

EOB and Amplitudes in Gravity, Bologna, June 8-9, 2023

EFT-Diagrammatic Approach to Compact Binary Dynamics

Pierpaolo Mastrolia
University of Padova and INFN June 8, 2023

From Elementary Particles \& Feynman Integrals...

Feynman Integrals

- Momentum-space Representation

- Integration-by-parts Identites

$$
\begin{aligned}
& \int \prod_{i=1}^{L} d^{d} k_{i} \frac{\partial}{\partial k_{j}^{\mu}}\left(v_{\mu} \prod_{n=1}^{N} \frac{1}{D_{n}^{a_{n}}}\right)=0 \quad v_{\mu}=v_{\mu}\left(p_{i}, k_{j}\right) \quad \text { arbitrary } \\
& \text { - IBP identities } \quad \sum_{i} b_{i} I_{a_{1}, \ldots, a_{i} \pm 1, \ldots, a_{N}}=0
\end{aligned}
$$

Chetyrkin, Tkachov (1981) Laporta, Remiddi (1996) Remiddi (1996) Caffo, Czyz, Laporta, Remiddi (1998) Gehrmann, Remiddi (1999) Laporta (2000)
Remiddi + Bonciani, Argeri \& P.M. ... [Bologna Legacy]

Linear relations for Feynman Integrals identities

- Relations among Integrals in dim. reg.

Chetyrkin, Tkachov (1981)
Laporta (2000)

- 1st order Differential Equations for MIs

Kotikov (1991)
Remiddi (1996)

Dimension-Shift relations and Gram determinant relations
Tarasov (1998)
Laporta (2000)

...to Astrophysical Systems and Gravitational Waves

Motivation

- Gravitational Waves a new window on the Universe
- Two-body dynamics and radiative effects to exploring the most extreme conditions of spacetime and matter
- Next generation detectors, ground-based and in space, need of accurate waveform templates
- Precision Physics vs Precision Calculations: Multi-Loop Calculus, Scattering Amplitudes and General Relativity

[Bailes et al. 2021]

Motivation

- Gravitational Waves a new window on the Universe
- Two-body dynamics and radiative effects to exploring the most extreme conditions of spacetime and matter
- Next generation detectors, ground-based and in space, need of accurate waveform templates
- Precision Physics vs Precision Calculations: Multi-Loop Calculus, Scattering Amplitudes and General Relativity

Outline

1. Gravitational Waves Detection and Computational Techniques
2. Two-body problem in Classical GR and EFT Diagrammatic Approach

Based on collaborations with:
3. Conservative Effects from Near and Far Zone
G. Brunello, J. Steinhoff, M.K. Mandal, R. Patil, H.O. Silva
D. Bini, T. Damour, A. Geralico, S. Laporta
4. Spin and Tidal Effects
S. Foffa, R. Sturani, C. Sturm, W.J. Torres Bobadilla

GW Detection

GW Detection

LIGO-Virgo Compact Binary Catalogue

LIGO-Virgo Detection: GW150914

GW Detection

LIGO-Virgo-KAGRA Collaboration
Hanford
Kagra

Virgo
Livingston

O3b - Catalogue

GW Detection

:: Current GW Detectors: advanced programs

Prospects for observations within advanced Programs
updated [Abbot et al. 2020]
O3 --> O5 <==> O(10) --> O(100) GW detections/year

:: (some) Future GW Detectors

[Bailes et al. 2021]

Einstein Telescope

Lisa Mission

expected sensitivity

Two-Body Dynamics and GW Signal

Real Event

Two-Body Dynamics and GW Signal

-Waveform Model and Computing Techniques

Inspiral
Merger
Ringdown

Two-Body Dynamics and GW Signal

-Waveform Model and Computing Techniques

Standard Model of GW Physics

Two-Body Dynamics and GW Signal

- Waveform Model and Computing Techniques

Effective One Body (EOB) Formalism
the contributions coming from different kinematic regions for combined and calibrated with Numerical Relativity

- BH perturbation theory / self force

Expansion for small metric deformation $\delta g_{\mu \nu} \sim \epsilon=m_{2} / m_{1} \ll 1$

Effective Field Theory for General Relativity

Coalescing Binary System

:: Double Hierarchy

Conservative system
GH sion

Coalescing Binary System

:: Double Hierarchy

Dissipative system
GW emission

:: Effective Field Theory Approach

Fundamental [complete] theory $S[\phi, \psi]$
${ }^{\circ}$ Heavy fields $\psi: \quad \Lambda$,

$$
e^{\frac{i S_{e f f}[\phi]}{\hbar}}=\int D \psi e^{\frac{i S[\phi, \psi]}{\hbar}}
$$

Effective [incomplete] theory $S_{\text {eff }}[\psi]$ short distance r_{s}

○ Light modes $\phi: \omega \ll \Lambda$, large distance r

- Sensitive to the Lower-scale dynamics: $\omega \ll \Lambda$

$$
S_{\text {tot }}\left[x_{a}, g\right]=S_{G R}[g]+S_{m_{a}}\left[x_{a}, g\right]
$$

- Einstein Hilbert + gauge fixing

$$
\begin{aligned}
S_{G R}[g] & =2 \Lambda^{2} \int d^{d+1} x \sqrt{-g}\left(R-\frac{1}{2} \Gamma^{\mu} \Gamma_{\mu}\right) \\
\Lambda^{-1} & =\sqrt{32 \pi G_{N}}
\end{aligned}
$$

- Source/Worldline

$$
\begin{aligned}
& S_{m_{a}}\left[x_{a}, g\right]=S_{p p}\left[x_{a}, g\right]+\delta S_{m_{a}}\left[x_{a}, g\right] \\
& \qquad=-m_{a} \int d \tau_{a}=-m_{a} \int d t \sqrt{-g_{\mu \nu}\left(x_{a}\right) \dot{x}_{a}^{\mu} \dot{x}_{a}^{\nu}}
\end{aligned}
$$

Non-relativistic approximation [method of regions]: [Beneke Smirnov]

Weak field expansion:

$$
v \ll 1 \quad g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad h_{\mu \nu}=H_{\mu \nu}+\bar{h}_{\mu \nu}
$$

- Potential gravitons $H_{\mu \nu}: \quad\left(k_{0}, \mathbf{k}\right) \sim\left(\frac{v}{r}, \frac{1}{r}\right)$
- Radiation gravitons $\bar{h}_{\mu \nu}:\left(k_{0}, \mathbf{k}\right) \sim\left(\frac{v}{r}, \frac{v}{r}\right) \curvearrowright \gamma 010$
- Worldline/BH x_{a} :

