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From Elementary Particles & Feynman Integrals…
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Feynman Integrals

Integration-by-parts Identites

Momentum-space Representation

=

N-denominator  
generic Integral

3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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’t Hooft & Veltman

2.2 Feynman

Ia1,...,aN =

Z LY

i=1

d
d
ki

✓ NY

n=1

1

D
an
n

◆
(2.9)

Z LY

i=1

d
d
ki

@

@k
µ
j

✓
vµ

NY

n=1

1

D
an
n

◆
= 0 (2.10)

vµ = vµ(pi, kj) (2.11)

2.3 Parametric

Ia1,...,aN =

Z

C
u(z) 'N (z) (2.12)

'N (z) = '̂(z)dNz d
N
z = dz1 ^ . . . ^ dzN (2.13)

'N (z) = f(z)
Q

i z
�ai
i , di↵erential m-form

u(z) = P(z)� ,

P = graph-Polynomial

� = generic exponent

Z

C
d

⇣
u(z) 'N (z)

⌘ (
6= 0 ,

= 0 , u(@C) = 0.
(2.14)

2.4 Baikov

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.15)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

z
an
i

(2.16)

B(z) = det(qi · qj) (2.17)

� ⌘ (d� E � L� 1)/2 (2.18)

– 5 –

2.2 Baikov

Z LY

i=1

ddki
⇡d/2

@

@kµj

✓
vµ

NY

n=1

1

Dan
n

◆
= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

zani
(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function
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IBP identities

Chetyrkin, Tkachov (1981)
Laporta, Remiddi (1996)

Caffo, Czyz, Laporta, Remiddi (1998) 
Remiddi (1996)

Remiddi + Bonciani, Argeri & P.M. …

Gehrmann, Remiddi (1999)
Laporta (2000)

… … … …
[Bologna Legacy]



Linear relations for Feynman Integrals identities

 Relations among Integrals in dim. reg.

=

N-denominator  
generic Integral

N-denominator 
Master Integrals

(n<N)-denominator 
Master Integrals 
[subtopologies]

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2

) ) (/p+m) !
X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2

i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q2
1
�m2

1

1

q2
2
�m2

2

· · · 1

q2n �m2
n
=

1

q2
1
�m2

1

1

(q2 � z1⌘)2 �m2
2

· · · 1

(qn � z1⌘)2 �m2
n

+
1

(q1 � z2⌘)2 �m2
1

1

q2
2
�m2

2

· · · 1

(qn � z2⌘)2 �m2
n

+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)
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Pinches

+ +…+ +

1st order Differential Equations for MIs

= + +…+ +

�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1

d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1

d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m2
) = (/p�m)(/p+m) (4.10)

�gµ⌫ =

X
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Motivation
• Gravitational Waves a new window on the Universe  

• Two-body dynamics and radiative effects to exploring the 
most extreme conditions of spacetime and matter 

• Next generation detectors, ground-based and in space, 
need of accurate waveform templates 

• Precision Physics vs Precision Calculations: Multi-Loop 
Calculus, Scattering Amplitudes and General Relativity 
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EM domain collectively comprise the first demonstra-
tion of GW–EM multi- messenger astronomy, providing 
an astounding wealth of knowledge, including the first 
definitive link between BNS merger progenitors and 
short gamma- ray bursts29–37; the first definitive obser-
vation of a kilonova38–46, conclusive spectroscopic proof 
that BNS mergers produce heavy elements through 
r- process nucleosynthesis40,47–52; the first demonstration 
that GWs travel at the same speed as light to better than 
a few parts in 1015 (REF.29); and an independent method 
for measuring the Hubble constant using detected GWs 
as a ‘standard siren’ for determining the absolute distance 
to the source53–55. Additionally, the Advanced LIGO and 
Advanced Virgo detections have enabled tests of GR in 
the strong gravity regime that were inaccessible to other 
experiments and astronomical observations56,57, moti-
vating research on many fronts in fundamental physics 
and astrophysics. This only represents a brief overview of 
the recent discoveries and, as we discuss in detail below, 
captures only a fraction of the potential science afforded 
by future GW observations.

Space- based detectors
When launched in the mid-2030s, the Laser Inter-
ferometer Space Antenna (LISA)58 will possess a breath-
taking scientific portfolio. LISA will explore much of 

the GW Universe in the frequency band from 100 μHz 
to 100 mHz. A constellation of three satellites separated 
by 2.5 × 109 m in an Earth- trailing orbit, LISA will be 
capable of detecting the first seed black holes formed 
out to redshifts z ~ 20 or more59, and intermediate- mass 
and ‘light’ super- massive coalescing black hole systems 
in the 102–107 M⊙ (solar mass) range, thus, tracing the 
evolution of black holes from the early Universe through 
the peak of the star formation era. Through detections 
of extreme mass ratio inspirals (EMRIs, binary systems 
with mass ratios as small as ~10−6)60, LISA will directly 
map the curvature of spacetime at the event horizons of  
massive black holes, yielding even more precise tests  
of GR in the strong gravitational field regime. LISA 
might also detect stellar- mass BBH systems years before 
they are detectable by ground- based detectors61, and 
provide very precise sky localization of such events for 
EM follow- up. By discovering new sources of galactic 
compact binaries comprised of white dwarfs, neutron 
stars and stellar- mass black holes, LISA will survey the 
predominant population of binary compact objects and 
map the structure of the Milky Way62.

The LISA Pathfinder (LPF)63, launched in 2015 and 
operated until mid-2017, has paved much of the way 
for the full- scale LISA mission. LPF was a European 
Space Agency (ESA) mission, with contributions from 

Wave period

Wave
frequency
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Radio pulsar timing arrays Terrestrial interferometersSpace-based interferometers

(Super-)massive black hole inspiral and merger

Extreme-mass-
ratio inspirals

Detectors

10210–210–410–610–10 10–8 1
Hours Seconds Milliseconds

Big BangSources

Compact binary inspiral and merger

Pulsars, supernovae

Fig. 2 | The gravitational- wave spectrum probed by strain- sensitive gravitational- wave detectors, ranging from 
10−9 Hz to more than 1,000 Hz. The source classes are shown above the spectrum and the detectors below. The portion  
of the gravitational- wave spectrum below 10−9 Hz probed through measurements of the cosmic microwave background 
polarization is not shown.

Multi- messenger astronomy
A new field that explores the 
Universe collectively using  
the information carried by 
photons, gravitational waves, 
neutrinos and cosmic rays.

Nucleosynthesis
r- Process nucleosynthesis 
stands for ‘rapid neutron 
capture nuclear process’, 
whereby a nucleus rapidly 
increases its atomic number by 
repeatedly capturing neutrons 
in a neutron- rich environment.

Standard siren
A gravitational- wave source 
that is determining the 
absolute distance to  
the source.

Extreme mass ratio 
inspirals
The orbit of a binary system in 
which the more massive object 
is greater than the less massive 
object by ~10,000 or more.
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Motivation

1. Gravitational Waves Detection and Computational Techniques 

2. Two-body problem in Classical GR and EFT Diagrammatic Approach 

3. Conservative Effects from Near and Far Zone 

4. Spin and Tidal Effects 

Outline

• Gravitational Waves a new window on the Universe  

• Two-body dynamics and radiative effects to exploring the 
most extreme conditions of spacetime and matter 

• Next generation detectors, ground-based and in space, 
need of accurate waveform templates 

• Precision Physics vs Precision Calculations: Multi-Loop 
Calculus, Scattering Amplitudes and General Relativity 

Based on collaborations with:

G. Brunello, J. Steinhoff, M.K. Mandal, R. Patil, H.O. Silva
D. Bini, T. Damour, A. Geralico, S. Laporta
S. Foffa, R. Sturani, C. Sturm, W.J. Torres Bobadilla

7

0123456789();: 

EM domain collectively comprise the first demonstra-
tion of GW–EM multi- messenger astronomy, providing 
an astounding wealth of knowledge, including the first 
definitive link between BNS merger progenitors and 
short gamma- ray bursts29–37; the first definitive obser-
vation of a kilonova38–46, conclusive spectroscopic proof 
that BNS mergers produce heavy elements through 
r- process nucleosynthesis40,47–52; the first demonstration 
that GWs travel at the same speed as light to better than 
a few parts in 1015 (REF.29); and an independent method 
for measuring the Hubble constant using detected GWs 
as a ‘standard siren’ for determining the absolute distance 
to the source53–55. Additionally, the Advanced LIGO and 
Advanced Virgo detections have enabled tests of GR in 
the strong gravity regime that were inaccessible to other 
experiments and astronomical observations56,57, moti-
vating research on many fronts in fundamental physics 
and astrophysics. This only represents a brief overview of 
the recent discoveries and, as we discuss in detail below, 
captures only a fraction of the potential science afforded 
by future GW observations.

Space- based detectors
When launched in the mid-2030s, the Laser Inter-
ferometer Space Antenna (LISA)58 will possess a breath-
taking scientific portfolio. LISA will explore much of 

the GW Universe in the frequency band from 100 μHz 
to 100 mHz. A constellation of three satellites separated 
by 2.5 × 109 m in an Earth- trailing orbit, LISA will be 
capable of detecting the first seed black holes formed 
out to redshifts z ~ 20 or more59, and intermediate- mass 
and ‘light’ super- massive coalescing black hole systems 
in the 102–107 M⊙ (solar mass) range, thus, tracing the 
evolution of black holes from the early Universe through 
the peak of the star formation era. Through detections 
of extreme mass ratio inspirals (EMRIs, binary systems 
with mass ratios as small as ~10−6)60, LISA will directly 
map the curvature of spacetime at the event horizons of  
massive black holes, yielding even more precise tests  
of GR in the strong gravitational field regime. LISA 
might also detect stellar- mass BBH systems years before 
they are detectable by ground- based detectors61, and 
provide very precise sky localization of such events for 
EM follow- up. By discovering new sources of galactic 
compact binaries comprised of white dwarfs, neutron 
stars and stellar- mass black holes, LISA will survey the 
predominant population of binary compact objects and 
map the structure of the Milky Way62.

The LISA Pathfinder (LPF)63, launched in 2015 and 
operated until mid-2017, has paved much of the way 
for the full- scale LISA mission. LPF was a European 
Space Agency (ESA) mission, with contributions from 

Wave period

Wave
frequency

Years

Radio pulsar timing arrays Terrestrial interferometersSpace-based interferometers

(Super-)massive black hole inspiral and merger

Extreme-mass-
ratio inspirals

Detectors

10210–210–410–610–10 10–8 1
Hours Seconds Milliseconds

Big BangSources

Compact binary inspiral and merger

Pulsars, supernovae

Fig. 2 | The gravitational- wave spectrum probed by strain- sensitive gravitational- wave detectors, ranging from 
10−9 Hz to more than 1,000 Hz. The source classes are shown above the spectrum and the detectors below. The portion  
of the gravitational- wave spectrum below 10−9 Hz probed through measurements of the cosmic microwave background 
polarization is not shown.

