Intersection Numbers
 from Electromagnetism to Quantum Field Theory (and Cosmology)

Pierpaolo Mastrolia
Workshop on EOB and Amplitudes in Gravity Bologna, 8-9 June 2023

Ampere's Law

$$
\oint_{\gamma} \mathbf{B} \cdot d \vec{\ell}=-\mu_{0} I
$$

Ampere's Law

$$
\oint_{\gamma} \mathbf{B} \cdot d \vec{\ell}=-\mu_{0} I
$$

- Integral decomposition by geometry

$$
\oint_{\gamma} \mathbf{B} \cdot d \vec{\ell}=\mu_{0} \sum_{k}\left(\pm n_{k}\right) I_{k}
$$

$n_{k}=\operatorname{Link}\left(\gamma_{k}, \gamma\right)$
$\operatorname{Link}\left(\gamma_{1}, \gamma\right)=+2, \operatorname{Link}\left(\gamma_{2}, \gamma\right)=-1, \operatorname{and} \operatorname{Link}\left(\gamma_{3}, \gamma\right)=0$

Feynman Integrals

- Momentum-space Representation

L loops, $E+1$ external momenta,
$N=L E+\frac{1}{2} L(L+1)$ (generalised) denominators total number of reducible and irreducible scalar products

N -denominator

generic Integral

- Integration-by-parts Identites Tkachov; Chetyrkin \&

$$
\int \prod_{i=1}^{L} d^{d} k_{i} \frac{\partial}{\partial k_{j}^{\mu}}\left(v_{\mu} \prod_{n=1}^{N} \frac{1}{D_{n}^{a_{n}}}\right)=0
$$

$$
v_{\mu}=v_{\mu}\left(p_{i}, k_{j}\right) \quad \text { arbitrary }
$$

- IBP identities $\quad \sum_{i} b_{i} I_{a_{1}, \ldots, a_{i} \pm 1, \ldots, a_{N}}=0$

Linear relations for Feynman Integrals identities

- Relations among Integrals in dim. reg.

- 1st order Differential Equations for MIs

- Dimension-Shift relations and Gram determinant relations

Outline

© Vector Space Structure of (Feynman, GKZ, Euler-Mellin, ...) twisted period Integrals
Linear and Quadratic relations
OIntersection Numbers

- 1 -forms
©n-forms (I): iterative method©n-forms (II): Partial Differential Equation
\#n-forms (III): Pfaffian Systems of D-modules
Based on:
PM, Mizera
Feynman Integral and Intersection TheoryJHEP 1902 (2019) 139 [arXiv: 1810.03818$]$
Frellesvig, Gasparotto, Laporta, Mandal, PM, Mattiazzi, Mizera Decomposition of Feynman Integrals in the Maximal Cut by Intersection Numbers JHEP 1095 (2019) 153 [arXiv: 1901.11510]
Frellesvig, Gasparotto, Mandal, PM, Mattiazzi, Mizera
Vector Space of Feynman Integrals and Multivariate Intersection Numbers Phys. Rev. Lett. 123 (2019) 20, 201602 [arXiv 1907.02000]
Frellesvig, Gasparotto, Laporta, Mandal, PM, Mattiazzi, Mizera Decomposition of Feynman Integrals by Multivariate Intersection Numbers. JHEP 03 (2021) 027 [arXiv 2008.04823]
Chestnov, Gasparotto, Mandal, PM, Matsubara-Heo, Munch, Takayama Macaulay Matrix for Feynmna Integrals: linear relations and intersection numbers. JHEP09 (2022) 187 [arXiv: 2204.12983]

Cacciatori \& PM,

Intersection Numbers in Quantum Mechanics and Field Theory. 2211.03729 [heo-th].
${ }_{9}$ Conclusions

Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal \& PM in progress

What we have found

Vector Space Structure (of Feynman Integrals and not only)

- Vector decomposition

$$
I=\sum_{i=1}^{\nu} c_{i} J_{i}
$$

$$
\nu=\text { dimension of the vector space }
$$

- Projections

$$
c_{i}=I \cdot J_{i}, \quad J_{i} \cdot J_{j}=\delta_{i j}
$$

- Completeness

$$
\sum_{i} J_{i} J_{i}=\mathbb{I}_{\nu \times \nu}
$$

Vector Space Structure (of Feynman Integrals and not only)

- Vector decomposition $I=\sum_{i=1}^{\nu} c_{i} J_{i} \ldots, \ldots$ Master Integral = basis $\quad \nu=$ dimension of the vector space
$c_{i}=I \cdot J_{i}, \quad J_{i} \cdot J_{j}=\delta_{i j}$
- Completeness

$$
\sum_{i} J_{i} J_{i}=\mathbb{I}_{\nu \times \nu}
$$

The two questions:

1) what is the vector space dimension ν ?
2) what is the scalar product "." between integrals?

Basics of Intersection Theory

Basics of Intersection Theory for deRham (co)-Homology

Consider an integral I over the variables $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$

$$
I=\underbrace{\int_{\mathcal{C}} u(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cycle }
\end{array}} \underbrace{\varphi_{m}(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cocycle }
\end{array}} \quad \begin{aligned}
& \varphi_{m}(\mathbf{z}) \text { is a differential } m \text {-form } \\
& u(\mathbf{z}) \text { is a multivalued function } \\
& u(\partial \mathcal{C})=0
\end{aligned}
$$

Basics of Intersection Theory for deRham (co)-Homology

Consider an integral I over the variables $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$

$$
I=\underbrace{\int_{\mathcal{C}} u(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cycle }
\end{array}} \underbrace{\varphi_{m}(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cocycle }
\end{array}} \quad \begin{aligned}
& \varphi_{m}(\mathbf{z}) \text { is a differential } m \text {-form } \\
& u(\mathbf{z}) \text { is a multivalued function } \\
& u(\partial \mathcal{C})=0
\end{aligned}
$$

- The dawn of Integration by parts identities:
- Equivalence Classes of DIFFERENTIAL FORMS

There could exist many forms φ_{m} that upon integration give the same result I

- Equivalence Classes of INTEGRATION CONTOURS

There could exist many contours \mathcal{C} that do not alter the the result of I

Vector Space Structure of Twisted Period Integrals

Basics of Intersection Theory for deRham (co)-Homology

Consider the $(m-1)$-differential form φ_{m-1},

$$
0=\int_{\mathcal{C}} d\left(u \varphi_{m-1}\right)=\int_{\mathcal{C}}\left(u d \varphi_{m-1}+d u \wedge \varphi_{m-1}\right)=\int_{\mathcal{C}} u(d+\omega \wedge) \varphi_{m-1}=\int_{\mathcal{C}} u \nabla_{\omega} \varphi_{m-1}
$$

- Covariant Derivative

$$
\omega \equiv d \log u \quad \nabla_{\omega} \equiv d+\omega \wedge \equiv u^{-1} \cdot d \cdot u
$$

- Integrals

$$
I=\int_{\mathcal{C}} u \varphi_{m}=\int_{\mathcal{C}} u\left(\varphi_{m}+\nabla_{\omega} \varphi_{m-1}\right)=\int_{\mathcal{C}+\partial \Gamma} u \varphi_{m}
$$

Basics of Intersection Theory for deRham (co)-Homology

Consider the $(m-1)$-differential form φ_{m-1},

$$
0=\int_{\mathcal{C}} d\left(u \varphi_{m-1}\right)=\int_{\mathcal{C}}\left(u d \varphi_{m-1}+d u \wedge \varphi_{m-1}\right)=\int_{\mathcal{C}} u(d+\omega \wedge) \varphi_{m-1}=\int_{\mathcal{C}} u \nabla_{\omega} \varphi_{m-1}
$$

- Covariant Derivative

$$
\omega \equiv d \log u \quad \nabla_{\omega} \equiv d+\omega \wedge \equiv u^{-1} \cdot d \cdot u
$$

- Integrals

$$
I=\int_{\mathcal{C}} u \varphi_{m}=\int_{\mathcal{C}} u\left(\varphi_{m}+\nabla_{\omega} \varphi_{m-1}\right)=\int_{\mathcal{C}+\partial \Gamma} u \varphi_{m}
$$

- Twisted Cohomology Group

$$
H_{\omega}^{m}(X)=\frac{\operatorname{Ker}\left(\nabla_{\omega}: \varphi_{m} \rightarrow \varphi_{m+1}\right)}{\operatorname{Im}\left(\nabla_{\omega}: \varphi_{m-1} \rightarrow \varphi_{m}\right)}
$$

Basics of Intersection Theory for deRham (co)-Homology

Consider the $(m-1)$-differential form φ_{m-1},

$$
0=\int_{\mathcal{C}} d\left(u \varphi_{m-1}\right)=\int_{\mathcal{C}}\left(u d \varphi_{m-1}+d u \wedge \varphi_{m-1}\right)=\int_{\mathcal{C}} u(d+\omega \wedge) \varphi_{m-1}=\int_{\mathcal{C}} u \nabla_{\omega} \varphi_{m-1}
$$

- Covariant Derivative

$$
\omega \equiv d \log u \quad \nabla_{\omega} \equiv d+\omega \wedge \equiv u^{-1} \cdot d \cdot u
$$

$$
I=\int_{\mathcal{C}} u \varphi_{m}=\int_{\mathcal{C}} u\left(\varphi_{m}+\nabla_{\omega} \varphi_{m-1}\right)=\int_{\mathcal{C}+\partial \Gamma} u \varphi_{m}
$$

- Twisted Homology Group

$$
H_{p}^{\omega}(X)=\frac{\operatorname{Ker}\left(\partial: \mathcal{C}_{p+1} \rightarrow \mathcal{C}_{p}\right)}{\operatorname{Im}\left(\partial: \mathcal{C}_{p} \rightarrow \mathcal{C}_{p-1}\right)}
$$

Basics of Intersection Theory for deRham (co)-Homology

Consider the $(m-1)$-differential form φ_{m-1},

$$
\begin{aligned}
& 0=\int_{\mathcal{C}} d\left(u \varphi_{m-1}\right)=\int_{\mathcal{C}}\left(u d \varphi_{m-1}+d u \wedge \varphi_{m-1}\right)=\int_{\mathcal{C}} u(d+\omega \wedge) \varphi_{m-1}=\int_{\mathcal{C}} u \nabla_{\omega} \varphi_{m-1} \\
& \text { Covariant Derivative } \quad \omega \equiv d \log u \quad \nabla_{\omega} \equiv d+\omega \wedge \equiv u^{-1} \cdot d \cdot u \\
& \text { OIntegrals } \\
& I=\int_{\mathcal{C}} u \varphi_{m}=\int_{\mathcal{C}} u\left(\varphi_{m}+\nabla_{\omega} \varphi_{m-1}\right)=\int_{\mathcal{C}+\partial \Gamma} u \varphi_{m}
\end{aligned}
$$

$$
0=\int_{\mathcal{C}} d\left(u^{-1} \varphi_{m-1}\right)=\int_{\mathcal{C}}\left(u^{-1} d \varphi_{m-1}-u^{-2} d u \wedge \varphi_{m-1}\right)=\int_{\mathcal{C}} u^{-1}(d-\omega \wedge) \varphi_{m-1}=\int_{\mathcal{C}} u^{-1} \nabla_{-\omega} \varphi_{m-1}
$$

- Dual Covariant Derivative

$$
\nabla_{-\omega} \equiv d-\omega \wedge \equiv u \cdot d \cdot u^{-1}
$$

- Dual Integrals

$$
\tilde{I}=\int_{\mathcal{C}} u^{-1} \phi_{m}=\int_{\mathcal{C}} u^{-1}\left(\phi_{m}+\nabla_{-\omega} \phi_{m-1}\right)=\int_{\mathcal{C}+\partial \Gamma} u^{-1} \phi_{m}
$$

