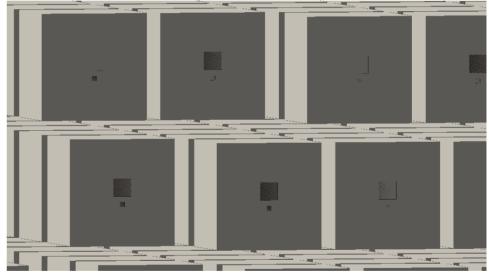
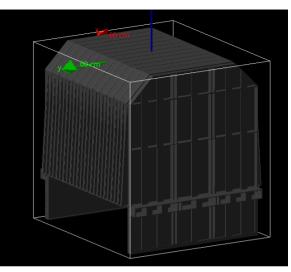

Adding support structures to the spherical CALO in HerdSoftware (part 2)

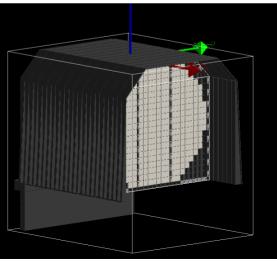
N. Mori INFN Florence

HERD CALO meeting - 9th June 2023

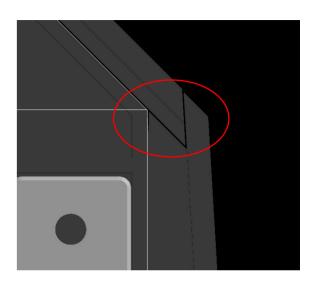

Status

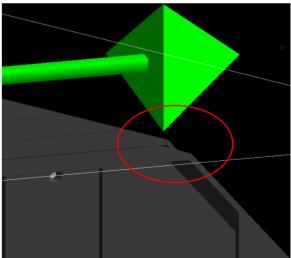
- Full CALO implemented, no overlaps
- Still to be tested with a full simulation run
- Missing features:
 - Different trays (needed?)
 - Cover structures
 - Photodiodes
 - Distribution of GDML files
 - Big files (~ 20 MB), better avoid committing them to git repository
- Will be available as spherical_v3 in HerdSoftware 0.4.0

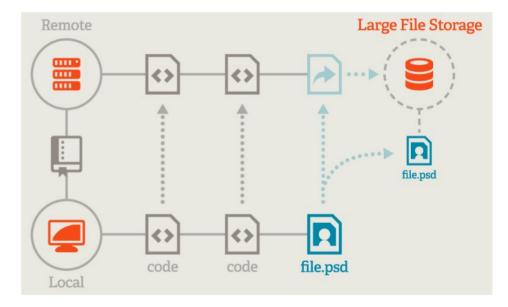




- PDs added
 - Large and small
 - Only active/depleted volume
 - Placed lightly inside the LYSO cubes
 - Easier cube placement, avoid overlaps




- Full cover added
 - GDML files
- Top cover and end plates
- Several issues:
 - Inconsistent CAD design (e.g. open surfaces)
 - Overlaps
 - Partially due to STEP \rightarrow GDML conversion?
 - Solved manually:
 - Re-draw of some pieces
 - Addition of empty safety margins between elements



- Full cover added
 - GDML files
- Top cover and end plates
- Several issues:
 - Inconsistent CAD design (e.g. open surfaces)
 - Overlaps
 - Partially due to STEP \rightarrow GDML conversion?
 - Solved manually:
 - Re-draw of some pieces
 - Addition of empty safety margins between elements

- Distribution of GDML files via Git LFS
 - https://git-lfs.com/
 - Management and versioning of large (binary) files with Git
 - Optimized for repo size and network traffic
- Compression of GDML files with zstd
 - Further lowers disk and network usage
 - Automatic decompression done by Cmake
 - Not a Git LFS feature, but implemented in HerdSoftware
- Gitlab HERD instance configured for working with LFS
 - S3 backend

Tests

- No overlaps detected by the automatic G4 geometry check
 - Limited accuracy, should be repeated with greater accuracy (\rightarrow a lot of computing time, ~ days)
 - Small overlaps in passive elements should not be a big issue
- Simulation run with 10k geantinos (\rightarrow pure tracking):
 - spherical: 2 s
 - spherical_v3: 20 s
 - 10x slower than CALO without support structures

Status

- Code and tooling (\rightarrow Git LFS, zstd compression) are ready
- Need to revise some details
 - Materials, density etc.
 - Verify the readout of MC data
- Increased run time is not sustainable for real-world usage
 - Use this realistic implementation to validate approximate ones
 - Simplify the geometry to gain in computation speed
 - Not in this software release cycle
 - Warning for future applications of this approach based on GDML files extracted from CAD