Multi- messenger astronomy
A new field that explores the 
Universe collectively using  
the information carried by 
photons, gravitational waves, 
neutrinos and cosmic rays.

Nucleosynthesis
r- Process nucleosynthesis 
stands for ‘rapid neutron 
capture nuclear process’, 
whereby a nucleus rapidly 
increases its atomic number by 
repeatedly capturing neutrons 
in a neutron- rich environment.

Standard siren
A gravitational- wave source 
that is determining the 
absolute distance to  
the source.

Extreme mass ratio 
inspirals
The orbit of a binary system in 
which the more massive object 
is greater than the less massive 
object by ~10,000 or more.

NATURE REVIEWS | PHYSICS

ROADMAP

  VOLUME 3 | MAY 2021 | 347

[Bailes et al. 2021]



GW Detection

LIGO-Virgo Detection: GW150914 Bologna is here
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GW Detection

LIGO-Virgo Detection: GW150914
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LIGO-Virgo-KAGRA Collaboration

GW Detection
O3b - Catalogue

Hanford

Livingston Virgo

Kagra
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GW Detection

O3 --> O5  <==>  O(10) --> O(100) GW detections/year 

Prospects for observations within advanced Programs
updated [Abbot et al. 2020]

:: (some) Future GW Detectors

expected sensitivity

[Bailes et al. 2021]

Einstein Telescope Lisa Mission

[credit: CE Consortium]

:: Current GW Detectors: advanced programs

[credit: Ligo News]
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Two-Body Dynamics and GW Signal  

‣Real Event           
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a consortium of European national agencies, as well as 
NASA. It convincingly demonstrated some of the key 
performance requirements for the full LISA mission, 
most notably the displacement sensitivity and control 
of spurious acceleration noise required for LISA. More 
on LISA science is presented in the next section, whereas 
the LISA and LPF detector technology is discussed in 
detail in the last section.

PTAs
Pulsar timing arrays (PTAs)64–67 explore the nano-
hertz portion of the GW spectrum ranging from  
10−9 to 10−6 Hz. Rather than using laser light to meas-
ure variations in detector length as ground- based and 
space- based detectors do, a PTA measures variations in 
the radio frequency pulse arrival times at the Earth from 
an array of millisecond pulsars68,69 (FIG. 6).

Pulsars are rotating neutron stars that act like cos-
mic lighthouses, appearing as periodic pulsating radio 
sources. Because millisecond pulsars, pulsars with peri-
ods between roughly 1.4 and 30 ms, possess rotational 
stabilities comparable with the best atomic clocks, they 
are ideal timing sources. Once effects such as rotational 
spin- down, astrometric position and motion, and orbital 
effects from binary companions are accounted for, the 
pulse arrival times can be precisely modelled and pre-
dicted to fractions of a microsecond for up to decades 
into the future70, and variations arising from GW pertur-
bations can be measured. Distortions in the spacetime 
around Earth or the pulsars will produce systematics 
in timing residuals (deviations of the measured pulse 
arrival times relative to the predicted arrival times), 
and, crucially, spatially correlated systematics in the 
timing residuals of the array of pulsars across the sky71. 
A GW emitted from a single binary system passing the 
pulsar- Earth system will cause two frequency compo-
nents in the time series of the timing residuals: one from 
the spacetime variations at the pulsar (‘pulsar term’), the 
other from variations at the Earth (‘Earth term’), with 
different frequencies resulting from changes in the 
orbital frequency of the emitting source during the time 
it takes for the radio pulses to travel to the Earth. The top 
panel of FIG. 7 shows the expected detection in the form 
of the Hellings and Downs curve, the correlated response of 
a pair of pulsar- Earth baselines to a stochastic GW back-
ground averaged over all sky positions and polarizations 

as a function of the angle between the pulsar pair- Earth 
baselines71.

Pulsars are observed at monthly or more rapid 
cadences in order to sample and measure changing pro-
perties, such as the position of the pulsar (that is, proper 
motion) and varying dispersion due to the interstellar 
medium. In addition, they must be observed for roughly 
one half- hour per observation to average over enough 
of the pulses to mitigate the effects of jitter induced by 
astrophysical and receiver noise. The observations them-
selves cover very wide bandwidths (>GHz) or occur 
near- simultaneously at multiple radio frequencies in 
order to correct for the effects of interstellar dispersion. 
Pulsar timing instruments must have fine frequency 
reso lution (~1 MHz) to correct for these effects, coupled 
with high time resolution in order to sufficiently sample 
the roughly millisecond- wide radio pulses.

As each pulsar needs to be timed for about a year 
(equivalent to one Earth orbit) to be properly localized 
and understood, PTA experiments must have years- long 
durations. In practice, the lower end of the frequency 
window is given by the length of the data set (currently 
about 1 nHz), whereas the upper end is given by the 
cadence of the timing observations (currently about 
1 μHz). Timing residual amplitudes of about 100 ns or 
less are resolved for the best timed millisecond pulsars.

Today, there are three major PTAs: the Parkes PTA72 
in Australia, the European PTA Consortium65 and the 
NANOGrav73 consortium in North America. These 
arrays regularly achieve sub- microsecond timing on 
over 100 millisecond pulsars (MSPs), which collec-
tively form the International Pulsar Timing Array74 
(IPTA). PTA science is often sensitivity- limited, and 
many of the MSPs being discovered in recent sur-
veys have flux densities that often require hour- long 
observations with 100- m class (or larger) telescopes 
to achieve the requisite sub- microsecond timing. The 
Five- hundred- meter Aperture Spherical Telescope 
(FAST) (500 m diameter) and MeerKAT (64 antennas ×  
13.7 m diameter) telescopes have been commissioned, 
and are now commencing regular MSP timing, joining 
many existing 64–100- m class facilities in the Northern 
Hemisphere, and the Parkes 64- m telescope in the 
Southern Hemisphere. FIGURE 7 illustrates the radio 
telescopes used for pulsar timing experiments around 
the globe. NANOGrav has used two telescopes — the  

Laser

Output
photodiode

GW strain

GW strain

GW propagation
direction

Time

St
ra

in
 a

m
pl

it
ud

e

Fig. 3 | The concept of a simple laser interferometer gravitational- wave detector. A gravitational- wave (GW) strain 
shortens one arm while lengthening the other as it passes the detector, resulting in a slight difference in round- trip travel 
time for the laser light. This, in turn, leads to a phase shift of the light in one arm of the detector relative to the other, 
creating a change in light intensity at the photodetector. The time- dependent intensity recorded by the photodetector 
produces a reconstruction of the propagating GW.

Timing residuals
Deviations of the measured 
pulsar pulse arrival times 
relative to the modelled arrival 
times based on the known 
physics of pulsar emissions.

Hellings and Downs curve
The predicted angular 
correlation of the timing 
residuals of an ensemble of 
independent pairs of pulsars  
as seen from Earth resulting 
from the presence of a 
gravitational- wave background.
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‣Waveform Model and Computing Techniques
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Post-Newtonian /  
Post-Minkowskian 

Theory

 EOB 
Resummation 

‣Waveform Model and Computing Techniques

Overlapping expansions in the binary problem

Kavli-RISE Summer School on GWs () Black-hole perturbation theory 5 / 73

[adapted from: Barak]

Post-Newtonian

Post-Minkowskian

Tutti 
FruttiEOB

B2B
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Two-Body Dynamics and GW Signal  

• Post-Minkowskian Expansion  
[relativistic scattering] 
 

• Post-Newtonian Expansion  
[non relativistic system] 
 

• BH perturbation theory / self force 

Effective One Body (EOB) Formalism  
the contributions coming from different kinematic regions for 
combined and calibrated with Numerical Relativity
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[Buonanno Damour]
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M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
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Conservative system :: 
   GW emission

:: Effective Field Theory Approach

:: Double Hierarchy 

‣Fundamental [complete] theory      S[ϕ, ψ]

Heavy fields  :      ,            
short distance  

Light modes  :    ,   
 large distance  

ψ Λ
rs

ϕ ω ≪ Λ
r

‣Effective [incomplete] theory     Seff[ψ]

⇒ ϕ
ψ

e
iSeff [ϕ]

ℏ = ∫ Dψ e
iS[ϕ, ψ]

ℏ

‣ Sensitive to the Lower-scale dynamics:    ω ≪ Λ

rs ≪ r ≪ λrad

rs ≪ r ≪ λrad

rs

rs

rs

rs

λrad

Coalescing Binary System
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GREFT / Action

‣Weak field expansion:
gμν = ημν + hμνv ≪ 1 hμν = Hμν + h̄μν

• Potential gravitons     

•  Radiation gravitons   

Hμν : (k0, k) ∼ ( v
r

,
1
r )

h̄μν : (k0, k) ∼ ( v
r

,
v
r )

Hμν

h̄μν

eiSeff[xa] = ∫ Dh̄ ∫ DH eiStot[xa,H,h̄]

Sma
[xa, g] = Spp[xa, g] + δSma

[xa, g]

Stot[xa, g] = SGR[g] + Sma
[xa, g]

SGR[g] = 2Λ2 ∫ dd+1x −g(R −
1
2

ΓμΓμ)
= − ma ∫ dτa = − ma ∫ dt −gμν(xa) ·xμ

a
·xν
a

•  Worldline/BH      xa :

‣Effective action by integrating out gravitons:

[Beneke Smirnov]

•  Einstein Hilbert + gauge fixing •  Source/Worldline

Λ−1 = 32πGN

[Goldberger, Rothstein]

19

‣Non-relativistic approximation [method of regions]:          
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2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

38 CHAPTER �. EFT OF A COALESCING BINARY SYSTEM IN GENERAL RELATIVITY

2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

38 CHAPTER �. EFT OF A COALESCING BINARY SYSTEM IN GENERAL RELATIVITY

2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

38 CHAPTER �. EFT OF A COALESCING BINARY SYSTEM IN GENERAL RELATIVITY

2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
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modes with dotted lines and radiative modes with wiggled ones.
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Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:
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where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
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= ∫ Dh̄ e{iSbulk[h̄] +

∫ DH eiStot[xa,H,h̄=0] =
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2.6 Near zone contributions to the conservative dynamics
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start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):
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= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.
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‣Near zone ( ):  
 

‣Far zone ( ):  

r

λrad

Spot[xa, g] = SGR[g] + Sma
[xa, g]

Srad[g, {Qi}] = SGR[g] + Smult[g, {Qi}]

gμν = ημν + Hμν

gμν = ημν + h̄μν

eiSeff[xa] = ∫ Dh̄ ∫ DH eiStot[xa,H,h̄]
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+  ...