GREFT / Action / Near \& Far Zone

- Near zone (r)

$$
S_{p o t}\left[x_{a}, g\right]=S_{G R}[g]+S_{m_{a}}\left[x_{a}, g\right]
$$

$$
g_{\mu \nu}=\eta_{\mu \nu}+H_{\mu \nu} \quad \int D H e^{i S_{\text {tot }}\left[x_{a}, H, \bar{h}=0\right]}=\exp \{\underline{\square}\}
$$

Far zone $\left(\lambda_{\text {rad }}\right): \quad S_{\text {rad }}\left[g,\left\{Q_{i}\right\}\right]=S_{G R}[g]+S_{\text {mut }}\left[g,\left\{Q_{i}\right\}\right]$

$$
g_{\mu \nu}=\eta_{\mu \nu}+\bar{h}_{\mu \nu}
$$

$$
\int D \bar{h} e^{i S_{r a d}\left[x_{a}, \bar{h}\right]}=\exp \{\square+\ldots\}
$$

Conservative Dynamics :: Near Zone Spinless

Near Zone/EFT Diagrammatic Approach

$$
S_{p o t}\left[x_{a}, g\right]=S_{G R}[g]+S_{m_{a}}\left[x_{a}, g\right] \quad S_{m_{a}}\left[x_{a}, g\right]=S_{p p}\left[x_{a}, g\right]+>S_{w_{m_{a}}}\left[x_{a}, g\right]
$$

- Kaluza-Klein parametrization:
[Kol Smolkin] [Blanchet Damour]

$$
g_{\mu \nu}=e^{2 \phi / \Lambda}\left(\begin{array}{cc}
-1 & A_{j} / \Lambda \\
A_{i} / \Lambda & e^{-c_{d} \frac{\phi}{\lambda} \gamma_{i j}}-A_{i} A_{j} / \Lambda^{2}
\end{array}\right)
$$

Graviton = Scalar + Vector + Sym. Tensor
10

$$
\gamma_{i j}=\delta_{i j}+\frac{\sigma_{i j}}{\Lambda} \quad c_{d}=2 \frac{d-1}{d-2}
$$

$$
g_{\mu \nu} \Rightarrow \phi \quad A^{i} \sigma^{i j}
$$

Feynman rules for: $\quad \phi \quad A^{i} \sigma^{i j} \quad x_{a}$

Static / non-propagating source: x_{a}

Source couplings:

\qquad

\qquad $+\ldots$

Newton Potential

Diagrammatic approach

- Just 1 diagram: $\quad \mathscr{M}_{0 P N}=\quad \begin{array}{l:l}2 m_{1} m_{2} \\ 2 c_{d} \Lambda^{2} & \frac{1}{\mathbf{p}^{2}}\end{array}$
- Fourier transform: from amplitude to the effective action: $\mathscr{L}_{0 P N}=-i \lim _{d \rightarrow 3} \int \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}} e^{i \mathbf{p}\left(x_{1}-x_{2}\right)}\left(\begin{array}{l}\quad \\ \end{array}\right)=\frac{G_{N} m_{1} m_{2}}{r}$

Newton Potential

Diagrammatic approach

- Just 1 diagram:

$$
\mathscr{M}_{0 P N}=\frac{i m_{1} m_{2}}{2 c_{d} \Lambda^{2}} \frac{1}{\mathbf{p}^{2}}
$$

Fourier transform: from amplitude to the effective action:

$$
\mathscr{L}_{0 P N}=-i \lim _{d \rightarrow 3} \int \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}} e^{i \mathbf{p}\left(x_{1}-x_{2}\right)}\left(\begin{array}{l:}
\\
\\
\end{array}\right)=\frac{G_{N} m_{1} m_{2}}{r}
$$

Corrections to the Newtonian potential:

Non-relativistic velocities: $v^{2} \ll 1$

- Dynamics in Post-Minkowskian perturbative scheme

At nPM order: G_{N}^{n}

Astrophysicists/Cosmologists' whishlist

...Westphal, Damour, Cheung, Rothstein, Solon, Bern, Roiban, Shen, Zeng, Parra-Martinez, Ruf, Hermann, Buonanno, Porto, Dlapa, Kalin, Liu, Neef, Bjerrum-Bohr, Vanhove, Plante, Cristofoli, Damgaard, Guevara, Ochirov, Vines, Di Vecchia, Veneziano, Heisenberg, Russo, Plefka, Jakobsen, Mogull, Brandhuber, Travaglini, De Angelis, Accetulli-Huber, Luna, Kosmopoulos, and collaborators...

Newton Potential

Diagrammatic approach

- Just 1 diagram:

$$
\mathscr{M}_{0 P N}=
$$

$$
=\frac{i m_{1} m_{2}}{2 c_{d} \Lambda^{2}} \frac{1}{\mathbf{p}^{2}}
$$

Fourier transform: from amplitude to the effective action:

$$
\mathscr{L}_{0 P N}=-i \lim _{d \rightarrow 3} \int \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}} e^{i \mathbf{p}\left(x_{1}-x_{2}\right)}\left(\begin{array}{l:}
\\
\\
\end{array}\right)=\frac{G_{N} m_{1} m_{2}}{r}
$$

Corrections to the Newtonian potential:

Non-relativistic velocities: $v^{2} \ll 1$
Virial theorem: $\frac{G_{N} m}{r} \approx v^{2}$

- Dynamics in Post-Newtonian

 perturbative schemeAt nPN order: $G_{N}^{n-\ell} v^{2 \ell}$

Astrophysicists/Cosmologists' whishlist

[^0] P.M. ... and collaborators

Post-Newtonian Corrections/EFT Potential

1PN corrections:

Einstein, Infeld, Hoffman (1938)

3PN corrections:

Jaranowski,Schaefer (1997); Damour, Jaranowski, Schaefer (1997); Blachę, Faye (2000); Damour, Jaranowski Schaefer (2001) Foffa Sturani (2011)

4PN: corrections:

Damour, Jaranowski, Schaefer (2014);
Bernard, Blanchet, Bohe, Faye, Marsa (2016);
Foffa, Sturani, Sturm \& P.M. (2016);
Foffa, Porto, Rothstein, Sturani (2019)
Blumlein, Maier, Marquard,Schaefer (2020)

5PN: corrections:

Bini, Damour, Geralico (2019);
Foffa, Sturani, Sturm, Torres Bobadilla \& P.M. (2019); Blumlein, Maier, Marquard, Schaefer $(2020,2021)$

A closer look to 4PN anatomy

Loop nr. $0 \leq \ell \leq n-1$

4PN : 605 GREFT diagrams (up-to 4-loops)

GREFT Diagrams \& 2pt-QFT Integrals / a key observation

Computational techniques:

From Effective diagrams to QFT Amplitudes:

- World-lines are not propagating

EFTGravity Amplitudes of order G_{N}^{ℓ} mapped into ($\ell-1$)-loop 2-point functions with massless internal lines:

Amplitudes evaluation with QFT multi-loop techniques

From QFT Amplitudes to Effective Lagrangians:

GREFT Diagrams \& 2pt-QFT Integrals / a key observation

Computational techniques:

- From Effective diagrams to QFT Amplitudes:

World-lines are not propagating
EFTGravity Amplitudes of order G_{N}^{ℓ}

mapped into ($\ell-1$)-loop 2-point functions with massless internal lines:

Amplitudes evaluation with QFT multi-loop techniques

From QFT Amplitudes to Effective Lagrangians:

$$
\mathscr{L}_{e f f}\left[x_{a}\right]=-i \lim _{d \rightarrow 3} \int \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}} e^{i \mathbf{p} \cdot \mathbf{r}}(\overline{ })
$$

29 4-loop QFT diagrams

- Dimensional Regularization $d=3+\epsilon$ - Integration-by-parts (IBP) decomposition - Master Integrals and Differential Equations

$$
\mathscr{M}=\sum_{i} c_{i} I_{i}^{M I}
$$

4PN static O(G^5): 50 4-loop GREFT diagrams

7 4-loop Master Integrals

GREFT Diagrams \& 2pt-QFT Integrals / Factorization Th'm

$$
1, \omega+\phi=0+0
$$

Newton Potential (reloaded):

$$
\int d^{d} p e^{i p \cdot r}|-----|=\int d^{d} p \frac{e^{i p \cdot r}}{p^{2}}=\int d^{d} p e^{i p \cdot r}-----=
$$

GREFT Diagrams \& 2pt-QFT Integrals / Factorization Th'm

5PN static O(G^6): 154 5-loop GREFT diagrams
$(2 n+1)-P N$ corrections: Type- A

(2n+1)-PN corrections: Type-B

static ($2 \mathrm{n}+1$)-PN Potential as product of lower-PN Potential terms

Foffa, Sturani, Sturm, Torres-Bobadilla \& P.M.

$\mathcal{V}_{N \times 4 \mathrm{PN}}=$ \qquad

$$
\mathcal{V}_{\text {static }}^{(5 \mathrm{PN})}=\mathcal{V}_{N^{6}}+\mathcal{V}_{N^{3} \times 2 \mathrm{PN}}+\mathcal{V}_{N \times 4 \mathrm{PN}}+\mathcal{V}_{(2 \mathrm{PN})^{2}}
$$

5PN O(G^5 v^2): 1220 4-loop GREFT diagrams
Foffa, Sturani,, Torres-Bobadilla (2020)
Factorization Th'm: NO 5-loop diagram explicitly computed

- Results confirmed and completed by explicit evaluation of 2pt-QFT 5-loop Integrals

Blümelein, Maier, Marquard, Schäfer (2019-21)

Conservative Dynamics :: Far Zone Spinless

Far Zone/EFT Diagrammatic Approach

$$
S_{\text {rad }}\left[g,\left\{Q_{i}\right\}\right]=S_{G R}[g]+S_{m u l t}\left[g,\left\{Q_{i}\right\}\right]
$$

Far zone contributions to the conservative

Multipole source emitting gravitons

EFT matching
dynamics are needed, starting at $4 P N$ order

Long-wavelength EFT:

- Multipole Action:

Binary system as a linear source $T_{\mu \nu}$ of size r emitting $\bar{h}_{\mu \nu}$:

$$
S_{m u l t}=-\frac{1}{2} \int d^{4} x T^{\mu \nu} \bar{h}_{\mu \nu} \quad \varepsilon_{T_{\mu \nu}}^{\xi}
$$

$$
S_{m u l t}\left[\bar{h},\left\{Q_{i}\right\}\right]=\int d t\left[\frac{1}{2} E \bar{h}_{00}-\frac{1}{2} \epsilon_{i j k} L^{i} \bar{h}_{0 j, k}-\frac{1}{2} Q^{i j} \mathscr{C}_{i j}-\frac{1}{6} O^{i j k} \mathscr{C}_{i j, k}-\frac{2}{3} J^{i j} B_{i j}+\ldots\right]
$$

- $\mathscr{E}_{i j}, B_{i j}$ are the electric and magnetic components of the Riemann tensor

$$
\begin{aligned}
& \mathscr{E}_{i j}=R_{0 i 0 j} \approx-\frac{1}{2}\left(\bar{h}_{00, i j}+\ddot{\bar{h}}_{i j}-\dot{\bar{h}}_{0, i j}-\dot{\bar{h}}_{0, i, i}+\mathcal{O}\left(\bar{h}^{2}\right)\right) \\
& B_{i j}=\frac{1}{2} \epsilon_{i k l} R_{0 j k l} \approx \frac{1}{4} \epsilon_{i k l}\left(\dot{\bar{h}}_{j k, l}-\dot{\bar{h}}_{j l, k}+\bar{h}_{0 l, j k}-\bar{h}_{0 k, j l}+\mathcal{O}\left(\bar{h}^{2}\right)\right)
\end{aligned}
$$

Far Zone/EFT Diagrammatic Approach

Hereditary Effects

Contributions to the conservative dynamics by integrating out radiation gravitons:

$$
S_{e f f}\left[\left\{Q_{i}\right\}\right]=-i \lim _{d \rightarrow 3}
$$

Hereditary Effects: GWs emitted by the source and then back-scattered into the system:

EFTGravity Amplitude mapped into multi-loop 1-point functions with massive internal lines:

Radiation gravitons propagator:

$$
\frac{1}{\mathbf{k}^{2}-k_{0}^{2}}
$$

- Dimensional Regularization $d=3+\epsilon$
- Integration-by-parts (IBP) decomposition
- Master Integrals evaluation

Scattering Angle

$$
\chi=-2 \int_{r_{\text {min }}}^{\infty} d r \frac{\partial p_{r}}{\partial L}-\pi
$$

$$
M=m_{1}+m_{2} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \nu=\frac{\mu}{M}
$$

$$
p_{r}=p_{r}\left(r, E, L, S_{(a)}\right)=p_{r}\left(r, v, b, S_{(a)}\right)
$$

$$
\mathbf{p}^{2}=p_{r}^{2}+\frac{L^{2}}{r^{2}}=p_{\infty}^{2}-V_{e f f}, \quad V_{e f f}(r)=-\sum_{n \geq 1} f_{n}(E)\left(\frac{G_{N}}{r}\right)^{n}
$$

$$
p_{r}=\sqrt{p_{\infty}^{2}-\frac{L^{2}}{r}-V_{e f f}(r)}, \quad V_{e f f}(r \rightarrow \infty) \rightarrow 0
$$

$$
H^{\text {cons. }}=H^{l o c}+H^{n o n l o c ., c o n s .}
$$

PMM-expansion:

$$
\frac{1}{2} \chi(b, E)=\sum_{n} \chi_{b}^{(n)}(E)\left(\frac{G M}{b}\right)^{n}=\sum_{n} \chi_{j}^{(n)}(E) \frac{1}{j^{n}}
$$