- Dual Twisted Co-Homology Groups

$$
H_{-\omega}^{m}(X)=\frac{\operatorname{Ker}\left(\nabla_{-\omega}: \varphi_{m} \rightarrow \varphi_{m+1}\right)}{\operatorname{Im}\left(\nabla_{-\omega}: \varphi_{m-1} \rightarrow \varphi_{m}\right)} \quad H_{p}^{-\omega}(X)=\frac{\operatorname{Ker}\left(\partial: \mathcal{C}_{p+1} \rightarrow \mathcal{C}_{p}\right)}{\operatorname{Im}\left(\partial: \mathcal{C}_{p} \rightarrow \mathcal{C}_{p-1}\right)}
$$

Pairings of Cycles and Co-cycles

- Basic building blocks
$\left\langle\varphi_{L}\right| \equiv \varphi_{L}(\mathbf{z}) \in H_{\omega}^{m}$
$\left|\varphi_{R}\right\rangle \equiv \varphi_{R}(\mathbf{z}) \in H_{-\omega}^{m}$
$\left.\mid \mathcal{C}_{R}\right] \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z}) \in H_{m}^{\omega}$
$\left[\mathcal{C}_{L} \mid \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z})^{-1} \in H_{m}^{-\omega}\right.$
- Integrals :: pairings of cycles and co-cycles
- Dual Integrals :: pairings of cycles and co-cycles
- Intersection numbers for cycles :: pairings of cycles
- Intersection numbers for co-cycles :: pairings of co-cycles

$$
\begin{aligned}
\left.\left\langle\varphi_{L}\right| \mathcal{C}_{R}\right] & \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z}) \varphi_{L}(\mathbf{z})=I \\
{\left[\mathcal{C}_{L}\left|\varphi_{R}\right\rangle\right.} & \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z})^{-1} \varphi_{R}(\mathbf{z})=\tilde{I}
\end{aligned}
$$

$$
\left[\mathcal{C}_{\mathrm{L}} \mid \mathcal{C}_{\mathrm{R}}\right] \equiv \text { intersection number }
$$

$$
\left\langle\varphi_{\mathrm{L}} \mid \varphi_{\mathrm{R}}\right\rangle \equiv \int_{\mathcal{C}} \iota\left(\varphi_{\mathrm{L}}\right) \wedge \varphi_{\mathrm{R}}
$$

Identity Resolution

$\operatorname{dim} H_{ \pm \omega}^{m}=\operatorname{dim} H_{m}^{ \pm \omega} \equiv \nu$

- Bases $\quad\left\{\left\langle e_{i}\right|\right\}_{i=1, \ldots, \nu} \in H_{\omega}^{n} \quad$ and $\quad\left\{\left|h_{i}\right\rangle\right\}_{i=1, \ldots, \nu} \in H_{-\omega}^{n}$
- Forms

$$
\mathbb{I}_{c}=\sum_{i, j=1}^{v}\left|h_{i}\right\rangle\left(\mathbf{C}^{-1}\right)_{i j}\left\langle e_{j}\right| \quad \mathbf{C}_{i j} \equiv\left\langle e_{i} \mid h_{j}\right\rangle
$$

Metric Matrix for Forms

- Contours $\left.\quad \mathbb{I}_{h}=\sum_{i, j=1}^{v} \mid \gamma_{i}\right]\left(\mathbf{H}^{-1}\right)_{i j}\left[\eta_{j} \mid\right.$

$$
\mathbf{H}_{i j} \equiv\left[\eta_{i} \mid \gamma_{j}\right]
$$

Identity Resolution

$$
\operatorname{dim} H_{ \pm \omega}^{m}=\operatorname{dim} H_{m}^{ \pm \omega} \equiv \nu
$$

$$
\text { - Bases } \quad\left\{\left\langle e_{i}\right|\right\}_{i=1, \ldots, \nu} \in H_{\omega}^{n} \quad \text { and } \quad\left\{\left|h_{i}\right\rangle\right\}_{i=1, \ldots, \nu} \in H_{-\omega}^{n}
$$

$$
\text { Forms } \quad \mathbb{I}_{c}=\sum_{i, j=1}^{v}\left|h_{i}\right\rangle\left(\mathbf{C}^{-1}\right)_{i j}\left\langle e_{j}\right| \quad \quad \mathbf{C}_{i j} \equiv\left\langle e_{i} \mid h_{j}\right\rangle \quad \text { Metric Matrix for Forms }
$$

- Contours $\left.\quad \mathbb{I}_{h}=\sum_{i, j=1}^{v} \mid \gamma_{i}\right]\left(\mathbf{H}^{-1}\right)_{i j}\left[\eta_{j} \mid\right.$

$$
\mathbf{H}_{i j} \equiv\left[\eta_{i} \mid \gamma_{j}\right]
$$

Linear Relations

Flux Decomposition

$$
\left.\int_{\gamma} \varphi=<_{\gamma}^{\sim}=\langle\varphi| \gamma\right]
$$

Flux Decomposition

- Contour decomposition

$$
\left.\mid \gamma]=\sum_{i} a_{i} \mid \gamma_{i}\right]
$$

- Coefficients are Intersection Numbers (contours)

$$
a_{i}=\left[\gamma_{i} \mid \gamma\right], \quad\left[\gamma_{i} \mid \gamma_{j}\right]=\delta_{i j}
$$

Flux Decomposition

- Contour decomposition

$$
\left.\mid \gamma]=\sum_{i} a_{i} \mid \gamma_{i}\right]
$$

- Coefficients are Intersection Numbers (contours)

$$
a_{i}=\left[\gamma_{i} \mid \gamma\right], \quad\left[\gamma_{i} \mid \gamma_{j}\right]=\delta_{i j}
$$

- Form decomposition

$$
\langle\varphi|=\sum_{i} c_{i}\left\langle e_{i}\right|
$$

- Coefficients are Intersection Numbers (forms)

$$
c_{i}=\left\langle\varphi \mid e_{i}\right\rangle, \quad\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}
$$

Linear Relations / IBPs identity / Gauss contiguity relations

Consider a set of ν MIs,

$$
\left.J_{i}=\int_{\mathcal{C}} u(\mathbf{z}) e_{i}(\mathbf{z})=\left\langle e_{i}\right| \mathcal{C}\right], \quad i=1, \ldots, \nu
$$

- Integral decomposition

$$
\left.I=\left\langle\varphi_{L}\right| C_{R}\right]=\sum_{i=1}^{v} c_{i} J_{i}
$$

Linear Relations / IBPs identity / Gauss contiguity relations

Consider a set of ν MIs,

$$
\left.J_{i}=\int_{\mathcal{C}} u(\mathbf{z}) e_{i}(\mathbf{z})=\left\langle e_{i}\right| \mathcal{C}\right], \quad i=1, \ldots, \nu
$$

- Integral decomposition

$$
\left.I=\left\langle\varphi_{L}\right| \mathcal{C}_{R}\right]=\sum_{i=1}^{v} c_{i} J_{i}
$$

- Decomposition of differential forms.
- Master Decomposition Formula

$$
\left\langle\varphi_{L}\right|=\left\langle\varphi_{L}\right| \mathbb{I}_{c}=\sum_{i=1}^{v} c_{i}\left\langle e_{i}\right|, \quad \text { with } \quad c_{i}=\sum_{j=1}^{v}\left\langle\varphi_{L} \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}
$$

Quadratic Relations

$$
\begin{aligned}
& \left.\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\left\langle\varphi_{L}\right| \mathbb{I}_{h}\left|\varphi_{R}\right\rangle=\sum_{i, j=1}^{v}\left\langle\varphi_{L}\right| \gamma_{i}\right]\left(\mathbf{H}^{-1}\right)_{i j}\left[\eta_{j}\left|\phi_{R}\right\rangle=\left(\mathbf{P}_{\omega} \cdot \mathbf{H}^{-1} \cdot \mathbf{P}_{-\omega}\right)_{L R}\right. \\
& {\left[C_{L} \mid C_{R}\right]=\left[C_{L}\left|\mathbb{I}_{c}\right| C_{R}\right]=\sum_{i, j=1}^{v}\left[C_{L}\left|h_{i}\right\rangle\left(\mathbf{C}^{-1}\right)_{i j}\left\langle e_{j}\right| C_{R}\right]=\left(\mathbf{P}_{-\omega} \cdot \mathbf{C}^{-1} \cdot \mathbf{P}_{\omega}\right)_{L R}}
\end{aligned}
$$

Vector Space Structure of Feynman Integrals

Vector Space Dimensions

- Space Dimensions $=$ Number of Master Integrals
$\nu=$ number of independent master integrals
$=$ is finite
Smirnov, Petuckhov (2010)
$=$ number of critical points of graph polynomials
Lee, Pomeranski (2013)
$=$ is related to Euler characteritics χ_{E}
$=$ number of independent integration contours
$=$ number of independent forms
Mizera \& P.M. (2018)
$=\operatorname{dim} H_{ \pm \omega}^{m} \quad$ Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera \& P.M. (2019)
$=\operatorname{dim}\left(\mathbb{C}[\mathbf{z}] /<\hat{\omega}_{1}, \ldots, \hat{\omega}_{n}>\right)=\operatorname{dim}(\mathbb{C}[\mathbf{z}] /<\mathcal{G}>) \quad$ Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera \& P.M. (2020)

Parametric Representation(s)

- Upon a change of integration variables

$$
\begin{gathered}
\varphi_{N}(\mathbf{z})=\hat{\varphi}(\mathbf{z}) d^{N} \mathbf{z} \quad \text { differential } N \text {-form } \\
d^{N} \mathbf{z}=d z_{1} \wedge \ldots \wedge d z_{N} \\
\hat{\varphi}_{N}(\mathbf{z})=f(\mathbf{z}) \prod_{i} z_{i}^{-a_{i}} \\
u(\mathbf{z})=\mathcal{P}(\mathbf{z})^{\gamma} \\
\mathcal{P}(\mathbf{z})=\text { graph-Polynomial } \\
\gamma(d)=\text { generic exponent }
\end{gathered}
$$

- Integration-by-parts: two situations may occur

$$
\int_{\mathcal{C}} d\left(u(\mathbf{z}) \varphi_{N}(\mathbf{z})\right) \quad \begin{cases}\neq 0, & \text { - Schwinger representation, Lee-Pomeranski repr'n } \\ =0, \quad u(\partial \mathcal{C})=0 . & \text { - Baikov representation, or other repr'ns }\end{cases}
$$

- IBP identities $\quad \sum_{i} b_{i} I_{a_{1}, \ldots, a_{i} \pm 1, \ldots, a_{N}}=0$

Feynman Integrals :: Baikov Representation

- Denominators as integration variables

Baikov (1996)
$\left\{D_{1}, \ldots, D_{N}\right\} \rightarrow\left\{z_{1}, \ldots, z_{N}\right\} \equiv \mathbf{z}$

N -denominator generic Integral

$$
B\left(p_{i}, k_{j}\right)=\left|\begin{array}{ccc}
k_{1}^{2} & \ldots & \left(k_{1} \cdot p_{E-1}\right) \\
\vdots & \ddots & \vdots \\
\left(p_{E-1} \cdot k_{1}\right) & \ldots & p_{E-1}^{2}
\end{array}\right|=B(\mathbf{z}) \quad \gamma \equiv(d-E-L-1) / 2
$$