GREFT / Action / Near & Far Zone

∫ Dh̄ eiSrad[xa,h̄] =
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[Goldberger, Rothstein]
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Conservative Dynamics :: Near Zone Spinless
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Near Zone/EFT Diagrammatic Approach
Spot[xa, g] = SGR[g] + Sma

[xa, g] Sma
[xa, g] = Spp[xa, g] + δSma

[xa, g]

‣Kaluza-Klein parametrization:   

gμν = e2ϕ/Λ(
−1 Aj /Λ

Ai/Λ e−cd
ϕ
Λ γij − AiAj /Λ2)

γij = δij +
σij

Λ
cd = 2

d − 1
d − 2

σijgμν ⇒ ϕ Ai

Graviton = Scalar + Vector + Sym. Tensor
10 1 + 3 + 6

‣Feynman rules for: 

Propagators: 
ϕ
Ai

σij

Self-interactions: Source couplings: 

σijϕ Ai xa

Static / non-propagating source: xa

[Kol Smolkin] [Blanchet Damour]

+ … 
+ … 

[Goldberger, Rothstein]

[Foffa, Sturani]
[Gilmore, Ross]
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Newton Potential

‣Fourier transform: from amplitude to the effective action: ℒ0PN = − i lim
d→3 ∫

ddp
(2π)d

eip(x1−x2)( ) =
GNm1m2

r

=
im1m2

2cdΛ2

1
p2ℳ0PN =

Diagrammatic approach

‣Just 1 diagram: 

23



Newton Potential

‣Non-relativistic velocities:   
 

‣ Dynamics in Post-Minkowskian  
 perturbative scheme 

‣At nPM order:     

v2 ≪ 1

Gn
N

Corrections to the Newtonian potential: 
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h⇥(⌧, ✓) =
1

r

✓
GNMc

c2

◆5/4✓ 5

c⌧

◆1/4

cos(✓)sin(�(t)) , (1.101)

where ⌧ = tcoal � t is the time to coalescence.
From (1.92) and (1.99) we obtain the time dependence of the GW phase �:

�(⌧) = �2

✓
5GNMc

c3

◆�5/8

⌧5/8 + �0 (1.102)

in which we used d⌧ = �dt and the integration constant �0 associated to the value of � at coalescence,
namely �0 = �(⌧ = 0).
Approaching the coalescence this quasi-circular orbit description eventually loses its validity, due to
the visible growth of Ṙ and ẇs, however at this stage we would be definitely outside the inspiral
phase, namely the one we are interested in.
Besides, even within the quasi-circular regime the currently achieved results represent only a first step
in the modeling of binary-radiated GWs, suitable to support the detection experiments, since they
are the ultimate offspring of the quadrupole approximation in the context of Newtonian dynamics.
In the next section we will address the problems one encounters in trying to go beyond linearized
General Relativity and introduce possible analytical methods to accomplish that.

1.7 Beyond Linearized General relativity

Figure 1.2: Contributions to PM and PN perturbative schemes at different orders. PM order scales with the
number of horizontal lines, whereas PN order is increases along the diagonals

In order to describe the production of GWs in a multipole expansion in v/c, with v the typical internal
speed of the system, we assumed that the background space-time is the usual Minkowski one, and
that the GWs sources do not contribute to the space-time curvature. However, this assumption is
valid only if the background space-time curvature and the velocity of the source can be treated as
independent variables. Unfortunately, this is not the case if the system is governed by gravitational
forces.
Indeed, for a self-gravitational system the virial theorem holds:

v2

c2
⇠ rs

r
, (1.103)

where rs = 2Gm/c2 is the Schwarzschild radius, m the total mass, and r the typical size of the
system. Since the ratio rs/r is a way to quantify the strength of the gravitational field around the
corresponding system, if we want to increase multipoles we need to modify the background space-
time. Therefore, we cannot proceed straightforwardly in the multipole expansion while remaining
in the theoretical framework of the previous sections. We need to use more accurate models which
give us general relativistic corrections as progressive deviations from the Minkowskian background

1PM
2PM
3PM
4PM
5PM
6PM
7PM

0PN 1PN 2PN 3PN 4PN 5PN 6PN

Astrophysicists/Cosmologists’ whishlist

1979-81

2019

2021

‣Fourier transform: from amplitude to the effective action: ℒ0PN = − i lim
d→3 ∫

ddp
(2π)d

eip(x1−x2)( ) =
GNm1m2

r

=
im1m2

2cdΛ2

1
p2ℳ0PN =

Diagrammatic approach

‣Just 1 diagram: 

…Westphal, Damour, Cheung, Rothstein, Solon, Bern, Roiban, Shen, Zeng, Parra-Martinez, Ruf, 
Hermann, Buonanno, Porto, Dlapa, Kalin, Liu, Neef, Bjerrum-Bohr, Vanhove, Plante, Cristofoli, Damgaard,  
Guevara, Ochirov, Vines, Di Vecchia, Veneziano, Heisenberg, Russo, Plefka, Jakobsen, Mogull, 
Brandhuber, Travaglini, De Angelis, Accetulli-Huber, Luna, Kosmopoulos, and collaborators… 

[credit: Bern et al.]
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Newton Potential

‣Fourier transform: from amplitude to the effective action: ℒ0PN = − i lim
d→3 ∫

ddp
(2π)d

eip(x1−x2)( ) =
GNm1m2

r

=
im1m2

2cdΛ2

1
p2ℳ0PN =

Diagrammatic approach

‣Just 1 diagram: 

‣Non-relativistic velocities:   

‣Virial theorem:        

‣ Dynamics in Post-Newtonian  
perturbative scheme 

‣At nPN order:     

v2 ≪ 1

GNm
r

≈ v2

Gn−ℓ
N v2ℓ

Corrections to the Newtonian potential: Extensive work in the spinless PN theory, using (mostly) traditional methods: 

Ohta, Okamura, Kimura, Hiida, Jaranowski, Schäfer, Damour, Jaranowski, Blanchet, Faye, Porto, Rothstein, 
Iyer, Will, Wiseman, Poisson, Cutler, Finn, Flanagan, Deruelle, Thorne, Sathyaprakash, Bini, Geralico, Goldberger, 
Rothstein, Buonanno, Le Tiec, Marsat, Foffa, Sturani, Mastrolia, Sturm, Torres Bobadilla, Blümlein, Maier, Marquard, etc.
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h⇥(⌧, ✓) =
1

r

✓
GNMc

c2

◆5/4✓ 5

c⌧

◆1/4

cos(✓)sin(�(t)) , (1.101)

where ⌧ = tcoal � t is the time to coalescence.
From (1.92) and (1.99) we obtain the time dependence of the GW phase �:

�(⌧) = �2

✓
5GNMc

c3

◆�5/8

⌧5/8 + �0 (1.102)

in which we used d⌧ = �dt and the integration constant �0 associated to the value of � at coalescence,
namely �0 = �(⌧ = 0).
Approaching the coalescence this quasi-circular orbit description eventually loses its validity, due to
the visible growth of Ṙ and ẇs, however at this stage we would be definitely outside the inspiral
phase, namely the one we are interested in.
Besides, even within the quasi-circular regime the currently achieved results represent only a first step
in the modeling of binary-radiated GWs, suitable to support the detection experiments, since they
are the ultimate offspring of the quadrupole approximation in the context of Newtonian dynamics.
In the next section we will address the problems one encounters in trying to go beyond linearized
General Relativity and introduce possible analytical methods to accomplish that.

1.7 Beyond Linearized General relativity

Figure 1.2: Contributions to PM and PN perturbative schemes at different orders. PM order scales with the
number of horizontal lines, whereas PN order is increases along the diagonals

In order to describe the production of GWs in a multipole expansion in v/c, with v the typical internal
speed of the system, we assumed that the background space-time is the usual Minkowski one, and
that the GWs sources do not contribute to the space-time curvature. However, this assumption is
valid only if the background space-time curvature and the velocity of the source can be treated as
independent variables. Unfortunately, this is not the case if the system is governed by gravitational
forces.
Indeed, for a self-gravitational system the virial theorem holds:

v2

c2
⇠ rs

r
, (1.103)

where rs = 2Gm/c2 is the Schwarzschild radius, m the total mass, and r the typical size of the
system. Since the ratio rs/r is a way to quantify the strength of the gravitational field around the
corresponding system, if we want to increase multipoles we need to modify the background space-
time. Therefore, we cannot proceed straightforwardly in the multipole expansion while remaining
in the theoretical framework of the previous sections. We need to use more accurate models which
give us general relativistic corrections as progressive deviations from the Minkowskian background
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A closer look to 4PN anatomy
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Figure 2. Four-loop 2-point topologies corresponding to the diagrams in fig.1.

3 Amplitudes and Feynman Integrals

In general, within the EFT approach, since the sources (black lines) are static and do not
propagate, any gravity-amplitude of order G`

N
can be mapped into an (`� 1)-loop 2-point

function with massless internal lines and external momentum p, where p2 ⌘ s 6= 0,

= . (3.1)

Accordingly, the 50 diagrams in fig.1 can be mapped onto the 29 topologies of fig.2, where
the sets T1 = {1, 2, 3, 4, 5, 6}, T2 = {7, 8, 10, 11, 14, 16, 17, 20, 21, 25}, T3 = {9, 12, 13, 22},
T4 = {15, 18, 19, 23, 24}, collect the diagrams that share the same topology. For instance,
the diagrams 1 to 6 of fig.1 correspond to integrals which have the same five denominators
of the graph indicated by T1 in fig.2, but different numerators, due to the different terms
associated to 1,2,3 or 4 � emission or absorption from the massive particle.

The representation of the gravity-amplitudes as 4-loop 2-point integrals yields the pos-
sibility of evaluating the latter by means of by-now standard multi-loop techniques based
on integration-by-parts identities (IBPs) [27, 28].

Accordingly, we collect the 50 amplitudes of fig.1 in two sets, AI = {1 : 28, 31, 32, 35 :

37, 39, 41, 45 : 47} and AII = {29, 30, 33, 34, 38, 40, 42, 43, 44, 48, 49, 50}, and address their
computation separately.