PN-expansion:

$$
\chi_{b}^{(n)}=\sum_{k \geq 0} \chi_{b}^{(n, k)}\left(\frac{\mathrm{v}^{2}}{c^{2}}\right)^{k}
$$

$$
\begin{array}{ll}
\chi_{j}^{(n)}=\hat{p}_{\infty}^{n} \chi_{b}^{(n)}, \quad \hat{p}_{\infty}=p_{\infty} / \mu . & j=\frac{L}{G_{N} M \mu} \\
E=M \Gamma \quad \Gamma=\sqrt{1+2 \nu(\gamma-1)} \quad \gamma=\frac{1}{\sqrt{1-v_{\infty}^{2}}} & p_{\infty}=\frac{m_{1} m_{2}}{E} \sqrt{\gamma^{2}-1}=\mu^{2} \frac{\gamma^{2}-1}{\Gamma^{2}}
\end{array}
$$

Scattering Angle / far zone (no spin) : 6PN \& 7PN

$$
\begin{aligned}
& \chi^{l o c} \text { analytically known } \\
& \chi^{\text {nonloc. }}=\frac{\partial}{\partial L} \int_{-\infty}^{\infty} d t H^{\text {nonloc. }}(t)
\end{aligned}
$$

PM-expansion:
$\frac{1}{2} \chi^{\text {nonloc. }}=\nu p_{\infty}^{4}\left(\frac{A_{0}}{j^{4}}+\frac{A_{1}}{p_{\infty} j^{5}}+\frac{A_{2}}{p_{\infty}^{2} j^{6}}+\ldots\right)$

Multipole Radiation Formula

$H^{\text {nonloc. }}(t) \propto \dddot{Q}_{i j}(t) \mathrm{PF}_{T} \int_{-\infty}^{\infty} \frac{d \tau}{|\tau|} \dddot{Q}_{i j}(t+\tau)+$ higher-multipole terms \quad time scale $T \equiv 2 r_{12} / c$

Quadrupole moment

$Q_{i j} \equiv \sum_{a} m_{a}\left(x_{a}^{i} x_{a}^{j}-\frac{1}{3} \delta^{i j} \mathbf{x}_{a}^{2}\right)+\mathrm{PN}$ corrections

Hadamard Partie Finie

$\operatorname{Pf}_{T} \int_{0}^{+\infty} \frac{\mathrm{d} v}{v} g(v) \equiv \int_{0}^{T} \frac{\mathrm{~d} v}{v}[g(v)-g(0)]+\int_{T}^{+\infty} \frac{\mathrm{d} v}{v} g(v)$
(... similar to the plus-distribution formula)

PN-expansion:

$A_{m}=\sum_{n \geq 0}\left(A_{m n}+A_{m n}^{\ln } \log \left(p_{\infty} / 2\right)\right) p_{\infty}^{n}, \quad A_{m n}=\sum_{k \geq 0} A_{m n k} \nu^{k}$
$A_{m n k}=\int_{-1}^{+1} \int_{-1}^{+1} \frac{d T d T^{\prime}}{\left|T-T^{\prime}\right|} a_{m n k}\left(T, T^{\prime}\right)$

O(G^6) Coefficients

O(200) coefficients:
4 of them coefficients only numerically
[Bini Damour Geralico]
-Analytic evaluation
$A_{220}, A_{240}, A_{241}, A_{242} \quad$ [Bini Damour Geralico Laporta \& P.M.]

Extended to $\mathbf{O}\left(\mathbf{G}^{\wedge} 7\right)$ Coefficients

1. Numericabreconstruction w/200 digits

2. Analytic integration w/ HPL's

Far-Zone GREFT / validation

-Mass polynomiality of the scattering angle:

$$
\chi_{4}^{\text {cons,tot }}=\chi_{4}^{S c h w}+\nu \chi_{4}^{\nu}
$$

$$
\nu=\frac{\mu}{M}
$$

-Compatible with "Tutti Frutti" method and PM-Amplitudes-based calculations
[Damour] [Bern et al.]
[Damour, Bini, Geralico]
-GREFT calculations point at possible quadratic behaviour:

$$
\chi_{4}^{\text {cons,tot }}=\chi_{4}^{S c h w}+\nu \chi_{4}^{\nu}+\nu^{2} \chi_{4}^{\nu^{2}}, \quad \chi_{4}^{\nu^{2}} \neq 0
$$

[Bluemlein et al.]
[Almeida et al.] [Porto et al.]
[Brunello et al.]

known unknown: FarZone-GREFT is an challenging theoretical puzzle:

-Which effects do the GREFT diagrams contain?
-Interplay between conservative and dissipative effects?
-Double counting or missing contribution?
-FarZone/Radiation and proper choice of Green-Functions

Conservative Dynamics :: Near Zone with Spin and Tidal Effects

Near Zone with Spin/PN Corrections

EFT Action for Spinning compact object

$$
\begin{gathered}
S_{p o t}\left[x_{a}, g\right]=S_{G R}[g]+S_{m_{a}}\left[x_{a}, g\right] \quad S_{m_{a}}\left[x_{a}, g\right]=S_{p p}\left[x_{a}, g\right]+\delta S_{m_{a}}\left[x_{a}, g\right] \\
S_{m_{a}}\left[x_{a}, g\right]=\sum_{a=1,2} \int d \tau\left(-m_{(a)} c \sqrt{u_{(a)}^{2}}-\frac{1}{2} S_{(a) \mu \nu} \Omega_{(a)}^{\mu \nu}-\frac{S_{(a) \mu \nu} u_{(a)}^{\nu}}{u_{(a)}^{2}} \frac{d u_{(a)}^{\mu}}{d \tau}+\mathcal{L}_{(a)}^{(R)}+\mathcal{L}_{(a)}^{\left(R^{2}\right)}+\ldots\right) \quad u_{(a)}^{\mu} \equiv \dot{x}_{a}^{\mu}
\end{gathered}
$$