- 1-loop Nonagon

$$
N=L E+\frac{1}{2} L(L+1)
$$

$$
\int_{\mathcal{C}} d z_{1} \wedge \cdots \wedge d z_{9} \frac{B(\mathbf{z})^{\gamma}}{z_{1}^{n_{1}} \cdots z_{9}^{n_{9}}}
$$

$B(\mathbf{z}), \mathcal{C}, \gamma$ depend on the graph

Feynman Integrals :: Baikov Representation

- Denominators as integration variables

Baikov (1996)
$\left\{D_{1}, \ldots, D_{N}\right\} \rightarrow\left\{z_{1}, \ldots, z_{N}\right\} \equiv \mathbf{z}$

N -denominator generic Integral

$$
B\left(p_{i}, k_{j}\right)=\left|\begin{array}{ccc}
k_{1}^{2} & \ldots & \left(k_{1} \cdot p_{E-1}\right) \\
\vdots & \ddots & \vdots \\
\left(p_{E-1} \cdot k_{1}\right) & \cdots & p_{E-1}^{2}
\end{array}\right|=B(\mathbf{z})
$$

$$
\gamma \equiv(d-E-L-1) / 2
$$

- Integration-by-parts Identities
Zhang, Larsen; Lee; Frellesvig, Papadopoulos

$$
B(\partial \mathcal{C})=0 \quad \int_{\mathcal{C}} d\left(B(\mathbf{z})^{\gamma} \prod_{i=1}^{N} \frac{1}{z_{i}^{a_{n}}}\right)=0
$$

Three special applications:

i) Dimensional Recurrence Relation

- MIs in (d+2n) dimensions

$$
\left.J_{i}^{(d+2 n)} \equiv K(d+2 n) E_{i}^{(d+2 n)} \quad E_{i}^{(d+2 n)} \equiv\left\langle B^{n} e_{i}\right| \mathcal{C}\right]=\int_{\mathcal{C}} u\left(B^{n} e_{i}\right), \quad \quad u=B^{\gamma}, \quad \gamma \equiv(d-E-L-1) / 2
$$

- Master Decomposition Formula @ special basis choice

$$
\left\langle B^{\nu} e_{i}\right|=\sum_{n=0}^{\nu-1} c_{n}\left\langle B^{n} e_{i}\right| \quad n=0,1, \ldots, \nu-1
$$

- Recurrence Relations for Master Forms

$$
\sum_{n=0}^{\nu} c_{n}\left\langle B^{n} e_{i}\right|=0, \quad c_{\nu} \equiv-1
$$

- Recurrence Relations for Master Integrals

$$
\sum_{n=0}^{\nu} \alpha_{n} J_{i}^{(d+2 n)}=0 \quad \alpha_{n} \equiv c_{n} / K(d+2 n)
$$

ii) Differential Equations

- External Derivative

$$
\left.\left.\partial_{x} I=\partial_{x}\langle\varphi| \mathcal{C}\right]=\partial_{x} \int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\frac{\partial_{x} u}{u} \wedge+\partial_{x}\right) \varphi=\left\langle\left(\partial_{x}+\sigma\right) \varphi\right| \mathcal{C}\right]
$$

- External (connection) dLog-form

$$
\nabla_{x, \sigma} \equiv \partial_{x}+\sigma \quad \sigma=\partial_{x} \log u
$$

- Derivative of Master Forms

$$
\partial_{x}\left\langle e_{i}\right|=\left\langle\left(\partial_{x}+\sigma \wedge\right) e_{i}\right|=\left\langle\left(\partial_{x}+\sigma \wedge\right) e_{i} \mid h_{k}\right\rangle\left(\mathbf{C}^{-1}\right)_{k j}\left\langle e_{j}\right|=\mathbf{\Omega}_{i j}\left\langle e_{j}\right|
$$

- System of DEQ for Master Forms

$$
\partial_{x}\left\langle e_{i}\right|=\boldsymbol{\Omega}_{i j}\left\langle e_{j}\right|, \quad \boldsymbol{\Omega}=\boldsymbol{\Omega}(d, x)
$$

$$
u \rightarrow u^{-1} \quad \Longrightarrow \quad \nabla_{x, \sigma} \rightarrow \nabla_{x,-\sigma}
$$

iii) Secondary Equation

- DEQ for forms

$$
\partial_{x}\left\langle e_{i}\right|=\Omega_{i j}\left\langle e_{j}\right| \quad \Omega_{i j}=\left\langle\left(\partial_{x}+\sigma_{x}\right) e_{i} \mid h_{k}\right\rangle\left(\mathbf{C}^{-1}\right)_{k j}
$$

- DEQ dual-forms

$$
\partial_{x}\left|h_{i}\right\rangle=\tilde{\Omega}_{j i}\left|h_{j}\right\rangle \quad \tilde{\Omega}_{j i}=\left(\mathbf{C}^{-1}\right)_{j k}\left\langle e_{k} \mid\left(\partial_{x}-\sigma_{x}\right) h_{i}\right\rangle
$$

- Secondary Equation for the Intersection Matrix

$$
\begin{aligned}
& \mathbf{C}_{i j} \equiv\left\langle e_{i} \mid h_{j}\right\rangle \\
& \quad \partial_{x} \mathbf{C}=\boldsymbol{\Omega} \cdot \mathbf{C}+\mathbf{C} \cdot \tilde{\boldsymbol{\Omega}}, \quad \partial_{x} \mathbf{C}^{-1}=\tilde{\boldsymbol{\Omega}} \cdot \mathbf{C}^{-1}-\mathbf{C}^{-1} \cdot \boldsymbol{\Omega}
\end{aligned}
$$

Intersection Numbers for 1 -forms

Intersection Numbers :: 1-forms

-1-form $\quad\langle\varphi| \equiv \hat{\varphi}(z) d z \quad \hat{\varphi}(z)$ rational function

- Zeroes and Poles of ω

$$
\begin{aligned}
& \omega \equiv d \log u \\
& \nu=\{\text { the number of solutions of } \omega=0\} \\
& \mathcal{P} \equiv\{z \mid z \text { is a pole of } \omega\}
\end{aligned}
$$

\mathcal{P} can also include the pole at infinity if $\operatorname{Res}_{z=\infty}(\omega) \neq 0$

- Intersection Numbers

1-forms φ_{L} and φ_{R}

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \varphi_{R}\right)
$$

ψ_{p} is a function (0 -form), solution to the differential equation $\nabla_{\omega} \psi=\varphi_{L}$, around p

Intersection Numbers for \mathbf{n}-forms :: Iterative Method

Intersection Numbers for Logarithmic n-Forms

If $\left\langle\varphi_{L}\right|$ and $\left\langle\varphi_{R}\right|$ are dLog n-forms (hence contain only simple poles)

$$
\begin{aligned}
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle & =\int d z_{1} \cdots d z_{n} \delta\left(\omega_{1}\right) \cdots \delta\left(\omega_{n}\right) \hat{\varphi}_{L} \hat{\varphi}_{R}= \\
& =\left.\sum_{\left(z_{1}^{*}, \ldots, z_{n}^{*}\right)} \operatorname{det}^{-1}\left[\begin{array}{ccc}
\frac{\partial \omega_{1}}{\partial z_{1}} & \cdots & \frac{\partial \omega_{1}}{\partial z_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \omega_{n}}{\partial z_{1}} & \cdots & \frac{\partial \omega_{n}}{\partial z_{n}}
\end{array}\right] \widehat{\varphi}_{L} \widehat{\varphi}_{R}\right|_{\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{*}, \ldots z_{n}^{*}\right)}
\end{aligned}
$$

$\left(z_{1}^{*}, \ldots z_{n}^{*}\right)$ critical points, namely the solutions of the system

$$
\omega_{i}=0, \quad i=1, \ldots n
$$

In the 1 -variate case:

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\operatorname{Res}_{z \in \mathcal{P}_{\omega_{1}}}\left(\frac{\hat{\varphi}_{L} \hat{\varphi}_{R}}{\omega}\right)=\int d z_{1} \delta\left(\omega_{1}\right) \hat{\varphi}_{L} \hat{\varphi}_{R}=\sum_{\left(z_{1}^{*}\right)} \frac{\hat{\varphi}_{L} \hat{\varphi}_{R}}{\partial \omega_{1} / \partial z_{1}}
$$

Nested Integrations

- Multivariate integral decomposition

$$
\begin{gathered}
I=\int d z_{n} \ldots \int d z_{3} \int d z_{2} \int d z_{1} f\left(z_{n}, \ldots, z_{3}, z_{2}, z_{1}\right) \\
I=\sum_{i=1}^{\nu} c_{i} J_{i}
\end{gathered}
$$

- Independent (Master) Integrals

$$
J_{i} \equiv \int d z_{n} \ldots \int d z_{3} \int d z_{2} \int d z_{1} f_{i}\left(z_{n}, \ldots, z_{1}\right)
$$

- Cascade of Master Integrals

$$
\begin{aligned}
I & =\int d z_{n} \ldots \int d z_{3} \int d z_{2} \underbrace{\int d z_{1} f\left(z_{n}, \ldots, z_{3}, z_{2}, z_{1}\right)}_{\exists \nu^{(1)} \text { master integrals in } z_{1}} \\
I & =\int d z_{n} \ldots \int d z_{3} \int d z_{2} \sum_{i_{1}=1}^{\nu^{(1)}} c_{i_{1}}\left(z_{n}, \ldots, z_{3}, z_{2}\right) J_{i_{1}}\left(z_{n}, \ldots, z_{3}, z_{2}\right)
\end{aligned}
$$

- Cascade of Master Integrals

$$
\begin{aligned}
& I=\int d z_{n} \ldots \int d z_{3} \int d z_{2} \underbrace{\int d z_{1} f\left(z_{n}, \ldots, z_{3}, z_{2}, z_{1}\right)}_{\exists \nu^{(1)} \text { master integrals in } z_{1}} \\
& I=\int d z_{n} \ldots \int d z_{3} \underbrace{\int d z_{2} \sum_{i_{1}=1}^{\nu^{(1)}} c_{i_{1}}\left(z_{n}, \ldots, z_{3}, z_{2}\right) J_{i_{1}}\left(z_{n}, \ldots, z_{3}, z_{2}\right)}_{\exists \nu^{(2)} \text { master integrals in } z_{2}} \\
& I=\int d z_{n} \ldots \int d z_{3} \sum_{i_{2}=1}^{\nu^{(2)}} c_{i_{2}}\left(z_{n}, \ldots, z_{3}\right) J_{i_{2}}\left(z_{n}, \ldots, z_{3}\right)
\end{aligned}
$$

- Cascade of Master Integrals

$$
\begin{aligned}
I & =\int d z_{n} \ldots \int d z_{3} \int d z_{2} \underbrace{\int d z_{1} f\left(z_{n}, \ldots, z_{3}, z_{2}, z_{1}\right)}_{\exists \nu^{(1)} \text { master integrals in } z_{1}} \\
I & =\int d z_{n} \ldots \int d z_{3} \underbrace{\int d z_{2} \sum_{i_{1}=1}^{\nu^{(1)}} c_{i_{1}}\left(z_{n}, \ldots, z_{3}, z_{2}\right) J_{i_{1}}\left(z_{n}, \ldots, z_{3}, z_{2}\right)}_{\exists \nu^{(2)} \text { master integrals in } z_{2}} \\
I & =\int d z_{n} \ldots \underbrace{\int d z_{3} \sum_{i_{2}=1}^{\nu^{(2)}} c_{i_{2}}\left(z_{n}, \ldots, z_{3}\right) J_{i_{2}}\left(z_{n}, \ldots, z_{3}\right)}_{\exists \nu^{(3)} \text { master integrals in } \mathrm{z}_{3}} \\
& \vdots \\
I & =\underbrace{\int d z_{n} \sum_{i_{n}=1}^{\nu^{(n-1)}} c_{i_{n}}\left(z_{n}\right) J_{i_{n}}\left(z_{n}\right)}_{\exists \nu \text { master integrals in } z_{\mathrm{n}}} \\
I & =\sum_{i=1}^{\nu} c_{i} J_{i}
\end{aligned}
$$