– 7 –
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M1,3 M1,4 M2,2 M3,6

Figure 3. The master integrals which appear in the calculation of the amplitudes in the set AII .
The name of the diagrams follow Refs. [37–39].

The set AI contains diagrams with a simpler internal structure, and they have been
computed by using the kite rule [27, 28]

(4� d)

2
= � , (3.2)

where the dots stand for squared denominators, and by using the standard identity holding
for 2-point 1-loop graphs,

Z
ddk

(2⇡)d
1

k2a(p� k)2b
=

a

b

=

�
p2
�
d/2�a�b

(4⇡)d/2
�(d/2� a)�(d/2� b)�(a+ b� d/2)

�(a)�(b)�(d� a� b)
, (3.3)

where a and b are generic denominators’ powers. Alternatively, we also performed an IBP-
reduction using the program Reduze [35, 36], identifying 5 master integrals (MIs), namely
M0,1, M1,1, M1,2, M1,3, M1,4 of fig. 3.

The amplitudes AII , instead, have a less trivial internal structure. By means of IBPs,
they have been systematically reduced to linear combinations of 7 MIs, all shown in fig. 3.
In this case, the reduction to MIs has been performed in two ways, by an in-house imple-
mentation of Laporta’s algorithm which is based on Form [40–42], as well as by means of
Reduze.

The 4-loop MIs in fig. 3 can be considered as a complete set of independent integrals,
such that any amplitude of the sets AI and AII can be written as a linear combination
of them. The results of the 4-loop MIs are well-known in d = 4 + " euclidean space-
time dimensions since long [37, 38], while their values around d = 3 + " became available
more recently [39]. In particular, M0,1, M1,1, M1,2, M1,3, M1,4 can be computed in a
straightforward way by means of eq. (3.3), and admit closed analytic expressions, exact in
d, which can be expanded in Laurent series in " around d = 3. On the other side, the series
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GREFT Diagrams & 2pt-QFT Integrals / Factorization Th'm

3

Figure 1. Examples of a prime 4PN-graph (left) and of a
factorizable 5PN-graph (right): the latter, can be obtained
by sewing the former and the Newton potential diagram.

of �ij ’s; the latter cannot however be attached to any
particle, see eq.(5), so they can just propagate between
bulk vertices. This observation is crucial to prove an
important property of prime graphs, which constitute
the first novel result of this communication:

Theorem: Static prime graphs exist only at even 2n-
PN orders. Equivalently, static graphs at odd (2n+1)-PN
orders are factorizable.

Proof: This statement can be proven by showing that
any prime static graph must have an even number of �
fields attached to the particles.

For the Newtonian graph, it is trivially true by con-
struction. Graphs generated by PN-corrections, O(G2

N ),
necessarily contain bulk vertices ���k (with k � 1), com-
ing from the expansions of the graviton self-interaction
terms. For these diagrams, two cases may occur: i) each
internal � propagator is contracted on the one side with
a matter-� vertex, and, on the other side, with a ���k

vertex, therefore it contributes with one power of mi to
the mass-dimensions of the graph; ii) a � propagator, not
coupled with matter, must necessarily connect two ���k

vertices, therefore it does not contribute to the mass-
dimensions of the graph. Since the bulk vertices between
� and � fields (���, ����, . . . ) are quadratic in �, and
because prime graphs are characterized by either (i) or
(ii) , we can conclude that the total number of � fields
that depart from the bulk vertices and couple to matter
(either m1 or m2) is an even number.

This implies that, being ni the number of � fields cou-
pled to the matter mi (i = 1, 2), the total mass-like power
of static prime graphs is mn1

1
mn2

2
, with n1 + n2 = 2n

and n 2 N+. On the other side, they correspond
to static classical contributions, therefore, they must

consequently scale as G(2n�1)

N mn1
1

mn2
2

/r(2n�1) (classical
diagrams do not contain loops in the dynamical fields),
finally implying that they belong to an even-PN order. ⇤

Due to the factorization theorem, the general struc-
ture of the contribution to the potential of a given n-PN
factorizable diagram, in terms of the product of lower
PN-order graphs, reads

V
factorizable

n =
⇣
VL,n1 ⇥ VR,n2

⌘
⇥K ⇥ C , (10)

where: i) the PN-orders, n1 of the left graph VL and
n2 of the right graph VR, are such that n1 + n2 + 1 =

n; ii) K accounts for the new matter-�k vertex of Vn

(emerging from the sewing) out of the ones included in
the lower order contributions, VL,n1 and VR,n2 ; and iii)
C = Cfactorizable

n /(CL,n1 ⇥ CR,n2) where the C’s are the
combinatoric factors associated with each graph.

GRAVITY AND FIELD THEORY DIAGRAMS

In a quantum field theory approach, any EFT-gravity
graph can be interpreted as four-particle scattering am-
plitude [24]. The contribution of each amplitude to
the two-body potential V can be obtained by taking its
Fourier transform,

V = i lim
d!3

Z

p
eip·r

1

2 3

4

(11)

where,
R
p ⌘

R
ddp/(2⇡)d, the box diagram stands for

a generic EFT-gravity diagram, and p is the momentum
transfer of the source (assuming momentum conservation
p1 + p2 = p3 + p4, then p = p3 � p2 = p1 � p4). Since
the sources, represented by black lines, are static and
do not propagate, any EFT-gravity amplitude at order
G`

N can be mapped into an (`� 1)-loop 2-point function
with massless internal lines and external momentum p
(p2

6= 0) [24]. This observation was crucial to perform the
4PN static calculation, by employing computational tech-
niques developed for the evaluation of multi-loop Feyn-
man integrals in high-energy particle physics. Moreover,
in the current work, we observe that the integration on
p can be seen as an additional loop integration, hence
it can be represented by an `-loop vacuum diagram, ob-
tained by joining the external legs into a propagator-like
line (indicated by an inner black line), as

Z

p
eip·r

⌘ ! . (12)

In the last step, we introduce a suggestive diagrammatic
representation of the Fourier integral as an `-loop vac-
uum graph by pinching the internal black line. The pres-
ence of the dot “•” indicates the residual r-dependence
of the contribution (not to be confused by fully massless,
hence scaleless vacuum diagrams that vanish in dimen-
sional regularization). For instance, Newton’s potential
can be represented as a one-loop vacuum graph:

Z

p
eip·r =

Z

p
eip·r

⌘ ! . (13)

In the case of factorizable EFT-diagrams, the pinch-
ing generates the product of factorized vacuum diagrams.
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Figure 1. Examples of a prime 4PN-graph (left) and of a
factorizable 5PN-graph (right): the latter, can be obtained
by sewing the former and the Newton potential diagram.

of �ij ’s; the latter cannot however be attached to any
particle, see eq.(5), so they can just propagate between
bulk vertices. This observation is crucial to prove an
important property of prime graphs, which constitute
the first novel result of this communication:

Theorem: Static prime graphs exist only at even 2n-
PN orders. Equivalently, static graphs at odd (2n+1)-PN
orders are factorizable.

Proof: This statement can be proven by showing that
any prime static graph must have an even number of �
fields attached to the particles.

For the Newtonian graph, it is trivially true by con-
struction. Graphs generated by PN-corrections, O(G2

N ),
necessarily contain bulk vertices ���k (with k � 1), com-
ing from the expansions of the graviton self-interaction
terms. For these diagrams, two cases may occur: i) each
internal � propagator is contracted on the one side with
a matter-� vertex, and, on the other side, with a ���k

vertex, therefore it contributes with one power of mi to
the mass-dimensions of the graph; ii) a � propagator, not
coupled with matter, must necessarily connect two ���k

vertices, therefore it does not contribute to the mass-
dimensions of the graph. Since the bulk vertices between
� and � fields (���, ����, . . . ) are quadratic in �, and
because prime graphs are characterized by either (i) or
(ii) , we can conclude that the total number of � fields
that depart from the bulk vertices and couple to matter
(either m1 or m2) is an even number.

This implies that, being ni the number of � fields cou-
pled to the matter mi (i = 1, 2), the total mass-like power
of static prime graphs is mn1

1
mn2

2
, with n1 + n2 = 2n

and n 2 N+. On the other side, they correspond
to static classical contributions, therefore, they must

consequently scale as G(2n�1)

N mn1
1

mn2
2

/r(2n�1) (classical
diagrams do not contain loops in the dynamical fields),
finally implying that they belong to an even-PN order. ⇤

Due to the factorization theorem, the general struc-
ture of the contribution to the potential of a given n-PN
factorizable diagram, in terms of the product of lower
PN-order graphs, reads

V
factorizable

n =
⇣
VL,n1 ⇥ VR,n2

⌘
⇥K ⇥ C , (10)

where: i) the PN-orders, n1 of the left graph VL and
n2 of the right graph VR, are such that n1 + n2 + 1 =

n; ii) K accounts for the new matter-�k vertex of Vn

(emerging from the sewing) out of the ones included in
the lower order contributions, VL,n1 and VR,n2 ; and iii)
C = Cfactorizable

n /(CL,n1 ⇥ CR,n2) where the C’s are the
combinatoric factors associated with each graph.