Wilson coefficients that describe the internal structure

$$
\begin{aligned}
& \mathcal{L}_{(a)}^{(R)}=-\frac{1}{2 m_{(a)} c}\left(C_{\mathrm{ES}^{2}}^{(0)}\right)_{(a)} \frac{E_{\mu \nu}}{u_{(a)}}\left[S_{(a)}^{\mu} S_{(a)}^{\nu}\right]_{\mathrm{STF}}+\ldots \\
& \mathcal{L}_{(a)}^{\left(R^{2}, S^{0}\right)}=\frac{1}{2}\left(C_{\mathrm{E}^{2}}^{(2)}\right)_{(a)} \frac{G_{N}^{2} m_{(a)}}{c^{5}} \frac{E_{\mu \nu} E^{\mu \nu}}{u_{(a)}^{3}} S_{(a)}^{2}+\ldots \\
& \mathcal{L}_{(a)}^{\left(R^{2}, S^{2}\right)}=\frac{1}{2}\left(C_{\mathrm{E}^{2} S^{2}}^{(0)}\right)_{(a)} \frac{G_{N}^{2} m_{(a)}^{2}}{c^{5}} \frac{E_{\mu \alpha} E_{\nu}^{\alpha}}{u_{(a)}^{3}}\left[S_{(a)}^{\mu} S_{(a)}^{\nu}\right]_{\mathrm{STF}}+\ldots
\end{aligned}
$$

Electric and Magnetic
components of Riemann tensor
$E_{\mu \nu} \equiv R_{\mu \alpha \nu \beta} u^{\alpha} u^{\beta}$
$B_{\mu \nu} \equiv \frac{1}{2} \epsilon_{\alpha \beta \gamma \mu} R_{\delta \nu}^{\alpha \beta} u^{\gamma} u^{\delta}$

Near Zone with Spin/EFT Diagrammatic Approach $_{\text {km. im. .meneme }}$

$$
S_{p o t}\left[x_{a}, g\right]=S_{G R}[g]+S_{m_{a}}\left[x_{a}, g\right] \quad S_{m_{a}}\left[x_{a}, g\right]=S_{p p}\left[x_{a}, g\right]+\delta S_{m_{a}}\left[x_{a}, g\right] \text { spin dependence }
$$

- Kaluza-Klein parametrization:

$$
g_{\mu \nu}=e^{2 \phi / \Lambda}\left(\begin{array}{cc}
-1 & A_{j} / \Lambda \\
A_{i} / \Lambda & e^{-c_{d} \frac{\phi}{\Lambda}} \gamma_{i j}-A_{i} A_{j} / \Lambda^{2}
\end{array}\right)
$$

Graviton = Scalar + Vector + Sym. Tensor

$$
g_{\mu \nu} \Rightarrow \phi \quad A^{i} \sigma^{i j}
$$

$$
\gamma_{i j}=\delta_{i j}+\frac{\sigma_{i j}}{\Lambda} \quad c_{d}=2 \frac{d-1}{d-2}
$$

Feynman rules for: $\quad \phi \quad A^{i} \quad \sigma^{i j} \quad x_{a}$

Static / non-propagating source: x_{a}

Source couplings:

\qquad
 $+\ldots$
spin dependence

$$
\begin{array}{ll}
\text { Propagators: } & A_{i}^{i} \text { mumum } \\
& \sigma^{i j}
\end{array}
$$

Self-interactions:

GREFT Diagrams \& 2pt-QFT Integrals

Mapping to 2-point Functions

$$
\mathscr{L}_{\text {eff }}\left[x_{a}, \dot{x}_{a}, \ddot{x}_{a}, \ldots, S_{a}, \dot{S}_{a}, \ldots\right]=-i \lim _{d \rightarrow 3} \int \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}} e^{i \mathbf{p} \cdot \mathbf{r}}(\bar{\square})
$$

S^{2}							
Order	Diagrams	Loops	Diagrams	Order	Diagrams	Loops	Diagrams
LO	1	0	1	LO	1	0	1
NLO	7	1	3	NLO	4	1	1
		0	4			0	3
$\mathrm{N}^{2} \mathrm{LO}$	58	2	27	$\mathrm{N}^{2} \mathrm{LO}$	25	2	7
		1	24			1	12
		0	7			0	6
$\mathrm{N}^{3} \mathrm{LO}$	553	3	125	$\mathrm{N}^{3} \mathrm{LO}$	168	3	15
		2	342			2	101
		1	76			1	43
		0	10			0	9

(a) Spin1-Spin2 and Spin1 ${ }^{2}\left(\mathrm{Spin}^{2}\right)$ sector

Order	Loops	Diagrams
LO	1	1

(c) E^{2} sector

\section*{| Order | Loops | Diagrams |
| :---: | :---: | :---: | | LO | 1 | 1 |
| :--- | :--- | :--- | :--- |}

(d) $E^{2} S^{2}$ sector
see MANDAL

$$
\mathscr{M}=\sum_{i} c_{i} I_{i}^{M I}
$$

- Dimensional Regularization $d=3+\epsilon$ - Integration-by-parts (IBP) decomposition
- Master Integrals evaluation

Near Zone with Tidal Effects/PN Corrections

EFT Action for Tidal Effects

Steinhoff, Hinderer, Buonanno, Taracchini (2016)

 Mandal, Patil, Silva, Steinhoff \& P.M. (2023)

$$
\begin{gathered}
S_{p o t}\left[x_{a}, g\right]=S_{G R}[g]+S_{m_{a}}\left[x_{a}, g\right] \quad S_{m_{a}}\left[x_{a}, g\right]=S_{p p}\left[x_{a}, g\right]+\delta S_{m_{a}}\left[x_{a}, g\right] \\
S_{m_{a}}\left[x_{a}, g\right]=\sum_{a=1,2} \int \frac{\mathrm{~d} \tau}{c}\left[-m_{(a)} z_{(a)} c^{2}+\mathcal{L}_{\mathrm{FD}(a)}+\mathcal{L}_{\mathrm{MQ}(a)}+\mathcal{L}_{\mathrm{EQ}(\mathrm{a})}\right]
\end{gathered} \text { Tidal Effects }
$$

Order	Diagrams	Loops	Diagrams
0PN	1	0	1
1 PN	4	0	3
		1	1
2 PN	21	0	6
		1	10
		2	5

(a) Point particle sector

Order	Diagrams	Loops	Diagrams
0PN	1	0	1
1 PN	4	0	3
		1	1
2 PN	26	0	6
		1	12
		2	8

(b) EQ sector

Order	Diagrams	Loops	Diagrams
1 PN	2	0	2
2 PN	13	0	5
		1	8

(c) FD sector

Order	Diagrams	Loops	Diagrams
1 PN	1	0	1
2 PN	4	0	3
		1	1

(d) MQ sector

$$
\mathscr{L}_{e f f}\left[x_{a}, \dot{x}_{a}, \ddot{x}_{a}, \ldots, S_{a}, \dot{S}_{a}, \ldots\right]=-i \lim _{d \rightarrow 3} \int \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}} e^{i \mathbf{p} \cdot \mathbf{r}}(\square)
$$

- Dimensional Regularization $d=3+\epsilon$
- Integration-by-parts (IBP) decomposition
- Master Integrals evaluation