Multivariate Intersection Numbers (I)

- by Induction:

- (n-1)-form Vector Space: known!

$$
\nu_{\mathbf{n}-\mathbf{1}} \quad\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| \quad\left|h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \quad\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}\right)_{i j} \equiv \mathbf{n - 1}_{\mathbf{1}}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle
$$

- n -form decomposition: $\mathrm{n}=(\mathrm{n}-1)+(\mathrm{n})$

$$
\left.\begin{array}{ll}
\left\langle\varphi_{L}^{(\mathbf{n})}\right|=\sum_{i=1}^{\nu_{\mathbf{n}-1}}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| \wedge\left\langle\varphi_{L, i}^{(n)}\right|, & \left\langle\varphi_{L, i}^{(n)}\right|=\left\langle\varphi_{L}^{(\mathbf{n})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}^{-1}\right)_{j i},
\end{array} \quad\left\langle\varphi_{L, i}^{(n)}\right|\left(C_{(\mathbf{n}-\mathbf{1})}\right)_{i j}=\left\langle\varphi_{L}^{(\mathbf{n})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle\right)
$$

Multivariate Intersection Numbers (I)

- by Induction:
- (n-1)-form Vector Space: known!

$$
\nu_{\mathbf{n}-\mathbf{1}} \quad\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| \quad\left|h_{i}^{(\mathbf{n}-\mathbf{1})}\right\rangle \quad\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}\right)_{i j} \equiv \mathbf{n - 1}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle
$$

- n -form decomposition: $\mathrm{n}=(\mathrm{n}-1)+(\mathrm{n})$

$$
\left.\begin{array}{ll}
\left\langle\varphi_{L}^{(\mathbf{n})}\right|=\sum_{i=1}^{\nu_{\mathbf{n}-1}}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})}\right| \wedge\left\langle\varphi_{L, i}^{(n)}\right|, & \left\langle\varphi_{L, i}^{(n)}\right|=\left\langle\varphi_{L}^{(\mathbf{n})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}^{-1}\right)_{j i},
\end{array} \quad\left\langle\varphi_{L, i}^{(n)}\right|\left(C_{(\mathbf{n}-\mathbf{1})}\right)_{i j}=\left\langle\varphi_{L}^{(\mathbf{n})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle\right)
$$

\#ntersection Numbers for n-forms :: Recursive Formula

$$
\begin{aligned}
\left\langle\varphi_{L}^{(\mathbf{n})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle & =\sum_{i, j}\left\langle\varphi_{L}^{(\mathbf{n})} \mid h_{j}^{(\mathbf{n}-\mathbf{1})}\right\rangle\left(C_{(\mathbf{n}-\mathbf{1})}\right)_{j i}^{-1}\left\langle e_{i}^{(\mathbf{n}-\mathbf{1})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle \\
& =\sum_{i, j}\left\langle\varphi_{L, i}^{(n)} \mid\left(C_{(\mathbf{n}-\mathbf{1})}\right)_{i j} \varphi_{R, j}^{(n)}\right\rangle
\end{aligned}
$$

$$
\partial_{z_{n}} \psi_{i}^{(n)}+\psi_{j}^{(n)} \hat{\boldsymbol{\Omega}}_{j i}^{(n)}=\hat{\varphi}_{L, i}^{(n)}
$$

$\hat{\boldsymbol{\Omega}}^{(n)}$ is a $\nu_{\mathbf{n}-\mathbf{1}} \times \nu_{\mathbf{n}-\mathbf{1}}$ matrix, whose entries are given by
$\hat{\boldsymbol{\Omega}}_{j i}^{(n)}=\left\langle\left(\partial_{z_{n}}+\hat{\omega}_{n}\right) e_{j}^{(\mathbf{n}-\mathbf{1})} \mid h_{k}^{(\mathbf{n}-\mathbf{1})}\right\rangle\left(\mathbf{C}_{(\mathbf{n}-\mathbf{1})}^{-1}\right)_{k i}$

Multivariate Intersection Numbers (I)

- Property of Intersection Number

invariance under differential forms redefinition within the same equivalence classes,

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\left\langle\varphi_{L}^{\prime} \mid \varphi_{R}^{\prime}\right\rangle, \quad \quad \varphi_{L}^{\prime}=\varphi_{L}+\nabla_{\omega} \xi_{L}, \quad \varphi_{R}^{\prime}=\varphi_{R}+\nabla_{-\omega} \xi_{R}
$$

- Global Residue Thm

Weinzierl (2020)
choose ξ_{L} and ξ_{R}, to build φ_{L}^{\prime} and φ_{R}^{\prime} that contain only simple poles and if $\hat{\boldsymbol{\Omega}}^{(n)}$ is reduced to Fuchsian form
the computation of multivariate intesection number can benefit of the evaluation of intersection numbers for dlog forms at each step of the iteration.

- Special dual basis choice CaronHuot Pokraka (2019-2021)

Relative Dirac-delta basis elements trivialise the evaluation of the intersection numbers

- Multi-pole ansatz Fontana Peraro (2022)

Solving $\quad \nabla_{\omega} \psi=\varphi_{L} \quad$, bypassing the pole factorisation, and using FF reconstruction methods. (avoiding irrational functions which would disappear in the intersection numbers)

Contiguity relations for Special Functions

Hypergeometric ${ }_{3} F_{2}$

$$
u(\mathbf{z})=\left(\left(1-z_{1}\right) z_{1}\left(1-z_{2}\right) z_{2}\left(1-x z_{1} z_{2}\right)\right)^{\gamma} ; \quad \omega \equiv d \log u(\mathbf{z})=\sum_{i=1}^{2} \hat{\omega}_{i} d z_{i} ;
$$

a. Number of MIs :: I choose the ordering as $\left\{z_{1}, z_{2}\right\}$.

$$
\nu_{12}=3, \quad\left\{\omega_{1}=0, \omega_{2}=0\right\} \quad e^{(12)}=\left\{\frac{1}{z_{2}\left(z_{1}-\frac{1}{x}\right)}, \frac{1}{\left(z_{1}-1\right)\left(z_{2}-1\right)}, \frac{1}{z_{1}\left(z_{2}-x z_{1}\right)}\right\}
$$

b. Choice of bases ::

$$
\nu_{2}=2, \quad\left\{\omega_{2}=0\right\} \quad e^{(2)}=\left\{\frac{1}{z_{2}}, \frac{1}{z_{2}-1}\right\}
$$

$$
\partial_{x}\left\langle\hat{e}_{i}^{(12)}\right|=\left\langle\partial_{x} \hat{e}_{i}^{(12)}+\sigma \hat{e}_{i}^{(12)}\right|=\Omega_{i j}\left\langle\hat{e}_{j}^{(12)}\right| \quad \sigma=\frac{d \log u}{d x}=\frac{\gamma z_{1} z_{2}}{x z_{1} z_{2}-1}
$$

$$
\boldsymbol{\Omega}=\gamma\left(\begin{array}{ccc}
-\frac{x-2}{4(x-1) x} & \frac{3 x+10}{20(x-1) x} & \frac{13 x-10}{20(x-1) x} \\
\frac{3}{4(x-1) x} & \frac{20 x+19}{20(x-1) x} & \frac{9}{20(x-1) x} \\
0 & 0 & \frac{1}{x}
\end{array}\right)
$$

Feynman Integrals Decomposition

Example: 1-Loop Box Integrals

$$
u(\mathbf{z})=\left(\left(s t-s z_{4}-t z_{3}\right)^{2}-2 t z_{1}\left(s\left(t+2 z_{3}-z_{2}-z_{4}\right)+t z_{3}\right)+s^{2} z_{2}^{2}+t^{2} z_{1}^{2}-2 s z_{2}\left(t\left(s-z_{3}\right)+z_{4}(s+2 t)\right)\right)^{\frac{d-5}{2}}
$$

- Integral Decomposition

$$
\begin{aligned}
& \langle\square|=a\langle Z|+a\langle o x|+\infty\langle X|
\end{aligned}
$$

Recent Applications

- 2-loop 5-point integrals

- 2-loop 4-point integrals

credit Brunello
- 1-Loop 6-point

Multivariate Intersection Numbers (II)

$$
\begin{aligned}
& \left\langle\varphi_{L}^{(\mathbf{n})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle=(2 \pi \mathbf{i})^{-n} \int_{X}\left(u \varphi_{L, c}^{(\mathbf{n})}\right) \wedge\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right)=\sum_{p \in \mathbb{P}_{\omega}} \operatorname{Res}_{z=p}\left(\psi \varphi_{R}^{(\mathbf{n})}\right) \\
& { }_{\text {nPDE }} \quad \nabla_{\omega_{1}} \nabla_{\omega_{2}} \ldots \nabla_{\omega_{n}} \psi=\varphi_{L}^{(\mathbf{n})}
\end{aligned}
$$

Intersection Numbers for \mathbf{n}-forms: Pfaffian systems

Multivariate Intersection Numbers (III) from Pfaffian D-module systems

Let $\left\{e_{i}\right\}_{i=1}^{r}$ be a basis for \mathbb{H}^{n} and $\left\{h_{i}\right\}_{i=1}^{r}$ a basis for $\mathbb{H}^{n \vee}$ $\varphi \in \mathbb{H}^{n}$ in terms of $\left\{e_{i}\right\}_{i=1}^{r}$

- Secondary Equations

Multivariate Intersection Numbers (III) from Pfaffian D-module systems

Let $\left\{e_{i}\right\}_{i=1}^{r}$ be a basis for \mathbb{H}^{n} and $\left\{h_{i}\right\}_{i=1}^{r}$ a basis for $\mathbb{H}^{n \vee}$ $\varphi \in \mathbb{H}^{n}$ in terms of $\left\{e_{i}\right\}_{i=1}^{r}$

- Secondary Equations

Direct determination of Intersection Matrices

Multivariate Intersection Numbers (III) from Pfaffian D-module systems

Let $\left\{e_{i}\right\}_{i=1}^{r}$ be a basis for \mathbb{H}^{n} and $\left\{h_{i}\right\}_{i=1}^{r}$ a basis for $\mathbb{H}^{n \vee}$ $\varphi \in \mathbb{H}^{n}$ in terms of $\left\{e_{i}\right\}_{i=1}^{r}$

- Secondary Equations

$$
\partial_{x} \mathbf{C}=\boldsymbol{\Omega} \cdot \mathbf{C}+\mathbf{C} \cdot \tilde{\boldsymbol{\Omega}}, \quad \partial_{x} \mathbf{C}^{-1}=\tilde{\boldsymbol{\Omega}} \cdot \mathbf{C}^{-1}-\mathbf{C}^{-1} \cdot \boldsymbol{\Omega}
$$

- Master Decomposition

$$
\langle\varphi|=\sum_{\lambda=1}^{r} c_{\lambda}\left\langle e_{\lambda}\right|
$$

$$
\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{r-1} \\
\varphi
\end{array}\right]=C^{\text {aux }} \cdot C^{-1}\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{r-1} \\
e_{r}
\end{array}\right] \quad \Longrightarrow \quad C^{\text {aux }} \cdot C^{-1}=\left[\begin{array}{c|c}
& \\
\operatorname{id}_{r-1} & 0 \\
\vdots \\
c_{1} \cdots \cdots & c_{r-1} \\
\hline
\end{array}\right]
$$

Intersections Numbers @ QM and QFT

(Special) Applications of Intersection Numbers for 1-forms

- Looking at a known landscapes with new eyes

1. Identify a univariate twisted period integral $\int_{\Gamma} \mu \varphi$

If μ is not multivalued, replace it with the regulated twist $u=u(\rho)$ by introducing a regulator ρ, so that, for a suitable value $\rho_{0}, u\left(\rho_{0}\right)=\mu$.
2. After choosing the bases of forms $e_{i} \equiv \hat{e}_{i} d z$ and dual forms $h_{i} \equiv \hat{h}_{i} d z$, with $\hat{h}_{i}=\hat{e}_{i}$, such that $\hat{e}_{1}=\hat{h}_{1}=1$, decompose φ

3. Translate the decomposition of φ to the one of the corresponding integral, (eventually, taking the $\rho \rightarrow \rho_{0}$ limit)

$$
\int_{\Gamma} \mu \varphi=c_{1} E_{1}+c_{2} E_{2}+\ldots+c_{v} E_{v}, \quad \text { with } \quad E_{1} \equiv \int_{\Gamma} \mu d z, \quad \text { and } \quad E_{j}=\int_{\Gamma} \mu e_{j}, \quad(j \neq 1)
$$

and compare the result with the literature.