GRAVITY AND FIELD THEORY DIAGRAMS

In a quantum field theory approach, any EFT-gravity
graph can be interpreted as four-particle scattering am-
plitude [24]. The contribution of each amplitude to
the two-body potential V can be obtained by taking its
Fourier transform,

V = i lim
d!3

Z

p
eip·r

1

2 3

4

(11)

where,
R
p ⌘

R
ddp/(2⇡)d, the box diagram stands for

a generic EFT-gravity diagram, and p is the momentum
transfer of the source (assuming momentum conservation
p1 + p2 = p3 + p4, then p = p3 � p2 = p1 � p4). Since
the sources, represented by black lines, are static and
do not propagate, any EFT-gravity amplitude at order
G`

N can be mapped into an (`� 1)-loop 2-point function
with massless internal lines and external momentum p
(p2

6= 0) [24]. This observation was crucial to perform the
4PN static calculation, by employing computational tech-
niques developed for the evaluation of multi-loop Feyn-
man integrals in high-energy particle physics. Moreover,
in the current work, we observe that the integration on
p can be seen as an additional loop integration, hence
it can be represented by an `-loop vacuum diagram, ob-
tained by joining the external legs into a propagator-like
line (indicated by an inner black line), as

Z

p
eip·r

⌘ ! . (12)

In the last step, we introduce a suggestive diagrammatic
representation of the Fourier integral as an `-loop vac-
uum graph by pinching the internal black line. The pres-
ence of the dot “•” indicates the residual r-dependence
of the contribution (not to be confused by fully massless,
hence scaleless vacuum diagrams that vanish in dimen-
sional regularization). For instance, Newton’s potential
can be represented as a one-loop vacuum graph:

Z

p
eip·r =

Z

p
eip·r

⌘ ! . (13)

In the case of factorizable EFT-diagrams, the pinch-
ing generates the product of factorized vacuum diagrams.
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2n

+1

2n + 1 = n1 + n2 + 1

5

1. There are 11 diagrams composed of 6 Newtonian fac-
tors, combined in di↵erent ways, and schematically rep-
resented as

 !6

. (24)

The contribution to the 5PN potential coming from this
set of diagrams is:

VN6 =
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720
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+ (m1 $ m2) . (25)

2. One can build static factorizable diagrams as prod-
ucts of 3 Newtonian graphs, and either of the 2PN prime
graphs, schematically represented as:

 !3

⇥

0

@

1

A . (26)

This set contains 49 diagrams, 9 of which are vanishing,
because one of the 2PN-factors is indeed zero. The com-
bined contribution of the remaining diagrams is:

VN3⇥2PN =
1

18

G6

Nm6

1
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+

16

3

G6

Nm5

1
m2

2

r6

+
229
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3. In this class, we consider 5PN diagrams schematically
represented by the product of one Newtonian graph with
each of the 25 static prime 4PN diagrams studied in [24],
(the cardinal number attached to each graph is the same
as in [24], for ease of comparison)
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This set contains 79 diagrams, 16 of which are vanish-
ing (due to vanishing 4PN-factors). The remaining 63
diagrams give:

VN⇥4PN =
1

5
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Nm6

1
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166
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r6
+ (m1 $ m2) . (29)

Interestingly, let us observe that although this set con-
tains contributions which are individually divergent in
the d ! 3 limit, as well as factors of ⇡2, within their sum

all poles and irrational factors cancel, and the result is
indeed finite and rational.

4. Finally, we consider static 5PN diagram formed by the
product of two 2PN-graphs, schematically represented as

0

@

1

A
2

. (30)

This term contains 15 5PN graphs, 5 of which are mani-
festly vanishing, while the contribution of the remaining
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all poles and irrational factors cancel, and the result is
indeed finite and rational.

4. Finally, we consider static 5PN diagram formed by the
product of two 2PN-graphs, schematically represented as
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This term contains 15 5PN graphs, 5 of which are mani-
festly vanishing, while the contribution of the remaining
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2. One can build static factorizable diagrams as prod-
ucts of 3 Newtonian graphs, and either of the 2PN prime
graphs, schematically represented as:
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This set contains 49 diagrams, 9 of which are vanishing,
because one of the 2PN-factors is indeed zero. The com-
bined contribution of the remaining diagrams is:
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3. In this class, we consider 5PN diagrams schematically
represented by the product of one Newtonian graph with
each of the 25 static prime 4PN diagrams studied in [24],
(the cardinal number attached to each graph is the same
as in [24], for ease of comparison)
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This set contains 79 diagrams, 16 of which are vanish-
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tains contributions which are individually divergent in
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Interestingly, let us observe that although this set con-
tains contributions which are individually divergent in
the d ! 3 limit, as well as factors of ⇡2, within their sum

all poles and irrational factors cancel, and the result is
indeed finite and rational.
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This term contains 15 5PN graphs, 5 of which are mani-
festly vanishing, while the contribution of the remaining
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Total 5PN static potential. By combining all the pre-
vious results, the expression for the static sector of the
5PN potential finally reads,

V
(5PN)

static
= VN6 + VN3⇥2PN + VN⇥4PN + V(2PN)2 =
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This expression contains the genuine G6

N contribution
coming from graphs, without contributions generated
from lower-GN terms when using the equations of mo-
tion to eliminate terms quadratic at least in the accel-
erations. Together with the factorization theorem, the
above result constitutes the second important result of
this manuscript.

Check: test-particle limit. It is possible to verify that
the coe�cient of the term m6

1
m2 agrees with what can

be expected from the extreme mass ratio limit m2 ⌧

m1. In this limit, where only the graphs displayed in
fig. 3 contribute, it is possible to consider the body with
mass m2 as a test particle in the Schwarzschild metric
generated by the body with mass m1.

Figure 3. 5PN-graphs contributing to the test-particle limit.
The last graph (bottom-right) does not contribute to the 5PN
potential, because its 4PN subdiagram vanishes.

The action describing the dynamics of the test body
has still the form Spp described in eq.(2), but with gµ⌫
given by the Schwarzschild metric in harmonic coordi-
nates (which is obtained from the traditional form by the
simple radial coordinate shift r ! r + GNm1) instead of
the Minkowski one.

In the static limit, v2 = 0, only the term g00 survives,
and the e↵ective Lagrangian reads

L
m2⌧m1
static

= �m2

p
�g00 = �m2

s
1 �

GNm1
r

1 + GNm1
r

. (33)

By expanding this expression in GNm1
r , one obtains the

sequence
(1,� 1

2
, 1

2
,� 3

8
, 3

8
,� 5

16
, 5

16
,� 35

128
, 35

121
,� 63

256
, . . . ) of all the

coe�cients of the nPN static terms Gn
Nmn

1
m2/rn, in-

cluding the �
5

16
of the 5PN term reported in eq.(32)

(where the potential is correctly reported with opposite
sign w.r.t. to the lagrangian term).

CONCLUSION

We studied the two-body conservative dynamics at
fifth post-Newtonian order (5PN) in the static limit
within the e↵ective field theory (EFT) approach to Gen-
eral Relativity. We determined an essential contribu-
tion of the complete 5PN potential at O(G6

N ), coming
from 154 Feynman diagrams. We proved a factorization
property of the static diagrams at odd-PN order, and
exploited it to show that their contribution can be de-
termined recursively, from lower PN-orders. The result
of the static potential at order G6

N is found to be finite
and rational - a property clearly inherited from the static
G5

N sector - and exhibits the expected Schwarzschild-like
behaviour in the extreme mass ratio limit.
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(2n+1)-PN corrections: Type-A

(2n+1)-PN corrections: Type-B

 

‣ static (2n+1)-PN Potential as product of lower-PN Potential terms ‣Factorization Th'm: NO 5-loop diagram explicitly computed

‣Results confirmed and completed by explicit evaluation of 2pt-QFT 5-loop 
Integrals

5PN static O(G^6): 154 5-loop GREFT diagrams

Blümelein, Maier, Marquard, Schäfer (2019-21)  

5PN O(G^5 v^2): 1220 4-loop GREFT diagrams
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‣Far zone contributions to the conservative 
dynamics are needed, starting at  order4PN

Smult[h̄, {Qi}] = ∫ dt[ 1
2

Eh̄00 −
1
2

ϵijkLih̄0j,k −
1
2

Qijℰij −
1
6

Oijkℰij,k −
2
3

JijBij + . . . ]
  are the electric and magnetic components  
of the Riemann tensor 

 multipole moments 

ℰij, Bij

{Qi} : E, Li, Qij, Oijk, Jij

{Qi} {Qi} {Qi}

Thorne (1980) 
Goldberger, Rothstein (2005)  

Goldberger, Ross (2009) 
Galley, Tiglio (2009,2012)  

Foffa, Sturani (2012); Ross (2012) 
Galley, Leibovich, Porto, Ross (2015) 

Leibovich, Maia, Rothstein, Yang (2019) 
Blanchet et al.(2021) 

…….

Multipole source emitting 
gravitons

{Qi}

r ≪ λrad

Srad[g, {Qi}] = SGR[g] + Smult[g, {Qi}]

{Qi}
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2.6 Near zone contributions to the conservative dynamics

If we focus on the near zone, in order to evaluate contributions to the conservative dynamics, we can
start from Seff (xa, Hµ⌫ , h̄µ⌫) and integrate out the potential modes to get SNR(xa, h̄):

eiSNR(xa,h̄) =

Z
DHµ⌫e

i(Sbulk(h̄+H)+Spp(xa,h̄+H))

= exp

⇢
+ , +

�
, (2.96)

where curly lines denotes radiation gravitons whereas the double solid line represents the compact
binary. In that way SNR(xa, h̄) contains two-body forces between the point particles, written as an
explicit expansion in powers of v, and the couplings of the worldlines to radiation.
Diagrammatically, Seff (xa, h̄) can be obtained by summing diagrams that have the following topo-
logical properties:

1. diagrams must remain connected if the particles worldlines are stripped off,

2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

=
EFT matching

Far Zone/EFT Diagrammatic Approach

‣Long-wavelength EFT:   

‣Multipole Action: 
Binary system as a linear source  of size  emitting : Tμν r h̄μν Smult = −

1
2 ∫ d4xTμνh̄μν

Tμν

ℰij = R0i0j ≈ −
1
2 (h̄00,ij +

··̄
hij −

·̄
h0i, j −

·̄
h0j,i + 𝒪(h̄2))

Bij =
1
2

ϵiklR0jkl ≈
1
4

ϵikl( ·̄
hjk,l −

·̄
hjl,k + h̄0l, jk − h̄0k, jl + 𝒪(h̄2))
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‣Contributions to the conservative dynamics by integrating out radiation gravitons: 
 
 
 
 

‣Hereditary Effects: GWs emitted by the source and then back-scattered into the system: 
 
 
 
 
 

‣EFTGravity Amplitude mapped into multi-loop 1-point functions with massive internal lines:

Back-scattering Tail-Effects Memory effects Double emission

Seff[{Qi}] = − i lim
d→3

Radiation gravitons propagator:

1
k2 − k2

0
 massk0

Almeida, Foffa, Sturani (2021,2022) 
Blumlein, Maier, Marquard, Schaefer (2021) 

Edison, Levi (2022) 
Brunello, Mandal, Patil & P.M. in progress

= ∫
n

∏
i=1

[dki
0

2π ]( )
Non propagating sources

Hereditary Effects

ℳ = ∑
i

ci IMI
i

Far Zone/EFT Diagrammatic Approach

Dimensional Regularization   
Integration-by-parts (IBP) decomposition 
Master Integrals evaluation  

d = 3 + ϵ

Thorne (1980) 
Goldberger, Rothstein (2005)  

Goldberger, Ross (2009) 
Galley, Tiglio (2009,2012)  

Foffa, Sturani (2012); Ross (2012) 
Galley, Leibovich, Porto, Ross (2015) 

Leibovich, Maia, Rothstein, Yang (2019) 
Blanchet et al.(2021)
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Scattering Angle

M = m1 + m2 μ =
m1m2

m1 + m2
ν =

μ
M

χ = − 2∫
∞

rmin

dr
∂pr

∂L
− π

E = M Γ Γ = 1 + 2ν(γ − 1) γ =
1

1 − v2
∞

p∞ =
m1m2

E
γ2 − 1

10

and Ir discovered in [91].