Conservative Dynamics :: PM Corrections

Near Zone/PM Corrections

Heavy Quark EFT [HQET] in QCD

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\psi}(i \not D-m) \psi, \quad \text { where } \quad D^{\mu} \psi \equiv\left(\partial^{\mu}+i e A^{\mu}\right) \psi .
$$

$$
\begin{aligned}
& p^{\mu}=m v^{\mu} \quad v^{2}=1 \\
& \left.\mathcal{L}_{\mathrm{HQET}}=\bar{Q}\left(i v \cdot D-\frac{D_{\perp}^{2}}{2 m}+\frac{D_{\perp}^{4}}{8 m^{3}}-\frac{e}{4 m} \sigma_{\mu \nu} F^{\mu \nu}-\frac{e}{8 m^{2}} v^{\mu}\left[D_{\perp}^{\nu} F_{\mu \nu}\right]+\frac{i e}{8 m^{2}} v_{\rho} \sigma_{\mu \nu}\left\{D_{\perp}^{\mu}, F^{\rho \nu}\right\}+\frac{e}{16 m^{3}}\left\{D_{\perp}^{2}, \sigma_{\mu \nu} F^{\mu \nu}\right\}+\frac{e^{2}}{16 m^{3}} F_{\mu \nu} F^{\mu \nu}\right) Q^{Q}+\mathcal{O}_{\left(m^{-4}\right.}\right)
\end{aligned}
$$

$$
\longrightarrow \quad \frac{i}{v \cdot k+i \varepsilon} \frac{1+\psi}{2}, \quad p_{1} \rightarrow \sum_{v}^{\mu} p_{3} \quad i g T^{a} v_{\mu} \frac{1+\psi}{2}
$$

$$
D_{\perp}^{\mu} \equiv D^{\mu}-v^{\mu}(v \cdot D)
$$

$$
A_{3}^{\mathrm{YM}-\mathrm{M}}(123)=\underset{p_{1} \rightarrow \stackrel{\beta^{\prime}}{\varepsilon_{2}} p_{3}}{\}_{0}}=m \varepsilon_{2} \cdot v
$$

$$
A_{n}^{\mathrm{YM}-\mathrm{M}}(12 \cdots n)=\sum_{\Gamma \in \text { ordered commutators }\{2,3, \cdots, n-1\}} \frac{\mathcal{N}_{n}(\Gamma, v)}{d_{\Gamma}}
$$

Near Zone/PM Corrections

-Heavy Mass/Black-hole EFT [H(M/B)ET] in Gravity

$$
\begin{aligned}
& \sqrt{-g} \mathcal{L}_{m}=\sqrt{-g}\left(\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}\right) \\
& \sqrt{-g} \mathcal{L}_{m}=\sqrt{-g} \bar{\psi}\left(i e_{a}^{\mu} \gamma^{a} D_{\mu}-m\right) \psi \\
& S_{\mathrm{GR}}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g} R \\
& p^{\mu}=m v^{\mu} \quad v^{2}=1
\end{aligned}
$$

Brandhuber, Travaglini, Chen, Wen

+ Brown, De Angelis, Gowdy

Conclusion

-GW Astronomy: a growing research field, where accuracy is not an option

Compact objects evolution can benefit of the interplay between Cosmology, Astrophysics, and High-Energy Theoretical Physics

Remarkable combination of traditional methods developed for the GR two-body problem and methods developed for elementary particle scattering to improve the GW waveforms modelling

Scattering processes: a universal framework to investigate Nature at its most extreme conditions

Under a diagrammatic viewpoint, Gravity is not so different from the other Fundamental Interactions

Conclusion

EFT - NRGR

Amplitudes

- Unitarity-based methods
- Double-copy \& BCJ relations
- Higher-spin
- Classical Scattering
- PN \& PM EFT
- In-in formalism
- NRQFT
- HQEFT
- H(P,B,M)EFT

GR-Techniques

- PN \& PM
- Self-Force
- EOB
- Numerical Relativity
- Tutti Frutti

Observable-based methods

- Eikonal approach
- Inclusive \& differential formalisms
- Radial action
- S-matrix
- Difference \& Differential Equations
- Theory of Special Functions
- High Precision arithmetics and Finite Fields
- Numerical Integration
- Asymptotic expansions

EXTRA

Definition. Physics is a part of mathematics devoted to the calculation of integrals of the form $\int g(x) e^{f(x)} d x$. Different branches of physics are distinguished by the range of the variable x and by the names used for $f(x), g(x)$ and for the integral. [...]

Of course this is a joke, physics is not a part of mathematics. However, it is true that the main mathematical problem of physics is the calculation of integrals of the form

$$
I(g)=\int g(x) e^{-f(x)} d x
$$

[...] If f can be represented as $f_{0}+\lambda V$ where f_{0} is a negative quadratic form, then the integral $\int g(x) e^{f(x)} d x$ can be calculated in the framework of perturbation theory with respect to the formal parameter λ. We will fix f and consider the integral as a functional $I(g)$ taking values in $\mathbb{R}[[\lambda]]$. It is easy to derive from the relation

$$
\int \partial_{a}\left(h(x) e^{f(x)}\right) d x=0
$$

that the functional $I(g)$ vanishes in the case when g has the form

$$
g=\partial_{a} h+\left(\partial_{a} f\right) h
$$

Addressing a common math problem might be useful to make progress in different disciplines

Far Zone/EFT Diagrammatic Approach

Total result:

$$
S_{e f f}^{Q_{5 P N}^{3}}=-i \int \frac{d k_{0}}{(2 \pi)} \frac{d p_{0}}{(2 \pi)} \tilde{\mathscr{M}} Q^{3}=-\frac{G_{N}^{2}}{15} \int d t \operatorname{Tr}\left[Q^{(4)} Q^{(4)} Q+\frac{4}{7} Q^{(3)} Q^{(3)} Q^{(2)}\right]
$$

Memory Effect (5PN) within the In-In formalism

Blumlein, Maier, Marquard, Schaefer (2021) Almeida, Foffa, Sturani (2022)

- Sample diagram:
 $=\left\langle\left(V_{Q h}\right)^{(+)}\left(V_{Q h}\right)^{(-)}\left(V_{Q h}\right)^{(+)} V_{h^{3}}\right\rangle=3$

- Tensor Decomposition:

$=\operatorname{Tr}\left[Q^{(a)} Q^{(b)} Q^{(c)}\right] \tilde{M^{2}} Q^{3}\left(G_{1}, G_{2}, G_{3}\right)$
- IBP Decomposition:

$+C_{2}$

- Total result:

$$
S_{e f f}^{Q_{+} Q_{Q} Q_{-}}=-i \lim _{d \rightarrow 3} \xlongequal{\text { S }}=\frac{1}{35} \int d t \operatorname{Tr}\left[8\left(\dddot{Q}_{+}\right)^{2} \ddot{Q}_{-}+7\left(\dddot{Q}_{+}\right)^{2} Q_{-}-12 \dddot{Q}_{+} \ddot{Q}_{+} \dddot{Q}_{-}-14 \dddot{Q}_{+} Q_{+} \dddot{Q}_{-}\right]
$$

agreement with Almeida Foffa, Sturani (2022) Bluemlein, Maier, Marquard, Schaefer (2022) [credit: Brunello]
known known FarZone-GREFT with causal propagators not adequate to describe Radiation/Hereditary effects
known unknown: FarZone-GREFT within Keldysh-Schwinger "in-in" formalism under scrutiny

Conservative Dynamics :: Near Zone with Spin

Elimination of higher-order time derivatives / equation of motion

$$
\begin{aligned}
& \mathbf{x}_{(a)} \rightarrow \mathbf{x}_{(a)}+\delta \mathbf{x}_{(a)} \\
& \delta \mathcal{L}=\left(\frac{\delta \mathcal{L}}{\delta \mathbf{x}_{(a)}^{i}}\right) \delta \mathbf{x}_{(a)}^{i}+\frac{1}{2}\left(\frac{\delta^{2} \mathcal{L}}{\delta \mathbf{x}_{(a)}^{i} \delta \mathbf{x}_{(a)}^{j}}\right) \delta \mathbf{x}_{(a)}^{i} \delta \mathbf{x}_{(a)}^{j}+\mathcal{O}\left(\delta \mathbf{x}_{(a)}^{3}\right) \\
& \boldsymbol{\Lambda}_{(a)}^{i j} \rightarrow \boldsymbol{\Lambda}_{(a)}^{i j}+\delta \boldsymbol{\Lambda}_{(a)}^{i j} \quad \boldsymbol{S}_{(a)}^{i j} \rightarrow \boldsymbol{S}_{(a)}^{i j}+\delta \boldsymbol{S}_{(a)}^{i j} \quad \delta \boldsymbol{\Lambda}_{(a)}^{i j}=\boldsymbol{\Lambda}_{(a)}^{i j} \boldsymbol{\omega}_{(a)}^{k j}+\mathcal{O}\left(\boldsymbol{\omega}_{(a)}^{2}\right) \quad \delta \boldsymbol{S}_{(a)}^{i j}=2 \boldsymbol{S}_{(a)}^{k[i} \boldsymbol{\omega}_{(a)}^{j] k}+\mathcal{O}\left(\boldsymbol{\omega}_{(a)}^{2}\right) \\
& \delta \mathcal{L}^{\prime}=-\left(\frac{1}{c}\right) \frac{1}{2} \dot{\boldsymbol{S}}_{(a)}^{i j} \boldsymbol{\omega}_{(a)}^{i j}-\left(\frac{1}{c}\right) \frac{1}{2} \boldsymbol{S}_{(a)}^{i j} \dot{\boldsymbol{\omega}}_{(a)}^{i k} \boldsymbol{\omega}_{(a)}^{k j}-\left(\frac{\delta V}{\delta \boldsymbol{S}_{(a)}^{i j}}\right) \delta \boldsymbol{S}_{(a)}^{i j}+\mathcal{O}\left(\boldsymbol{\omega}_{(a)}^{3}, \delta \boldsymbol{S}_{(a)}^{2}\right)
\end{aligned}
$$

$$
\mathcal{L}^{\prime \prime}=\mathcal{L}+\delta \mathcal{L}+\delta \mathcal{L}^{\prime} \quad \text { free of higher-order time derivatives }
$$

Elimination of $1 /(\mathrm{d}-3)$ divergences and spurious Logarithmic terms / canonical transformations

$$
\begin{gathered}
\mathcal{H}(\mathbf{x}, \mathbf{p}, \mathbf{S})=\sum_{a=1,2} \mathbf{p}_{(a)}^{i} \dot{\mathbf{x}}_{(a)}^{i}-\mathcal{L}^{\prime \prime}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{S}) \quad \text { may contain divergences and spurious logarithmic term } \\
\mathcal{H}^{\prime}=\mathcal{H}+\{\mathcal{H}, \mathcal{G}\} \longrightarrow \text { educated guess } \\
\text { Effective Hamiltionian free of unphysical terms }
\end{gathered}
$$

Scattering Angle :: Near Zone with Spin

Aligned spins

$$
\chi=-2 \int_{r_{\min }}^{\infty} d r \frac{\partial p_{r}}{\partial L}-\pi \quad \chi=\chi^{l o c}
$$

$$
\begin{aligned}
\chi\left(v, b, S_{(a)}\right)= & \chi_{\mathrm{pp}}(v, b)+\chi_{\mathrm{SO}}\left(v, b, S_{(a)}\right)+\chi_{\mathrm{SS}}\left(v, b, S_{(a)}\right) \\
\chi_{\mathrm{SS}}\left(v, b, S_{(a)}\right)= & \chi_{\mathrm{S} 1 \mathrm{~S} 2}\left(v, b, S_{(a)}\right)+\chi_{\mathrm{S}^{2}}\left(v, b, S_{(a)}\right)+\chi_{\mathrm{ES}^{2}}\left(v, b, S_{(a)}\right) \\
& +\chi_{\mathrm{E}^{2} \mathrm{~S}^{2}}\left(v, b, S_{(a)}\right)+\chi_{\mathrm{E}^{2}}\left(v, b, S_{(a)}\right)
\end{aligned}
$$

PM-expansion:

$$
\frac{1}{2} \chi(b, E)=\sum_{n} \chi_{b}^{(n)}(E)\left(\frac{G M}{b}\right)^{n}
$$

PN-expansion:

$$
\chi_{b}^{(n)}=\sum_{k \geq 0} \chi_{b}^{(n, k)}\left(\frac{\mathrm{v}^{2}}{c^{2}}\right)^{k}
$$