Orthogonal Polynomials and Matrix Elements in QM

Case i) $\quad I_{n m} \equiv \int_{\Gamma} P_{n}(z) P_{m}(z) f(z) d z$,

Case ii) $\quad I_{n m} \equiv\langle n| \mathscr{O}|m\rangle=\int_{\Gamma} \psi_{n}^{*}(z) \mathscr{O}(z) \psi_{m}(z) f(z) d z$

- Master Decomposition formula

For the considered cases, we obtain:
corresponding to:

$$
\begin{aligned}
\varphi=c_{1} e_{1}, & \text { in terms of just one basic form, } e_{1}=d z \\
I_{n m}=c_{1} E_{1} & \text { (one master integral) }
\end{aligned}
$$

i) Orthogonal Polynomials

Laguerre $L_{n}^{(\rho)}$, Legendre P_{n}, Tchebyshev T_{n}, Gegenbauer $C_{n}^{(\rho)}$, and Hermite H_{n} polynomials:

$$
I_{n m} \equiv \int_{\Gamma} \mu P_{n} P_{m} d z=f_{n} \delta_{n m}=\int_{\Gamma} \mu \varphi=c_{1} E_{1} \quad \varphi \equiv P_{n} P_{m} d z
$$

Type	u	v	\hat{e}_{i}	C-matrix	ρ_{0}	E_{1}	c_{1}
$L_{n}^{(\rho)}$	$z^{\rho} \exp (-z)$	1	1	ρ	-	$\Gamma(1+\rho)$	$(\rho+1)(\rho+2) \cdots(\rho+n) / n!$
P_{n}	$\left(z^{2}-1\right)^{\rho}$	1	1	$2 \rho /\left(4 \rho^{2}-1\right)$	0	2	$1 /(2 n+1)$
T_{n}	$\left(1-z^{2}\right)^{\rho}$	1	1	$2 \rho /\left(4 \rho^{2}-1\right)$	$-1 / 2$	π	$1 / 2$
$C_{n}^{(\rho)}$	$\left(1-z^{2}\right)^{\rho-1 / 2}$	1	1	$(1-2 \rho) /(4 \rho(\rho-1))$	-	$\sqrt{\pi} \Gamma(1 / 2+\rho) / \Gamma(1+\rho)$	$\rho(2 \rho(2 \rho+1) \cdots(2 \rho+n-1)) /((n+\rho) n!)$
H_{n}	$z^{\rho} \exp \left(-z^{2}\right)$	2	$1,1 / z$	$\operatorname{diagonal}(1 / 2,1 / \rho)$	0	$\sqrt{\pi}$	$2^{n} n!$

Let us observe that, in the case of Hermite polynomials, $v=2$, yielding $\varphi=c_{1} e_{1}+c_{2} e_{2}$, but $c_{2}=0$, due to the adopted basis

ii) Matrix Elements in QM

Harmonic Oscillator. (for unitary mass and pulsation, $m=1=\omega$)

$$
\langle z \mid n\rangle=\psi_{n}(z)=e^{-\frac{z^{2}}{2}} W_{n}(z), \quad \text { with } \quad W_{n}(z) \equiv N_{n} H_{n}(z), \quad N_{n} \equiv 1 / \sqrt{\left(2^{n} n!\sqrt{\pi}\right)}
$$

- Position operator
$\langle m| z^{k}|n\rangle=\int_{-\infty}^{\infty} d z \psi_{m}(z) z^{k} \psi_{n}(z)=\int_{\Gamma} \mu \varphi=c_{1} E_{1}, \quad$ with $\quad \mu \equiv e^{-z^{2}}, \quad$ and $\quad \varphi \equiv W_{m}(z) z^{k} W_{n}(z) d z$.

Type	u	ν	\hat{e}_{i}	C-matrix	ρ_{0}	E_{1}
W_{n}	$z^{\rho} \exp \left(-z^{2}\right)$	2	$1,1 / z$	$\operatorname{diagonal}(1 / 2,1 / \rho)$	0	$\sqrt{\pi}$

$$
\begin{aligned}
\langle n \mid m\rangle & =\delta_{n m}, \\
\langle n| z^{2 k+1}|n\rangle & =0 \\
\langle n| z^{4}|n\rangle & =\frac{3}{4}\left(2 n^{2}+2 n+1\right), \\
\langle n| z^{3}|n-3\rangle & =\sqrt{n(n-1)(n-2) / 8}, \\
\langle n| z^{3}|n-1\rangle & =\sqrt{9 n^{3} / 8}
\end{aligned}
$$

- Hamiltonian operator

$$
\langle n| H|n\rangle=(n+1 / 2) \quad H \equiv(1 / 2)\left(-\nabla^{2}+z^{2}\right) \quad \varphi=\sum_{k=0}^{n} b_{k} z^{2 k}
$$

ii) Matrix Elements in QM

Hydrogen Atom. (for unitary Bohr radius $a_{0}=1$)

$$
\langle z \mid n, \ell\rangle=R_{n, \ell}(z)=e^{-\frac{z}{n}} W_{n, \ell}(z), \quad \text { with } \quad W_{n, \ell}(z) \equiv N_{n \ell}\left(\frac{2 z}{n}\right)^{\ell} L_{(n-\ell-1)}^{2 \ell+1}\left(\frac{2 z}{n}\right) \quad N_{n \ell}=(2 / n)^{3 / 2} \sqrt{(n-\ell-1)!/(2 n(n+\ell)!)}
$$

- Position operator

$$
\left\langle n_{1}, \ell\right| z^{k}\left|n_{2}, \ell\right\rangle=\int_{0}^{\infty} d z z^{2} R_{n_{1}, \ell}(z) z^{k} R_{n_{2}, \ell}(z)=\int_{\Gamma} \mu \varphi=c_{1} E_{1}, \quad \text { with } \quad \mu \equiv z^{2} e^{-z\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}, \text { and } \varphi \equiv W_{n_{1}, \ell}(z) z^{k} W_{n_{2}, \ell}(z)
$$

Type	u	v	\hat{e}_{i}	C-matrix	ρ_{0}	E_{1}
$W_{n, \ell}$	$z^{\rho+2} \exp \left(-z\left(n_{1}+n_{2}\right) /\left(n_{1} n_{2}\right)\right)$	1	1	$\left(n_{1} n_{2} /\left(n_{1}+n_{2}\right)\right)^{2}(2+\rho)$	0	$2\left(n_{1} n_{2} /\left(n_{1}+n_{2}\right)\right)^{3}$

$$
\begin{aligned}
\left\langle n_{1}, \ell \mid n_{2}, \ell\right\rangle & =\delta_{n_{1} n_{2}} \\
\langle n, \ell| z|n, \ell\rangle & =\frac{1}{2}\left[3 n^{2}-\ell(\ell+1)\right] \\
\langle n, \ell| z^{-1}|n, \ell\rangle & =\frac{1}{n^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\langle n, \ell| z^{-2}|n, \ell\rangle & =\frac{2}{n^{3}(2 \ell+1)} \\
\langle n, \ell| z^{-3}|n, \ell\rangle & =\frac{2}{n^{3} \ell(\ell+1)(2 \ell+1)}
\end{aligned}
$$

Green's Function and Kontsevich-Witten tau-function

Case i)

$$
G_{n} \equiv \frac{\int \mathscr{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \exp \left[-S_{E}\right]}{\int \mathscr{D} \phi \exp \left[-S_{E}\right]}
$$

Case ii)

$$
\begin{aligned}
& Z_{K W} \equiv \frac{\int d \Phi \exp \left[-\operatorname{Tr}\left(-\frac{i}{3!} \Phi^{3}+\frac{\Lambda}{2} \Phi^{2}\right)\right]}{\int d \Phi \exp \left[-\operatorname{Tr}\left(\frac{\Lambda}{2} \Phi^{2}\right)\right]} \\
& c_{1}=\frac{\int_{\Gamma} \mu \varphi}{\int_{\Gamma} \mu e_{1}}, \quad \text { equivalently rewritten as } \int_{\Gamma} \mu \varphi=c_{1} E_{1}
\end{aligned}
$$

- Toy models univariate integrals

i) Green's Function

Single field, ϕ^{4}-theory

real scalar field $\phi(x) \quad S_{E} \equiv S_{0}+\varepsilon S_{1}$, with $S_{0}=(\gamma / 2) \phi^{2}(x)$, and $S_{1}=\phi^{4}(x)$

$$
\begin{aligned}
\int \mathscr{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-S_{E}} & =G_{n} \int \mathscr{D} \phi e^{-S_{E}} \\
\int_{\Gamma} \mu \varphi & =G_{n} E_{1}, \quad \text { with } \quad \mu \equiv e^{-S_{E}}, \quad \varphi \equiv \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \mathscr{D} \phi, \quad E_{1} \equiv \int_{\Gamma} \mu e_{1}, \quad \text { and } \quad e_{1} \equiv \mathscr{D} \phi
\end{aligned}
$$

Free theory. The n-point Green's function $G_{n}^{(0)} \quad \phi(x) \equiv z \quad \mu \equiv e^{-S_{0}} \quad \varphi=z^{n} d z$

Type	u	ν	\hat{e}_{i}	C-matrix	ρ_{0}	E_{1}	c_{1}
$G_{n}^{(0)}$	$z^{\rho} \exp \left(-\gamma z^{2} / 2\right)$	2	$1,1 / z$	diagonal $(1 / \gamma, 1 / \rho)$	0	not needed	$(n-1)!!/ \gamma^{n / 2}$

i) Green's Function

Single field, ϕ^{4}-theory

real scalar field $\phi(x) \quad S_{E} \equiv S_{0}+\varepsilon S_{1}$, with $S_{0}=(\gamma / 2) \phi^{2}(x)$, and $S_{1}=\phi^{4}(x)$

$$
\begin{aligned}
\int \mathscr{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-S_{E}} & =G_{n} \int \mathscr{D} \phi e^{-S_{E}} \\
\int_{\Gamma} \mu \varphi & =G_{n} E_{1}, \quad \text { with } \quad \mu \equiv e^{-S_{E}}, \quad \varphi \equiv \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \mathscr{D} \phi, \quad E_{1} \equiv \int_{\Gamma} \mu e_{1}, \quad \text { and } \quad e_{1} \equiv \mathscr{D} \phi
\end{aligned}
$$