A. The canonical Hamiltonian and/or the
mass-shell constraint

For an aligned-spin binary canonical Hamiltonian,

H(r,�, pr, L;mi, ai)

= H(r, pr, L;mi, ai) (3.1)

the dynamical variables (depending on a time parameter
t) are polar coordinates (r,�) in the orbital plane, with
r being the orbital separation, and their conjugate mo-
menta (pr, p� ⌘ L). The Hamiltonian does not depend
on the angular coordinate � due to the system’s axial
symmetry, and it otherwise depends only on the con-
stant masses and spins (mi, ai) = (m1,m2, a1, a2). The
Hamiltonian equations of motions read

ṙ =
@H

@pr
, ṗr = �

@H

@r
, (3.2)

�̇ =
@H

@L
, L̇ = �

@H

@�
= 0,

where we note that the canonical orbital angular momen-
tum L is a constant of motion.

Such a Hamiltonian is not unique, but is subject to
a type of gauge freedom, namely under canonical trans-
formations: di↵eomorphisms of the phase space which
preserve the canonical form (3.2) of the equations of mo-
tion. In a quite general gauge (one which encompasses
all gauges encountered in previous PN or PM aligned-
spin Hamiltonians), the Hamiltonian takes the following
form through quadratic order in the spins, through 4PM
order,

H = H0(p
2;mi) +

4X

k=1

Gk

rk


ck(p

2,
L2

r2
;mi) (3.3)

+
Lai
r2

cik(p
2,

L2

r2
;mj) +

aiaj
r2

cijk(p
2,

L2

r2
;mk)

�
+O(G5),

where

p2 = p2r +
L2

r2
, (3.4)

is the total squared canonical linear momentum. Here,
H0 is the 0PM (free) Hamiltonian, and the functions
ck, cik and cijk encode respectively the nonspinning, spin-
orbit, and quadratic-in-spin gravitational couplings at
the kPM orders. The c’s are assumed to have regular
Taylor series around L2 = 0 and p2 = 0. We will work
here with the standard (gauge) choice for the free Hamil-
tonian in the cm frame,

H0 =
q
m2

1
+ p2 +

q
m2

2
+ p2, (3.5)

such that, as r ! 1, the magnitude
p

p2 of the canonical
linear momentum corresponds to the two bodies’ physical
equal and opposite spatial momenta in the cm frame.
The expression (3.3) of the Hamiltonian can be solved,

working perturbatively in G, for p2(r, E, L;mi, ai), where
E ⌘ H(r, pr, L;mi, ai) is the total energy; one finds

p2 = p21(E;mi) +
X

k�1

Gk

rk


fk(E,

L2

r2
;mi) (3.6)

+
Lai
r2

f i

k(E,
L2

r2
;mj) +

aiaj
r2

f ij

k (E,
L2

r2
;mk)

�
,

where the 0PM part p21 is found by (exactly) inverting
(3.5), H0(p2) = E , p21(E) = p2,

p21 =
(E2

�m2
1
�m2

2
)2 � 4m2

1
m2

2

4E2
= µ2

�2
� 1

�2
, (3.7)

which we recognize as the same p1 from (2.27). The
functions fk, f i

k and f ij

k are determined by (and carry all
of the information of) the c···k coe�cients in the Hamilto-
nian (3.3). Importantly, the f ···

k functions will have regu-
lar limits as �2

� 1 = " ! 0 (as p1 ! 0) and as L2
! 0,

given our assumption that the c···k functions were regular
as p2

! 0 and L2
! 0. The quantities �, " and � are

all defined in terms of the energy E and the rest masses
just as in the previous section.
As discussed in Ref. [101] (through N2LO in the PN

expansion, and as we have explicitly verified through
N3LO), it is possible to find a perturbative canonical
transformation which brings the Hamiltonian (3.3) into
a “quasi-isotropic” form, i.e., a form in which the c’s
depend only p2 and not on L2/r2. Furthermore, the
freedom in canonical transformations [among Hamilto-
nians of the form (3.3)] is completely fixed once one
imposes this quasi-isotropic-Hamiltonian condition and
uniquely specifies a 0PM Hamiltonian H0, as we have
done in (3.5). For such a quasi-isotropic Hamiltonian,
one finds that the corresponding “mass shell constraint,”
the expression for p2 (3.6), has nonspinning and SO co-
e�cients fk f i

k which are independent of L2/r2, but its

quadratic-in-spin coe�cients f ij

k have terms at zeroth and
first orders in L2/r2. However, there also exists a di↵er-
ent (non-quasi-isotropic) gauge for the Hamiltonian (3.3)
(one with L2/r2 terms in cijk) such that its mass shell

constraint (3.6) is quasi-isotropic, with the fk, f i

k and f ij

k
all depending only on E (and the masses) and not on
L2/r2. Because both the scattering angle and the radial
action are more directly related to the f coe�cients in the
mass shell, we will find it convenient to adopt this quasi-
isotropic-mass-shell gauge (which is also unique with a
given choice for H0), specializing (3.6) to the form

p2 = p21(E;mi) +
X

k�1

Gk

rk


fk(E;mi) (3.8)

+
Lai
r2

f i

k(E;mj) +
aiaj
r2

f ij

k (E;mk)

�
.

p2 = p2
r +

L2

r2
= p2

∞ − Veff , Veff(r) = − ∑
n≥1

fn(E) (GN

r )
n

, pr = p2
∞ −

L2

r
− Veff(r) , Veff(r → ∞) → 0 .pr = pr(r, E, L, S(a)) = pr(r, v, b, S(a))
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The closest distance between the particles rmin(E, J) is obtained by imposing pr(rmin) = 0.

Introducing p2∞ = p2(r → ∞) and the impact parameter b = J/p∞, we can re-write the

above expression as:

χ(b, E) = −π + 2b

∫ ∞

rmin

dr

r
√
r2p2(r, E)− b2

, (2.4)

with p = p/p∞. Notice that, assuming the interaction turns off at infinity V (r,p2)
r→∞−−−→ 0,

we have

E = E1 + E2 =
√
p2∞ +m2

1 +
√
p2∞ +m2

2 ,

p2∞ =
1

4E2

(
E2 − (m1 −m2)

2)(E2 − (m1 +m2)
2
)
.

(2.5)

The scattering angle can be computed following these simple steps. For example, in New-

tonian mechanics, HN = p2

2µ − GMµ
r , we have (see e.g. [60])

tan
χN

2
=

1√
2Ej2

, (2.6)

where

j =
J

GMµ
, E = M(1 + νE) , (2.7)

with µ = m1m2
m1+m2

, M = m1 + m2, the reduced and total mass, and ν = m1m2
(m1+m2)2

is the

symmetric mass ratio.

2.2 Post-Minkowskian expansion

In General Relativity, on the other hand, the computation is much more challenging due

to the non-linearities involved. For large impact parameter, b $ GM , the scattering angle

can be computed as a series in GM/b, or 1/j, what is known as the Post-Minkowskian

(PM) expansion:

1

2
χ(b, E) =

∑

n

χ(n)
b (E)

(
GM

b

)n

=
∑

n

χ(n)
j (E)

1

jn
, (2.8)

with

χ(n)
j = p̂n∞χ

(n)
b , (2.9)

and p̂∞ = p∞/µ. While it is straightforward to read off from (2.6) the χ(n)
b ’s for the

Newtonian case [60], the scattering angle up to second order [83],

χ(1)
b

Γ
=

2γ2 − 1

γ2 − 1
,

χ(2)
b

Γ
=

3π

8

5γ2 − 1

γ2 − 1
,

(2.10)

was the state-of-the-art in General Relativity for quite some time. In the above expressions

we introduced

γ ≡ 1

2

E2 −m2
1 −m2

2

m1m2
= 1 + E +

1

2
νE2 , (2.11)

Γ ≡ E/M =
√
1 + 2ν(γ − 1) = 1 + νE . (2.12)

– 6 –

χ(n)
b = ∑
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χ(n,k)
b ( v2
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k
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FIG. 1. Illustration of aligned-spin scattering BHs.

teristic modulation of the emitted GWs. This may allow
improved tests of GR and inference of spins. Measur-
ing BH spins and their orientations is also important for
discriminating binary formation channels [4].

We begin by extending the link between weak-field
scattering and the self-force approximation [17, 25, 26]
to the spin-orbit sector. Using existing self-force results,
we are then able to uniquely determine the N3LO-PN
spin-orbit dynamics, as encoded in the gauge-invariant
scattering angle. We continue by calculating the gyro-
gravitomagnetic ratios and circular-orbit aligned-spin
binding energy. We compare to NR simulations to quan-
tify the accuracy improvement and present our conclu-
sions. G denotes Newton’s constant, and c the speed of
light.

The mass dependence of the scattering angle. — The
local-in-time conservative dynamics of a two-massive-
body system (without spin or higher multipoles) is fully
encoded in the system’s gauge-invariant scattering-angle
function �(m1,m2, v, b) [43, 44]. This gives the angle
� by which both bodies are deflected in the center-of-
mass frame, as a function of the masses ma (a = 1, 2),
the asymptotic relative velocity v, and the impact pa-
rameter b. Based on the structure of iterative solutions
in the weak-field (post-Minkowskian) approximation, it
has been argued in Sec. II of Ref. [25] that this function
exhibits the following simple dependence on the masses
(at fixed v and b), through the total mass M = m1 +m2

and the symmetric mass ratio ⌫ = m1m2/M
2,

�

�
=

GM

b
X

⌫0

G1(v) +
⇣
GM

b

⌘2

X
⌫0

G2(v) (1a)

+
⇣
GM

b

⌘3h
X

⌫0

G3(v) + ⌫X
⌫1

G3(v)
i

+
⇣
GM

b

⌘4h
X

⌫0

G4(v) + ⌫X
⌫1

G4(v)
i
+O

⇣
GM

b

⌘5

,

where � = E/Mc
2, with E

2 = (m2
1
+m

2
2
+2m1m2�)c4 be-

ing the squared total energy, and � = (1�v
2
/c

2)�1/2 the
asymptotic relative Lorentz factor. The remarkable fact
to be noted here is that the O(GM

b )1,2 terms are inde-
pendent of ⌫, while the O(GM

b )3,4 terms depend linearly
on ⌫.