Binding Energy :: Near Zone with Spin

Circular Orbit and aligned spins

$$
\begin{aligned}
E\left(x, \widetilde{S}_{(a)}\right)=E_{\mathrm{pp}}(x)+E_{\mathrm{SO}}\left(x, \widetilde{S}_{(a)}\right)+ & E_{\mathrm{SS}}\left(x, \widetilde{S}_{(a)}\right) \\
& E_{\mathrm{SS}}\left(x, \widetilde{S}_{(a)}\right)=E_{\mathrm{S} 1 \mathrm{~S} 2}\left(x, \widetilde{S}_{(a)}\right)+E_{\mathrm{S}^{2}}\left(x, \widetilde{S}_{(a)}\right)
\end{aligned}
$$

$$
\begin{aligned}
E_{\mathrm{SS}}\left(x, \widetilde{S}_{(a)}\right)= & E_{\mathrm{S} 1 \mathrm{~S} 2}\left(x, \widetilde{S}_{(a)}\right)+E_{\mathrm{S}^{2}}\left(x, \widetilde{S}_{(a)}\right) \\
& +E_{\mathrm{ES}^{2}}\left(x, \widetilde{S}_{(a)}\right)+E_{\mathrm{E}^{2} \mathrm{~S}^{2}}\left(x, \widetilde{S}_{(a)}\right)+E_{\mathrm{E}^{2}}\left(x, \widetilde{S}_{(a)}\right)
\end{aligned}
$$

$$
E_{\mathrm{E}^{2}}(x, \widetilde{S})=\left(C_{\mathrm{E}^{2}}^{(2)}\right)_{(1)} \widetilde{S}_{(1)}^{2} x^{6}\left\{9 \nu^{3}\left(1+\frac{1}{q}\right)\right\}+(1 \leftrightarrow 2),
$$

$$
E_{\mathrm{E}^{2} S^{2}}(x, \widetilde{S})=\left(C_{\mathrm{E}^{2} S^{2}}^{(0)}\right)_{(1)} \widetilde{S}_{(1)}^{2} x^{6}\left\{\frac{3 \nu^{3}}{2}\left(1+\frac{1}{q}\right)\right\}+(1 \leftrightarrow 2)
$$

$$
\begin{aligned}
& E_{\text {ESS }}(x, \tilde{S})=\left(C_{\text {ESS }}^{(0)}\right)_{(1)} \tilde{S}_{(1)}\left\{\left\{x^{3}\left\{\frac{1}{q} \frac{1}{q}\right\}+x^{4}\left\{\frac{5}{3} \nu^{2}+\frac{1}{q}\left(\frac{5}{4}{ }_{4}+\frac{5}{4} \nu^{2}\right)\right\}\right.\right. \\
& +x^{5}\left\{\frac{31}{4} \nu^{2}-\frac{35}{18^{3}}+\frac{1}{9}\left(\frac{63}{16} \nu+\frac{77}{48} \nu^{2}-\frac{91}{48} \nu^{3}\right)\right\} \\
& +x^{6}\left\{\frac{789}{28} \nu^{2}-\frac{156}{7} \nu^{3}+\frac{5}{8} 8^{4}\right. \\
& \left.\left.+\frac{1}{q}\left(\frac{405}{32} \nu+\left(\frac{3747 \pi^{2}}{2048}-\frac{2389}{32}\right) \nu^{2}-\frac{555}{56} \nu^{3}+\frac{21}{32} \nu^{4}\right)\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& E_{\mathrm{pp}}(x)=-x \frac{1}{2}+x^{2}\left\{\frac{3}{8}+\frac{\nu}{24}\right\}+x^{3}\left\{\frac{27}{16}-\frac{19}{16} \nu+\frac{1}{48} \nu^{2}\right\} \\
& \begin{array}{l}
+x^{4}\left\{\frac{675}{128}+\left(-\frac{34445}{1152}+\frac{205 \pi^{2}}{192}\right) \nu+\frac{155}{192} \nu^{2}+\frac{35}{10368} \nu^{3}\right\} \\
E_{\mathrm{SO}(x, \tilde{S})}=x^{5 / 2}\left\{S^{*}(-\nu)+S\left(-\frac{4}{3} \nu\right)\right\} \\
\\
+x^{7 / 2}\left\{S^{*}\left(-\frac{3}{2} \nu+\frac{5}{3} \nu^{2}\right)+S\left(-4 \nu+\frac{31}{18} \nu^{2}\right)\right\} \\
\\
+x^{9 / 2}\left\{S^{*}\left(-\frac{27}{8} \nu+\frac{39}{2} \nu^{2}-\frac{5}{8} \nu^{3}\right)+S\left(-\frac{27}{2} \nu+\frac{211}{8} \nu^{2}-\frac{7}{12} \nu^{3}\right)\right\} \\
\\
+x^{11 / 2}\left\{S^{*}\left(-\frac{135}{16} \nu+\frac{565}{8} \nu^{2}-\frac{1109}{24} \nu^{3}-\frac{25}{324} \nu^{4}\right)\right. \\
\left.+S\left(-45 \nu+\left(\frac{19679}{144}+\frac{29 \pi^{2}}{24}\right) \nu^{2}-\frac{1979}{36} \nu^{3}-\frac{265}{3888} \nu^{4}\right)\right\}, \\
\hline E_{S_{152}(x, \tilde{S})}=\tilde{S}_{(1)} \tilde{S}_{(2)}\left\{x^{3}\left\{\nu^{2}\right\}+x^{4}\left\{\frac{5}{6} \nu+\frac{5}{18} \nu^{2}\right\}+x^{5}\left\{\frac{35}{8} \nu-\frac{1001}{72} \nu^{2}-\frac{371}{216} \nu^{3}\right\}\right. \\
\\
\left.+x^{6}\left\{\frac{243}{16} \nu-\left(\frac{2107}{16}-\frac{123}{32} \pi^{2}\right) \nu^{2}+\frac{147}{8} \nu^{3}+\frac{13}{16} \nu^{4}\right\}\right\}, \\
\hline
\end{array} \\
& E_{S_{2}(x, \tilde{S})}=\tilde{S}_{(1)}^{(1)}\left\{x^{4}\left\{\frac{25}{18} \nu^{2}+\frac{1}{q}\left(-\frac{5}{2} \nu+\frac{5}{6} \nu^{2}\right)\right\}\right. \\
& +x^{5}\left\{\frac{10}{3} \nu^{2}-\frac{749}{10 \nu^{3}}+\frac{1}{q}\left(-\frac{21}{4} \nu-\frac{7}{6} \nu^{2}-\frac{217}{36} \nu^{3}\right)\right\} \\
& +x^{6}\left\{\frac{1947}{112} \nu^{2}-\frac{48357}{560} \nu^{3}+\frac{159}{16} \nu^{4}\right. \\
& \left.\left.+\frac{1}{q}\left(-\frac{243}{16} \nu+\left(\frac{747}{16}-\frac{199 \pi^{2}}{2048}\right) \nu^{2}-\frac{13731}{280} \nu^{3}+\frac{153}{16} \nu^{4}\right)\right\}\right\}
\end{aligned}
$$

[^0]: ...Jaranowski, Schaefer, Damour, Blanchet, Faye, Porto, Rothstein, Goldberger, Foffa, Sturani, Bini, Buonanno, Geralico, Sturm, Torres Bobadilla, Bluemlein, Maier, Marquard, Levi, Steinhoff, Vines, Antonelli, Kavanagh, Khalil, Galley, von Hippel, McLeod, Edison, Kim, Morales, Yin, Mandal, Patil, Teng,