Free theory. The n-point Green's function $G_{n}^{(0)} \quad \phi(x) \equiv z \quad \mu \equiv e^{-S_{0}} \quad \varphi=z^{n} d z$

Type	u	v	\hat{e}_{i}	C-matrix	ρ_{0}	E_{1}	c_{1}
$G_{n}^{(0)}$	$z^{\rho} \exp \left(-\gamma z^{2} / 2\right)$	2	$1,1 / z$	$\operatorname{diagonal}(1 / \gamma, 1 / \rho)$	0	not needed	$(n-1)!!/ \gamma^{n / 2}$

-2-point function: the propagator $G_{2}^{(0)}=1 / \gamma$
Perturbation Theory. The n-point correlation function G_{n} in the full theory can be computed perturbatively, in the small coupling limit, $\varepsilon \rightarrow 0$, and expressed in terms of $G_{n}^{(0)}$. For example, the determination of the next-to-leading order (NLO) corrections to the 2-point function, proceeds as follows,

$$
\begin{aligned}
G_{2} & =\frac{\int d z z^{2} e^{-S_{0}-\epsilon S_{1}}}{\int d z e^{-S_{0}-\epsilon S_{1}}}=\frac{\int d z z^{2} e^{-S_{0}}\left(1-\epsilon S_{1}+\ldots\right)}{\int d z e^{-S_{0}}\left(1-\epsilon S_{1}+\ldots\right)}=\left(G_{2}^{(0)}-\epsilon G_{6}^{(0)}+\ldots\right)\left(1+\epsilon G_{4}^{(0)}+\ldots\right)=G_{2}^{(0)}+\epsilon\left(G_{2}^{(0)} G_{4}^{(0)}-G_{6}^{(0)}\right)+\mathcal{O}\left(\epsilon^{2}\right) \\
& =\frac{1}{\gamma}\left(1-12 \epsilon \frac{1}{\gamma^{2}}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

for even n

i) Green's Function

Single field, ϕ^{4}-theory

real scalar field $\phi(x) \quad S_{E} \equiv S_{0}+\varepsilon S_{1}$, with $S_{0}=(\gamma / 2) \phi^{2}(x)$, and $S_{1}=\phi^{4}(x)$

Exact theory. $\quad \phi(x) \equiv z \quad \mu \equiv e^{-S_{E}} \quad \varphi=z^{n} d z$

$$
\begin{aligned}
u \equiv z^{\rho} \mu \quad & \nu=4 \\
& \left\{\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}, \hat{e}_{4}\right\}=\left\{1,1 / z, z, z^{2}\right\} \\
& \left\{\hat{h}_{i}\right\}_{i=1}^{4}=\left\{\hat{e}_{i}\right\}_{i=1}^{4},
\end{aligned}
$$

$$
\mathbf{C}=\left(\begin{array}{cccc}
0 & 0 & 0 & \frac{1}{4 \gamma} \\
0 & \frac{1}{\rho} & 0 & 0 \\
0 & 0 & \frac{1}{4 \gamma} & 0 \\
\frac{1}{4 \gamma} & 0 & 0 & -\frac{\gamma}{16 \epsilon^{2}}
\end{array}\right)
$$

For instance, let us consider the decomposition:

$$
\begin{array}{lc}
\varphi=z^{4} d z=c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}+c_{4} e_{4} & c_{1}=\frac{1}{4 \epsilon}, \quad c_{2}=0, \quad c_{3}=0, \\
\int_{\Gamma} d z z^{4} e^{-S_{E}}=c_{1} \int_{\Gamma} d z e^{-S_{E}}+c_{4} \int_{\Gamma} d z z^{2} e^{-S_{E}} & G_{4}=c_{1}+c_{4} G_{2}
\end{array}
$$

ii) Kontsevich-Witten tau-function

$$
Z_{K W} \equiv \frac{\int d \Phi \exp \left[-\operatorname{Tr}\left(-\frac{i}{3!} \Phi^{3}+\frac{\Lambda}{2} \Phi^{2}\right)\right]}{\int d \Phi \exp \left[-\operatorname{Tr}\left(\frac{\Lambda}{2} \Phi^{2}\right)\right]}
$$

- Univariate Model Itzykson-Zuber (1992)

$$
Z_{K W}=\sum_{n=0}^{\infty} Z_{K W}^{(n)} . \quad \int_{\Gamma} \mu \varphi=c_{1} E_{1} \quad c_{1}=Z_{K W}^{(n)}: \quad \varphi \equiv N_{n} z^{6 n}, \quad N_{n} \equiv \varepsilon^{2 n} \quad \varepsilon \equiv i /(3!)(\Lambda / 2)^{-3 / 2}
$$

Type	u	v	\hat{e}_{i}	C-matrix	ρ_{0}	E_{1}	c_{1}
$Z_{K W}^{(n)}$	$z^{\rho} \exp \left(-z^{2}\right)$	2	$1,1 / z$	$\operatorname{diagonal}(1 / 2,1 / \rho)$	0	not needed	$(-2 / 9)^{n}\left(\Lambda^{-3 n} /(2 n)!\right) \prod_{j=0}^{3 n-1}(j+1 / 2)$

Intersections Numbers @ this workshop

AH-B-P like integral

$$
I=\int d z_{1} \wedge d z_{2} \frac{\left(z_{1} z_{2}\right)^{\epsilon}}{\left(z_{1}+y_{1}+1\right)\left(z_{2}+y_{2}+1\right)\left(z_{1}+z_{2}+y_{1}+y_{2}\right)}
$$

- Twisted Period Integrals

$$
\begin{array}{ll}
I=\int_{\mathcal{C}} u\left(z_{1}, z_{2}\right) \varphi\left(z_{1}, z_{2}\right) & u=\frac{\left(z_{1} z_{2}\right)^{\epsilon}\left(D_{1} D_{2} D_{3}\right)^{\gamma} \quad D_{1}=\left(z_{1}+y_{1}+1\right), \quad D_{2}=\left(z_{2}+y_{2}+1\right), \quad D_{3}=\left(z_{1}+z_{2}+y_{1}+y_{2}\right)}{\gamma \text { is a regulator }} \\
\omega=d \log (u)=\omega_{1} d z_{1}+\omega_{2} d z_{2} & \omega_{1}=\frac{\gamma\left(2 y_{1}+y_{2}+2 z_{1}+z_{2}+1\right)}{\left(y_{1}+z_{1}+1\right)\left(y_{1}+y_{2}+z_{1}+z_{2}\right)}+\frac{\epsilon}{z_{1}} \quad \omega_{2}=\frac{\gamma\left(y_{1}+2 y_{2}+z_{1}+2 z_{2}+1\right)}{\left(y_{2}+z_{2}+1\right)\left(y_{1}+y_{2}+z_{1}+z_{2}\right)}+\frac{\epsilon}{z_{2}}
\end{array}
$$

AH-B-P like integral

$$
I=\int d z_{1} \wedge d z_{2} \frac{\left(z_{1} z_{2}\right)^{\epsilon}}{\left(z_{1}+y_{1}+1\right)\left(z_{2}+y_{2}+1\right)\left(z_{1}+z_{2}+y_{1}+y_{2}\right)}
$$

- Twisted Period Integrals

$$
\left.\begin{array}{ll}
I=\int_{\mathcal{C}} u\left(z_{1}, z_{2}\right) \varphi\left(z_{1}, z_{2}\right) & \left.u=z_{1} z_{2}\right)^{\epsilon}\left(D_{1} D_{2} D_{3}\right)^{\gamma} \quad D_{1}=\left(z_{1}+y_{1}+1\right), \quad D_{2}=\left(z_{2}+y_{2}+1\right), \quad D_{3}=\left(z_{1}+z_{2}+y_{1}+y_{2}\right) \\
\gamma \text { is a regulator }
\end{array}\right] \begin{array}{ll}
\omega=d \log (u)=\omega_{1} d z_{1}+\omega_{2} d z_{2} & \omega_{1}=\frac{\gamma\left(2 y_{1}+y_{2}+2 z_{1}+z_{2}+1\right)}{\left(y_{1}+z_{1}+1\right)\left(y_{1}+y_{2}+z_{1}+z_{2}\right)}+\frac{\epsilon}{z_{1}} \quad \omega_{2}=\frac{\gamma\left(y_{1}+2 y_{2}+z_{1}+2 z_{2}+1\right)}{\left(y_{2}+z_{2}+1\right)\left(y_{1}+y_{2}+z_{1}+z_{2}\right)}+\frac{\epsilon}{z_{2}}
\end{array}
$$

- Number of MIs = dimH and bases choice

$$
\begin{aligned}
\omega_{2}=0 & \nu_{2}=2 & e^{(2)}=h^{(2)} & =\left\{\frac{1}{D_{1}}, \frac{1}{D_{2}}\right\} \\
\begin{cases}\omega_{1} & =0 \\
\omega_{2} & =0\end{cases} & \nu=3 & e^{(21)}=h^{(21)} & =\left\{\frac{1}{D_{1} D_{3}}, \frac{1}{D_{2} D_{3}}, \frac{1}{D_{1} D_{2} D_{3}}\right\}
\end{aligned}
$$

2 MIs in the internal layer

- 3 MIs in the external layer

AH-B-P like integral

$$
I=\int d z_{1} \wedge d z_{2} \frac{\left(z_{1} z_{2}\right)^{\epsilon}}{\left(z_{1}+y_{1}+1\right)\left(z_{2}+y_{2}+1\right)\left(z_{1}+z_{2}+y_{1}+y_{2}\right)}
$$

- Twisted Period Integrals

$$
\begin{array}{ll}
I=\int_{\mathcal{C}} u\left(z_{1}, z_{2}\right) \varphi\left(z_{1}, z_{2}\right) & u=\begin{array}{c}
\left(z_{1} z_{2}\right)^{\epsilon}\left(D_{1} D_{2} D_{3}\right)^{\gamma} \quad D_{1}=\left(z_{1}+y_{1}+1\right), \quad D_{2}=\left(z_{2}+y_{2}+1\right), \quad D_{3}=\left(z_{1}+z_{2}+y_{1}+y_{2}\right) \\
\gamma \text { is a regulator }
\end{array} \\
\omega=d \log (u)=\omega_{1} d z_{1}+\omega_{2} d z_{2} & \omega_{1}=\frac{\gamma\left(2 y_{1}+y_{2}+2 z_{1}+z_{2}+1\right)}{\left(y_{1}+z_{1}+1\right)\left(y_{1}+y_{2}+z_{1}+z_{2}\right)}+\frac{\epsilon}{z_{1}} \quad \omega_{2}=\frac{\gamma\left(y_{1}+2 y_{2}+z_{1}+2 z_{2}+1\right)}{\left(y_{2}+z_{2}+1\right)\left(y_{1}+y_{2}+z_{1}+z_{2}\right)}+\frac{\epsilon}{z_{2}}
\end{array}
$$

- Number of MIs = dimH and bases choice

$$
\begin{aligned}
& \omega_{2}=0 \quad \nu_{2}=2 \\
& e^{(2)}=h^{(2)}=\left\{\frac{1}{D_{1}}, \frac{1}{D_{2}}\right\} \\
& \left\{\begin{array}{l}
\omega_{1}=0 \\
\omega_{2}=0
\end{array} \quad \nu=3 \quad e^{(21)}=h^{(21)}=\left\{\frac{1}{D_{1} D_{3}}, \frac{1}{D_{2} D_{3}}, \frac{1}{D_{1} D_{2} D_{3}}\right\}\right.
\end{aligned}
$$