As will be argued in detail in future work,2 this re-
sult generalizes straightforwardly to the case of spinning

bodies in the aligned-spin configuration, i.e., spins point-
ing in the direction of the orbital angular momentum
(as shown in Fig. 1). The aligned-spin dynamics is fully
described by the aligned-spin scattering-angle function
�(ma, Sa, v, b) [26]. Here, Sa = macaa are the signed spin
magnitudes, positive if aligned as in Fig. 1, negative if
anti-aligned. At the spin-orbit (linear-in-spin) level, the
form of Eq. (1a) holds, with the X functions acquiring
additional (linear) dependence on the spins only through
the dimensionless ratios aa/b = Sa/macb, as follows:2

X
⌫m

Gn ! X
⌫m

Gn (v) +
a+

b
X

⌫m

Gna+
(v) + �

a�
b
X

⌫m

Gna�(v), (1b)

where a± = a2 ± a1 and � = (m2 � m1)/M , with the

special constraints X
⌫0

G1a�
= 0 = X

⌫1

G3a�
; cf. Eq. (4.32)

of Ref. [26], where this is seen to hold through N2LO in
the PN expansion. It is crucial to note that the impact
parameter b in Eq. (1), is the (“covariant”) one orthog-
onally separating the asymptotic worldlines defined by
the Tulczyjew-Dixon condition [45, 46] for each spinning
body [26, 47].
Now, the fourth order in GM/b encodes the complete

spin-orbit dynamics at N3LO in the PN expansion, and
according to Eq. (1) only terms up to linear order in the
mass ratio ⌫ appear on the right-hand side (noting � !

±1 as ⌫ ! 0)—that is, first-order self-force (linear-in-⌫)
results can be employed to fix the functions X⌫m

Gn···(v) for
n  4.

Scattering angle, Hamiltonian, and binding energy. —

We now connect the scattering angle to an ansatz for a
local-in-time binary Hamiltonian including spin-orbit in-
teractions. If nonlocal-in-time (tail) e↵ects are present,
this step requires extra care [17], but this is not the
case at the N3LO-PN spin-orbit level. Crucially, the
Hamiltonian describes the dynamics for both unbound
(scattering) and bound orbits. The latter are not only
most relevant for GW astronomy, but are also where the
vast majority of self-force results are available. Hence,
a gauge-dependent Hamiltonian allows us to connect the
scattering angle (1) with known self-force results.

2 Note that our Eq. (1) is equivalent to Eqs. (2.14) and (2.15) of
Ref. [25], but with all the functions QnPM

··· (�) on the right-hand
side of (2.15) replaced by functions QnPM

··· (�, a1/b, a2/b) which
are linear in a1/b and a2/b, and with the additional constraints
imposed by symmetry under (m1, a1) $ (m2, a2). The argu-
ments leading to this result are very much analogous to those
for the spinless case as given in Ref. [25] — using the structure
of the PM expansion, Poincaré symmetry, dimensional analysis,
etc. — with the given mass dependence holding at fixed “geo-
metric quantities,” except that these are now v, b, a1, a2 instead
of just v (or �) and b. The rescaled spins aa = Sa/mac and
the “covariant” (Tulczyjew-Dixon) worldlines (separated by the
“covariant” impact parameter b) are identified as the appropri-
ate geometrical (mass-independent) quantities, because it is in
terms of these variables that the first-order metric perturbation
is linear in the masses.

[credit: 
Antornelli et al.]

35



χnonloc. =
∂

∂L ∫
∞

−∞
dt Hnonloc.(t)

Hnonloc.(t) ∝ ···Qij(t) PFT ∫
∞

−∞

dτ
|τ |

···Qij(t + τ)
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where PfT is a Hadamard partie finie with time scale T ≡ 2r12/c and where
...
I i j

denotes a third time derivative of the Newtonian quadrupole moment Ii j of the binary
system,

Ii j ≡
∑

a

ma

(
xiax

j
a − 1

3
δi jx2a

)
. (6.14)

The Hadamard partie finie operation is defined as (Damour et al. 2014)

PfT

∫ +∞

0

dv
v
g(v) ≡

∫ T

0

dv
v
[g(v) − g(0)] +

∫ +∞

T

dv
v
g(v). (6.15)

Let us also note that in reduced variables the quadrupole moment Ii j and its third time
derivative

...
I i j read

Ii j = (GM)2µ

(
r ir j − 1

3
r2δi j

)
,

...
I i j = − ν

Gr2

(
4n〈i p j〉 − 3(n · p)n〈i n j〉

)
,

(6.16)
where 〈· · · 〉 denotes a symmetric tracefree projection andwhere in

...
I i j the time deriva-

tives ṙ, r̈, and
...
r were eliminated by means of Newtonian equations of motion.

From the reduced conservativeHamiltonians displayed above, where a factor of 1/ν
is factorized out [through the definition (6.5) of the reducedHamiltonian], the standard
test-body dynamics is very easily obtained, simply by putting ν = 0. The conservative
Hamiltonians ĤN through Ĥ4PN serve as basis of the EOB approach, where with the
aid of a canonical transformation the two-body dynamics is put into test-body form
of an effective particle moving in deformed Schwarzschild metric, with ν being the
deformation parameter (Buonanno and Damour 1999, 2000; Damour et al. 2000a,
2015). These Hamiltonians, both directly and through the EOB approach, constitute
an important element in the construction of templates needed to detect gravitational
waves emitted by coalescing compact binaries. Let us stress again that the complete
4PN Hamiltonian has been obtained only in 2014 (Damour et al. 2014), based on
earlier calculations (Blanchet and Damour 1988; Bini and Damour 2013; Jaranowski
and Schäfer 2013) and a work published later (Jaranowski and Schäfer 2015).

6.2 Nonlocal-in-time tail Hamiltonian at 4PN order

Thenonlocal-in-time tailHamiltonian at the 4PN level (derived and applied byDamour
et al. 2014, 2015, respectively) is the most subtle part of the 4PN Hamiltonian. It
certainly deserves some discussion. Let us remark that though the tail Hamiltonian
derived in 2016 by Bernard et al. (2016) was identical with the one given in Damour
et al. (2014), the derivation there of the equations of motion and the conserved energy
was incorrectly done, as detailed by Damour et al. (2016), which was later confirmed
by Bernard et al. (2017b).

The 4PN-level tail-related contribution to the action reads

Stail4PN = −
∫

H tail
4PN(t) dt, (6.17)

123
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123

(... similar to the plus-distribution formula)

Scattering Angle / far zone (no spin) : 6PN & 7PN

1
2

χnonloc. = νp4
∞( A0

j4
+

A1

p∞ j5
+

A2

p2
∞ j6

+ …)

Am = ∑
n≥0

(Amn + Aln
mn log(p∞/2))pn

∞ , Amn = ∑
k≥0

Amnk νk

3

∝ G4/c8 [15]. The corresponding nonlocal scattering co-
efficient, coming from m = 0 and n = 0, is Ah

0 (p∞, ν) =
π
[

− 37
5 ln

(p∞

2

)

− 63
4

]

+ O(p2∞) [14]. The higher-order
logarithmic coefficients Aln

mn(ν) were analytically deter-
mined [11–13] so that we shall henceforth focus on the
non-logarithmic coefficients Amn(ν). The classical GR
perturbative approach of [2, 11–13] yields explicit integral
expressions for the non-logarithmic coefficient Amn(ν)
with integrands that are polynomials in the symmet-
ric mass ratio ν. Writing Amn(ν) =

∑

k Amnkνk, with
k = 0, 1, 2, · · · , this finally yields explicit, parameter-free
double-integral expressions for the (numerical) coefficient
Amnk of νk in the polynomial Amn(ν), say

Amnk =

∫ +1

−1

∫ +1

−1

dTdT ′

|T − T ′|
amnk(T, T

′) . (2.12)

The structure of the integrands amnk(T, T ′) reads

amnk(T, T
′) = Rmnk

0 (T, T ′)

+ Rmnk
1 (T, T ′) (arctanh(T )− arctanh(T ′))

+ Rmnk
2 (T, T ′) (arctanh(T )− arctanh(T ′))

2

+ Rmnk
3 (T, T ′) (arctan(T )− arctan(T ′)) ,

(2.13)

where the coefficients Rmnk
N (T, T ′) are rational functions

of T and T ′. The integration variables are related via
T = tanhv

2 and T ′ = tanhv′

2 to the “hyperbolic eccentric
anomalies” v and v′ that parametrize the original time
variables t and t′ via the relativistic generalization [16,
17] of the Keplerian representation of hyperbolic motion.
The latter notably involves a relativistic version of the
hyperbolic Kepler equation: n̄(t − t0) = et sinh v − v +
O( 1

c4 ).
It was possible to analytically compute the numerical

coefficients Amnk appearing at the 4PM (G4) and 5PM
(G5) levels (i.e., for m = 0, 1), up to the 6PN, i.e., 1

c12 ac-
curacy. By contrast, the integrands of Eq. (2.12) become
so involved at the 6PM order (corresponding to 5-loop
classical scattering diagrams), that the use of standard
GR integration methods failed to give the analytical val-
ues of the 6PM scattering coefficients A220, A240, A241,
A242. Even the numerical evaluation of the latter coef-
ficients in [13] met with difficulties and only produced
8-digit-accurate results.
The lack of analytical determination of the 6PM co-

efficients A220, A240, A241, A242 is an imperfection that
limits the application of the method of [2] at the 6PN
level. In particular, the combination

D =
1

π

(

5

2
A221 +

15

8
A200 +A242

)

, (2.14)

crucially enters the definition of the flexibility factor f(t),
and thereby the analytical definition of the third contri-
bution, H f−h(t), Eq. (2.3), to the total Hamiltonian.
The coefficient D, Eq. (2.14), is of direct physical sig-
nificance for the dynamics of coalescing binary systems

because it enters the elliptic-motion observables (such as
periastron precession).

We achieve here the important goal of analytically de-
termining all the 6PM scattering coefficients, A2nk (and
thereby also the coefficient D, Eq. (2.14)), by applying
to the integral representations, Eqs. (2.12), (2.13), some
of the high-precision numerical techniques and analytic
methods that have been developed for evaluating QFT
observables, expressed in terms multi-loop Feynman in-
tegrals.

