 0 **STRUCTURE!** 30 10 152520 N_{PE}

Università degli studi di Napoli "Federico II"