- 2 MIs in the internal layer
- 3 MIs in the external layer

- Intersection Matrix

$$
C=\left(\begin{array}{ccc}
\frac{2(\gamma+\epsilon)^{2}}{\gamma^{2}(2 \gamma+\epsilon)(3 \gamma+2 \epsilon)} & \frac{1}{\gamma(3 \gamma+2 \epsilon)} & \frac{1}{\gamma^{2}} \\
\frac{1}{\gamma(3 \gamma+2 \epsilon)} & \frac{2(\gamma+\epsilon)^{2}}{\gamma^{2}(2 \gamma+\epsilon(3 \gamma+2 \epsilon)} & \frac{1}{\gamma^{2}} \\
\frac{1}{\gamma^{2}} & \frac{1}{\gamma^{2}} & \frac{3}{\gamma^{2}}
\end{array}\right)
$$

AH-B-P like integral

$$
I=\int d z_{1} \wedge d z_{2} \frac{\left(z_{1} z_{2}\right)^{\epsilon}}{\left(z_{1}+y_{1}+1\right)\left(z_{2}+y_{2}+1\right)\left(z_{1}+z_{2}+y_{1}+y_{2}\right)}
$$

- 3 Mls $e^{(21)}=\left\{\frac{1}{D_{1} D_{3}}, \frac{1}{D_{2} D_{3}}, \frac{1}{D_{1} D_{2} D_{3}}\right\}$
- System of Differential Equations

$$
\partial_{x}\left\langle e_{i}\right|=\Omega_{i j}\left\langle e_{j}\right|
$$

- Master Decomposition Formula

$$
\Omega_{i j}=\left\langle\left(\partial_{x}+\sigma_{x}\right) e_{i} \mid h_{k}\right\rangle\left(\mathbf{C}^{-1}\right)_{k j}
$$

after taking the limit $\gamma \rightarrow 0$:

$$
\Omega_{y_{1}}=\left(\begin{array}{ccc}
\frac{\epsilon}{y_{1}+1} & 0 & 0 \\
0 & \frac{\epsilon}{y_{1}} & 0 \\
0 & \frac{\epsilon}{y_{1}\left(y_{1}+1\right)} & \frac{\epsilon}{y_{1}+1}
\end{array}\right) \quad \Omega_{y_{2}}=\left(\begin{array}{ccc}
\frac{\epsilon}{y_{2}} & 0 & 0 \\
0 & \frac{\epsilon}{y_{2}+1} & 0 \\
\frac{\epsilon}{y_{2}\left(y_{2}+1\right)} & 0 & \frac{\epsilon}{y_{2}+1}
\end{array}\right)
$$

To Conclude:

Summary

- Novel Mathematical Sctructure for Quantum Field Theory Integrals came into view

\nsubseteq Intersection Theory for Twisted de Rham co-homology
\not Rich theory :: Differential and Algebraic Geometry, Topology, Number Theory, Combinatorics $^{\text {R }}$

- Novel Concepts: Vector Space Structures
\&Space dimensions = Dimension of co-homology group = number of independent Integrals
Intersection Numbers ~ Scalar Product for Feynman Integrals
- New Methods for Multivariate Intersection number
$\$$ Iterative method
\&Higher-Order PDE method
©Secondary equation (Pfaffians via Macaulay)
- General algorithm for Physics and Math applications
§key: Co-Homolgy Group Isomorphisms
\&Feynman Integrals, Euler-Mellin Integrals, D-Module and GKZ hypergeometric theory, Orthogonal Polynomials, QM matrix elements, Correlator functions in QFT.
- Modern Multi-Loop diagrammatic techniques and Amplitudes calculus useful beyond Particle Physics
©Triggering interdisciplinarity
- Emerging Picture
© Interwintwinement between Fundamental Physics, Geometry and Statistics: fluxes ~ period integrals ~ statistical moments
IIInteresting implications in QM, QFT (and Cosmology): invariance and independent moments of distributions, perturbation vs non-perturbative approaches

Of course this is a joke, physics is not a part of mathematics. However, it is true that the main mathematical problem of physics is the calculation of integrals of the form

$$
I(g)=\int g(x) e^{-f(x)} d x
$$

[...] If f can be represented as $f_{0}+\lambda V$ where f_{0} is a negative quadratic form, then the integral $\int g(x) e^{f(x)} d x$ can be calculated in the framework of perturbation theory with respect to the formal parameter λ. We will fix f and consider the integral as a functional $I(g)$ taking values in $\mathbb{R}[[\lambda]]$. It is easy to derive from the relation

$$
\int \partial_{a}\left(h(x) e^{f(x)}\right) d x=0
$$

that the functional $I(g)$ vanishes in the case when g has the form

$$
g=\partial_{a} h+\left(\partial_{a} f\right) h .
$$

The unreasonable effectiveness of mathematics

Wigner was referring to the mysterıous phenomenon in which areas of pure mathematics, originally constructed without regard to application, are suddenly discovered to be exactly what is required to describe the structure of the physical world.
M. Berry

Multivariate Intersection Numbers (II)

$$
\begin{aligned}
& \left\langle\varphi_{L}^{(\mathbf{n})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle=(2 \pi \mathbf{i})^{-n} \int_{X}\left(u \varphi_{L, c}^{(\mathbf{n})}\right) \wedge\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right)=\sum_{p \in \mathbb{P}_{\omega}} \operatorname{Res}_{z=p}\left(\psi \varphi_{R}^{(\mathbf{n})}\right) \\
& { }_{\text {nPDE }} \quad \nabla_{\omega_{1}} \nabla_{\omega_{2}} \ldots \nabla_{\omega_{n}} \psi=\varphi_{L}^{(\mathbf{n})}
\end{aligned}
$$

Multivariate Intersection Numbers (II)

$$
\begin{aligned}
& \left\langle\varphi_{L}^{(\mathbf{n})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle=(2 \pi \mathrm{i})^{-n} \int_{X}\left(u \varphi_{L, c}^{(\mathbf{n})}\right) \wedge\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right)=\sum_{p \in \mathbb{P}_{\omega}} \operatorname{Res}_{z=p}\left(\psi \varphi_{R}^{(\mathbf{n})}\right) \\
& \bullet \text { nPDE } \\
& \nabla_{\omega_{1}} \nabla_{\omega_{2}} \ldots \nabla_{\omega_{n}} \psi=\varphi_{L}^{(\mathbf{n})}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \eta:=\bar{h}_{1} \ldots \bar{h}_{n}(u \psi)\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right) \quad \mathrm{d}_{z_{1}} \ldots \mathrm{~d}_{z_{n}} \eta=\left(u \varphi_{L, c}\right) \wedge\left(u^{-1} \varphi_{R}\right), \\
& \varphi_{L, c}:=\bar{h}_{1} \ldots \bar{h}_{n} \varphi_{L}+\ldots+(-1)^{n} \psi \mathrm{~d} h_{1} \wedge \ldots \wedge \mathrm{~d} h_{n} \equiv \nabla_{\omega_{1}} \ldots \nabla_{\omega_{n}}\left(\bar{h}_{1} \ldots \bar{h}_{n} \psi\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{h}_{i}:=1-h_{i} \\
& h_{i} \equiv h\left(z_{i}\right):= \begin{cases}1 & \text { for }\left|z_{i}\right|<\epsilon \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Multivariate Intersection Numbers (II)

$$
\begin{aligned}
& \left\langle\varphi_{L}^{(\mathbf{n})} \mid \varphi_{R}^{(\mathbf{n})}\right\rangle=(2 \pi \mathrm{i})^{-n} \int_{X}\left(u \varphi_{L, c}^{(\mathbf{n})}\right) \wedge\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right)=\sum_{p \in \mathbb{P}_{\omega}} \operatorname{Res}_{z=p}\left(\psi \varphi_{R}^{(\mathbf{n})}\right) \\
& \bullet \text { nPDE } \\
& \nabla_{\omega_{1}} \nabla_{\omega_{2}} \ldots \nabla_{\omega_{n}} \psi=\varphi_{L}^{(\mathbf{n})}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \eta:=\bar{h}_{1} \ldots \bar{h}_{n}(u \psi)\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right) \quad \mathrm{d}_{z_{1}} \ldots \mathrm{~d}_{z_{n}} \eta=\left(u \varphi_{L, c}\right) \wedge\left(u^{-1} \varphi_{R}\right), \bar{h}_{i}:= \\
& \varphi_{L, c}:=\bar{h}_{1} \ldots \bar{h}_{n} \varphi_{L}+\ldots+(-1)^{n} \psi \mathrm{~d} h_{1} \wedge \ldots \wedge \mathrm{~d} h_{n} \equiv \nabla_{\omega_{1}} \ldots \nabla_{\omega_{n}}\left(\bar{h}_{1} \ldots \bar{h}_{n} \psi\right) \\
& \int_{X}\left(u \varphi_{L, c}^{(\mathbf{n})}\right) \wedge\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right)=\sum_{p \in \mathbb{P}_{\omega}} \int_{D_{p}} \mathrm{~d}_{z_{1}} \ldots \mathrm{~d}_{z_{n}} \eta=(-1)^{n} \sum_{p \in \mathbb{P}_{\omega}} \int_{D_{p}}(u \psi) \mathrm{d} h_{1} \wedge \ldots \wedge \mathrm{~d} h_{n} \wedge\left(u^{-1} \varphi_{R}^{(\mathbf{n})}\right) \\
&=\sum_{p \in \mathbb{P}_{\omega}} \int_{\circlearrowleft_{1} \wedge \ldots \wedge \circlearrowleft_{n}} \psi \varphi_{R}^{(\mathbf{n})}=(2 \pi \mathrm{i})^{n} \sum_{p \in \mathbb{P}_{\omega}} \operatorname{Res}_{z=p}\left(\psi \varphi_{R}^{(\mathbf{n})}\right)
\end{aligned}
$$

Intersection Numbers and Pfaffian systems

GKZ Hypergeometric Systems

- Euler-Mellin Integral / A-Hypergeometric function

$$
\begin{array}{ll}
f_{\Gamma}(z)=\int_{\Gamma} g(z ; x)^{\beta_{0}} x_{1}^{-\beta_{1}} \cdots x_{n}^{-\beta_{n}} \frac{\mathrm{~d} x}{x} \quad, \quad \frac{\mathrm{~d} x}{x}:=\frac{\mathrm{d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}} \\
g(z ; x)=\sum_{i=1}^{N} z_{i} x^{\alpha_{i}} & x^{\alpha_{i}}:=x_{1}^{\alpha_{i, 1}} \cdots x_{n}^{\alpha_{i, n}} \\
& A=\left(a_{1} \ldots a_{N}\right) \quad(n+1) \times N \text { matrix } \\
\operatorname{Ker}(A)=\left\{u=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{Z}^{N} \mid \sum_{j=1}^{N} u_{j} a_{j}=0\right\}
\end{array}
$$

- GKZ system of PDEs

$$
\begin{array}{cc}
E_{j} f_{\Gamma}(z)=0 \\
\square_{u} f_{\Gamma}(z)=0, \\
E_{j}=\sum_{i=1}^{N} a_{j, i} z_{i} \frac{\partial}{\partial z_{i}}-\beta_{j}, & j=1, \ldots, n+1 \\
\square_{u}=\prod_{u_{i}>0}\left(\frac{\partial}{\partial z_{i}}\right)^{u_{i}}-\prod_{u_{i}<0}\left(\frac{\partial}{\partial z_{i}}\right)^{-u_{i}}, \quad \forall u \in \operatorname{Ker}(A)
\end{array}
$$

GKZ D-Module and De Rham Cohomolgy group

$E_{j} \quad \square_{u}$
can be regarded as elements of a Weyl algebra

$$
\mathcal{D}_{N}=\mathbb{C}\left[z_{1}, \ldots, z_{N}\right]\left\langle\partial_{1}, \ldots, \partial_{N}\right\rangle \quad, \quad\left[\partial_{i}, \partial_{j}\right]=0 \quad, \quad\left[\partial_{i}, z_{j}\right]=\delta_{i j}
$$

GKZ system as the left \mathcal{D}_{N}-module $\mathcal{D}_{N} / H_{A}(\beta)$

$$
H_{A}(\beta)=\sum_{j=1}^{n+1} \mathcal{D}_{N} \cdot E_{j}+\sum_{u \in \operatorname{Ker}(A)} \mathcal{D}_{N} \cdot \square_{u}
$$

- Standard Monomials \quad Std $:=\left\{\partial^{k}\right\} \quad$ found by Groebner basis Hibi, Nishiyama, Takayama (2017)

The holonomic rank equals the number of independent solutions to the system of PDEs

$$
r=n!\cdot \operatorname{vol}\left(\Delta_{A}\right)
$$

- Isomorphism

Generalised Feynman Integrals

$$
I\left(d_{0}, \nu ; z\right):=c\left(d_{0}, \nu\right) f_{\Gamma}(\beta)
$$

$$
\beta=(\epsilon,-\epsilon \delta, \ldots,-\epsilon \delta)-\left(d_{0} / 2, \nu_{1}, \ldots, \nu_{n}\right) \quad \text { Let } 0<\epsilon, \delta \ll 1, d_{0} \in 2 \cdot \mathbb{N}, L \in \mathbb{N} \text { and } \nu:=\left(\nu_{1}, \ldots, \nu_{n}\right) \in \mathbb{Z}^{n}
$$

$$
\begin{aligned}
f_{\Gamma}(\beta) & :=\int_{\Gamma} \mathcal{G}(z ; x)^{\epsilon-d_{0} / 2} x_{1}^{\nu_{1}+\epsilon \delta} \cdots x_{n}^{\nu_{n}+\epsilon \delta} \frac{\mathrm{d} x}{x}, \\
c\left(d_{0}, \nu\right) & :=\frac{\Gamma\left(d_{0} / 2-\epsilon\right)}{\Gamma\left((L+1)\left(d_{0} / 2-\epsilon\right)-|\nu|-n \epsilon \delta\right) \prod_{i=1}^{n} \Gamma\left(\nu_{i}+\epsilon \delta\right)} \quad, \quad|\nu|:=\nu_{1}+\ldots+\nu_{n}
\end{aligned}
$$

Generalised Feynman Integrals

$$
\begin{aligned}
& I\left(d_{0}, \nu ; z\right):=c\left(d_{0}, \nu\right) f_{\Gamma}(\beta) \\
& \beta=(\epsilon,-\epsilon \delta, \ldots,-\epsilon \delta)-\left(d_{0} / 2, \nu_{1}, \ldots, \nu_{n}\right) \quad \text { Let } 0<\epsilon, \delta \ll 1, d_{0} \in 2 \cdot \mathbb{N}, L \in \mathbb{N} \text { and } \nu:=\left(\nu_{1}, \ldots, \nu_{n}\right) \in \mathbb{Z}^{n} \\
& \begin{aligned}
f_{\Gamma}(\beta) & :=\int_{\Gamma} \mathcal{G}(z ; x)^{\epsilon-d_{0} / 2} x_{1}^{\nu_{1}+\epsilon \delta} \cdots x_{n}^{\nu_{n}}+\epsilon \delta \frac{\mathrm{d} x}{x}, \\
c\left(d_{0}, \nu\right) & :=\frac{\Gamma\left(d_{0} / 2-\epsilon\right)}{\Gamma\left((L+1)\left(d_{0} / 2-\epsilon\right)-|\nu|-n \epsilon \delta\right) \prod_{i=1}^{n} \Gamma\left(\nu_{i}+\epsilon \delta\right)} \quad, \quad|\nu|:=\nu_{1}+\ldots+\nu_{n}
\end{aligned}
\end{aligned}
$$

Pfaffian Systems: for Master Integrals (alias Master forms)

Generalised Feynman Integrals

$$
\begin{gathered}
I\left(d_{0}, \nu ; z\right):=c\left(d_{0}, \nu\right) f_{\Gamma}(\beta) \\
\beta=(\epsilon,-\epsilon \delta, \ldots,-\epsilon \delta)-\left(d_{0} / 2, \nu_{1}, \ldots, \nu_{n}\right) \quad \text { Let } 0<\epsilon, \delta \ll 1, d_{0} \in 2 \cdot \mathbb{N}, L \in \mathbb{N} \text { and } \nu:=\left(\nu_{1}, \ldots, \nu_{n}\right) \in \mathbb{Z}^{n} \\
f_{\Gamma}(\beta):=\int_{\Gamma} \mathcal{G}(z ; x)^{\epsilon-d_{0} / 2} x_{1}^{\nu_{1}+\epsilon \delta} \ldots x_{n}^{\nu_{n}+\epsilon \delta} \frac{\mathrm{d} x}{x}, \\
c\left(d_{0}, \nu\right):=\frac{\Gamma\left(d_{0} / 2-\epsilon\right)}{\Gamma\left((L+1)\left(d_{0} / 2-\epsilon\right)-|\nu|-n \epsilon \delta\right) \prod_{i=1}^{n} \Gamma\left(\nu_{i}+\epsilon \delta\right)} \quad, \quad|\nu|:=\nu_{1}+\ldots+\nu_{n}
\end{gathered}
$$

Pfaffian Systems: for Master Integrals (alias Master forms) \& for D-operators (alias Std mon's)

Master Decomposition Formula \& Pfaffian

Let $\left\{e_{i}\right\}_{i=1}^{r}$ be a basis for \mathbb{H}^{n} and $\left\{h_{i}\right\}_{i=1}^{r}$ a basis for $\mathbb{H}^{n \vee}$
$\varphi \in \mathbb{H}^{n}$ in terms of $\left\{e_{i}\right\}_{i=1}^{r}$

$$
\langle\varphi|=\sum_{\lambda=1}^{r} c_{\lambda}\left\langle e_{\lambda}\right|, \quad c_{\lambda}=\sum_{\mu=1}^{r}\left\langle\varphi \mid h_{\mu}\right\rangle\left(C^{-1}\right)_{\mu \lambda} \quad C_{\lambda \mu}:=\left\langle e_{\lambda} \mid h_{\mu}\right\rangle
$$

$$
\left\{\begin{array}{l}
\partial_{z_{i}}\left\langle e_{\lambda}\right|=\left(P_{i}\right)_{\lambda \nu}\left\langle e_{\nu}\right| \\
\partial_{z_{i}}\left|h_{\mu}\right\rangle=\left|h_{\xi}\right\rangle\left(P_{i}^{\vee}\right)_{\xi \mu}
\end{array}\right.
$$

$$
\Longrightarrow \partial_{z_{i}} C=P_{i} \cdot C+C \cdot\left(P_{i}^{\vee}\right)^{\mathrm{T}}
$$

- Secondary Equation 1

Master Decomposition Formula \& Pfaffian

Let $\left\{e_{i}\right\}_{i=1}^{r}$ be a basis for \mathbb{H}^{n} and $\left\{h_{i}\right\}_{i=1}^{r}$ a basis for $\mathbb{H}^{n \vee}$
$\varphi \in \mathbb{H}^{n}$ in terms of $\left\{e_{i}\right\}_{i=1}^{r}$

$$
\langle\varphi|=\sum_{\lambda=1}^{r} c_{\lambda}\left\langle e_{\lambda}\right|, \quad c_{\lambda}=\sum_{\mu=1}^{r}\left\langle\varphi \mid h_{\mu}\right\rangle\left(C^{-1}\right)_{\mu \lambda} \quad C_{\lambda \mu}:=\left\langle e_{\lambda} \mid h_{\mu}\right\rangle
$$

$$
\left\{\begin{array}{l}
\partial_{z_{i}}\left\langle e_{\lambda}\right|=\left(P_{i}\right)_{\lambda v}\left\langle e_{\nu}\right| \\
\partial_{z_{i}}\left|h_{\mu}\right\rangle=\left|h_{\xi}\right\rangle\left(P_{i}^{\vee}\right)_{\xi \mu}
\end{array} \quad \Longrightarrow \partial_{z_{i}} C=P_{i} \cdot C+C \cdot\left(P_{i}^{\vee}\right)^{\mathrm{T}}\right.
$$

auxiliary basis $e^{\text {aux }}:=\left\{e_{1}, \ldots, e_{r-1} \varphi\right\}$

$$
\left\{\begin{array}{lc}
\partial_{z_{i}}\left\langle\left. e_{\lambda}\right|^{\text {aux }}=\left(P_{i}^{\text {aux }}\right)_{\lambda \nu}^{\text {aux }}\left\langle e_{\nu}^{\text {aux }}\right.\right. \\
\partial_{z_{i}}\left|h_{\mu}\right\rangle=\left|h_{\xi}\right\rangle\left(P_{i}^{\vee}\right)_{\xi \mu} & \Longrightarrow \partial_{z_{i}} C \stackrel{\text { aux }}{=} P_{i} \cdot C+C \cdot\left(P_{i}^{\vee}\right)^{\mathrm{T}}
\end{array} \quad C_{\lambda \mu}^{\text {aux }}:=\left\langle e_{\lambda}^{\text {aux }} \mid h_{\mu}\right\rangle\right.
$$

Master Decomposition Formula \& Pfaffian

Let $\left\{e_{i}\right\}_{i=1}^{r}$ be a basis for \mathbb{H}^{n} and $\left\{h_{i}\right\}_{i=1}^{r}$ a basis for $\mathbb{H}^{n \vee}$
$\varphi \in \mathbb{H}^{n}$ in terms of $\left\{e_{i}\right\}_{i=1}^{r}$

$$
\langle\varphi|=\sum_{\lambda=1}^{r} c_{\lambda}\left\langle e_{\lambda}\right|, \quad c_{\lambda}=\sum_{\mu=1}^{r}\left\langle\varphi \mid h_{\mu}\right\rangle\left(C^{-1}\right)_{\mu \lambda} \quad C_{\lambda \mu}:=\left\langle e_{\lambda} \mid h_{\mu}\right\rangle
$$

Rational Solutions of PDE

Multivariate Intersection Numbers (III) from Pfaffians

Let $\left\{e_{i}\right\}_{i=1}^{r}$ be a basis for \mathbb{H}^{n} and $\left\{h_{i}\right\}_{i=1}^{r}$ a basis for $\mathbb{H}^{n \vee}$ $\varphi \in \mathbb{H}^{n}$ in terms of $\left\{e_{i}\right\}_{i=1}^{r}$

$$
\langle\varphi|=\sum_{\lambda=1}^{r} c_{\lambda}\left\langle e_{\lambda}\right|
$$

$$
\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{r-1} \\
\varphi
\end{array}\right]=C^{\text {aux }} \cdot C^{-1}\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{r-1} \\
e_{r}
\end{array}\right] \quad \Longrightarrow \quad C^{\text {aux }} \cdot C^{-1}=\left[\begin{array}{cc|c}
& & 0 \\
\operatorname{id}_{r-1} & & \vdots \\
& & 0 \\
\hline c_{1} & \cdots & c_{r-1}
\end{array} c_{r}\right]
$$

Coefficients from matrix multiplication