III. A2nk AND COMPANION COEFFICIENTS

In the following we use the notation of Ref.[13] and
parametrize the (non-logarithmic) scattering coefficients
A2nk in terms of the equivalent set of coefficients denoted
dnk, and related to them via2

π−1A200 = d00,

π−1A220 = d20 + 3d00,

π−1A221 = d21 − 2d00,

π−1A240 = d20 + d40 +
3

2
d00,

π−1A241 = d21 −
11

2
d00 + d41 − 2d20,

π−1A242 = d42 − 2d21 + 3d00 . (3.1)

The coefficients d00 and d21 (and therefore A200 and
A221) were computed analytically [13],

d00 = −
99

4
−

2079

8
ζ(3) ,

d21 =
1541

8
+ 306 ζ(3) . (3.2)

In addition, some parts of the integrals giving d20, d40,
d41 and d42 could be analytically evaluated, leaving as
remaining unknown coefficients the quantities Q20, Q40,
Q41 and Q42 related to d20, d40, d41 and d42 (and thereby

2 For simplicity, we shall not use here the coefficients cnk that are
related to the dnk ’s through Eq. (4.14) of Ref. [13].
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TABLE I: Numerical values of the Qnk integrals with 200-digit accuracy.

Q20 524.7672921802125843427359557031017584761419995573690119377287112384988398300977120939070371581

96060831706238995205677052067946783744966475134730111010455883184170170829347212071124106113165

8613485679

Q40 544.4939915701706772258458158548215701355843583332648304959367083415682948158610574285653029862

87084252115923423339364981524722633807905033769432119691717874743144282677041484694939992691447

2804761699

Q41 −1029.52887537403849684626420906288951311349891044967686745420133893415513339408657109916000809

60027000683311179242081514484014334501266712433925887538266005603952131007506207305140646213006

5024513617

Q42 −802.885057050786642755886295069034459970736865058430654964178895902426423211047940727300850918

74267871623078435110513965444766798525251182468350940531767163197645060875802781537593191860287

8433814664

TABLE II: PSLQ reconstruction of the various integrals.

Q20
25883
1800

+ 22333
140

K−
625463
3360

π −
361911
560

π ln 2 + 99837
160

πζ(3)

d20 −
32981
112

−
9216
7

ln 2 + 99837
64

ζ(3)

Q40
750674317
1905120

+ 442237
5040

K−
571787
103680

π 7207043
6720

π ln 2− 190489
320

πζ(3)

d40 725051
1296

+ 19920
7

ln 2− 190489
128

ζ(3)

Q41 −
703435949
1587600

−
5747
24

K+ 1154149
17280

π + 1897771
3360

π ln 2− 306219
640

πζ(3)

d41 607867
8064

+ 20224
21

ln 2− 306219
256

ζ(3)

Q42 −
59610947
793800

−
1499
20

K−
402163
2520

π + 4497
80

π ln 2− 11871
160

πζ(3)

d42 −
186743
864

−
11871
64

ζ(3)

weight w = 4, as,

i J(x) =
23

240
π4 − 21 ln 2 ζ(3) + π2 ln2 2− ln4 2− 24a4

+
1

2
π2H0,−1(x) +

1

2
π2H0,1(x)−

3

2
π2H−1,−1(x)

−
3

2
π2H−1,1(x) −

3

2
π2H1,−1(x)−

3

2
π2H1,1(x)

−12H0,−1,−1,−1(x) + 6H0,−1,−1,0(x) − 12H0,−1,1,−1(x)

+6H0,−1,1,0(x) − 12H0,1,−1,−1(x) + 6H0,1,−1,0(x)

−12H0,1,1,−1(x) + 6H0,1,1,0(x) − 6H−1,−1,−1,0(x)

−6H−1,−1,1,0(x) − 6H−1,1,−1,0(x)− 6H−1,1,1,0(x)

−6H1,−1,−1,0(x) − 6H1,−1,1,0(x)− 6H1,1,−1,0(x)

−6H1,1,1,0(x) + 12H0,−1,−1(x) ln 2 + 12H0,−1,1(x) ln 2

+12H0,1,−1(x) ln 2 + 12H0,1,1(x) ln 2

+
21

2
H−1(x)ζ(3) −

3

2
H0(x)ζ(3) +

21

2
H1(x)ζ(3) . (4.4)

Using a4 = Li4(1/2), and the values of the HPLs at x =
i, listed in Table III (see the Appendix), one finds the
following value for (4.2):

J(i) = −
1

2
π2 K+

9

2
πζ(3) = J. (4.5)

Using a similar strategy, the expressions of all the coef-
ficients Qnk(x) can be obtained analytically. The size of

the occurring intermediate expressions, similar to (4.4),
is too large to be presented here. Anyway, the crucial
results concern the final analytic expressions for the so-
obtained Qnk ≡ Qnk(x = i). They are found to be
drastically simpler than the intermediate results, and,
as expected, to be in perfect agreement with the semi-
analytical expressions discussed earlier, and given in Ta-
ble II.

V. SCATTERING ANGLE AND PERIASTRON
PRECESSION AT 6PM, O(G6)

The 6PM-accurate (O(G6)) scattering coefficient
Ah

2 (p∞, ν) associated with the integrated nonlocal action
W nonloc,h, Eq. (2.5), when PN-expanded in powers of
p∞, reads,

Ah
2 (p∞; ν) = Atail,h,N

2 +Atail,h,1PN
2 +Atail2,h,1.5PN

2

+Atail,h,2PN
2 + O(p5∞) . (5.1)

The values of the first, Atail,h,N
2 , and third, Atail2,h,1.5PN

2 ,
contributions (respectively contributing to the 4PN and
5.5PN orders) were obtained in Ref. [13]. New with
the present work is the complete analytical determina-
tion of the two other contributions to Eq. (5.1), namely,
Atail,h,1PN

2 , and Atail,h,2PN
2 . The latter contributions are
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TABLE III: Independent sets of HPLs, at the point x = i, up to weight four.

H−1(i) ln 2
2

+ iπ
4

H0(i) iπ
2

H1(i) −
ln 2
2

+ iπ
4

H0,−1(i) π2

48
+ iK

H0,1(i) −
π2

48
+ iK

H−1,−1(i) −
π2

32
+ ln2 2

8
+ 1

8
iπ ln 2

H−1,1(i) −
π2

32
−

ln2 2
8

−
3
8
iπ ln 2 + iK

H1,−1(i) −
π2

32
−

ln2 2
8

+ 3
8
iπ ln 2− iK

H1,1(i) −
π2

32
+ ln2 2

8
−

1
8
iπ ln 2

H0,−1,−1(i) 29
64
ζ(3)− 1

4
Kπ − iQ3

H0,−1,1(i) 27
64
ζ(3)− 1

4
Kπ + iπ

3

32
− 3iQ3 − 2iK ln 2

H0,1,−1(i) 27
64
ζ(3)− 1

4
Kπ − iπ

3

32
+ 3iQ3 + 2iK ln 2

H0,1,1(i) 29
64
ζ(3)− 1

4
Kπ + iQ3

H0,−1,−1,−1(i) 61
15360

π4
−

35
128

ζ(3) ln 2 + 5
384

π2 ln2 2− 5
384

ln4 2− 5
16
a4 +

πQ3

4
+ iQ4

H0,−1,−1,0(i) −
π4

4608
+ K2

2
+ πQ3

2
+ 29

128
iπζ(3)− 7

48
iKπ2

H0,−1,1,−1(i) −
97

9216
π4 + 91

128
ζ(3) ln 2− 13

384
π2 ln2 2 + 13

16
a4 −

13
384

ln4 2 + 3
4
πQ3 + K2

2
−

7
8
iπζ(3) + 1

16
iπ3 ln 2− 2iK ln2 2

−
5
16
iKπ2 + 5iβ(4) − 6iQ3 ln 2− 9iQ4

H0,−1,1,0(i) −
71

4608
π4 + 3

2
πQ3 +Kπ ln 2 + K2

2
+ 27

128
iπζ(3) + 1

8
iπ3 ln 2− 5

48
iKπ2

− 3iβ(4)

H0,1,−1,−1(i) 169
9216

π4
−

77
128

ζ(3) ln 2 + 9
128

π2 ln2 2− 27
16
a4 −

9
128

ln4 2− 3
4
πQ3 −

1
2
Kπ ln 2− 21

128
iπζ(3)− 1

32
iπ3 ln 2

+iK ln2 2 + iβ(4) + 2iQ3 ln 2 + iQ4

H0,1,−1,0(i) 73
4608

π4 + K2

2
−Kπ ln 2− 3

2
πQ3 + 27

128
iπζ(3)− 1

8
iπ3 ln 2− 7

48
iKπ2 + 3iβ(4)

H0,1,1,−1(i) 61
9216

π4 + 21
128

ζ(3) ln 2 + 13
384

π2 ln2 2− 13
384

ln4 2− 13
16
a4 −

1
2
Kπ ln 2 + K2

2
−

1
4
πQ3 + 133

128
iπζ(3)− 1

32
iπ3 ln 2

+iK ln2 2 + 3
16
iKπ2

− 5iβ(4) + 4iQ3 ln 2 + 7iQ4

H0,1,1,0(i) −
π4

4608
+ K2

2
−

1
2
πQ3 −

5
48
iKπ2 + 29

128
iπζ(3)

H−1,−1,−1,0(i) −
31

15360
π4 + 1

2
ζ(3) ln 2− 1

32
π2 ln2 2 + 5

384
ln4 2 + 5

16
a4 + 29

256
iπζ(3) + 1

96
iπ ln3 2− 1

96
iπ3 ln 2− 1

32
iKπ2

−
1
8
iK ln2 2− 1

2
iQ3 ln 2− iQ4

H−1,−1,1,0(i) −
115
9216

π4 + 13
16
ζ(3) ln 2− 1

12
π2 ln2 2 + 9

128
ln4 2 + 27

16
a4 + 1

4
Kπ ln 2 + 1

2
πQ3 + 27

256
iπζ(3)− 1

96
iπ ln3 2

+ 1
24
iπ3 ln 2− 1

32
iKπ2

−
1
8
iK ln2 2− iβ(4)− 1

2
iQ3 ln 2− iQ4

H−1,1,−1,0(i) 91
9216

π4
−

1
2
ζ(3) ln 2 + 17

96
π2 ln2 2− 13

384
ln4 2− 13

16
a4 − πQ3 + K2

2
−

3
4
Kπ ln 2 + 335

256
iπζ(3)− 1

96
iπ ln3 2

−
3
64
iπ3 ln 2 + 13

96
iKπ2 + 9

8
iK ln2 2− 5iβ(4) + 9

2
iQ3 ln 2 + 9iQ4

H−1,1,1,0(i) −
79

9216
π4 + 1

16
ζ(3) ln 2− 7

48
π2 ln2 2 + 13

384
ln4 2 + 13

16
a4 + K2

2
+ 1

2
πQ3 + 1

2
Kπ ln 2− 195

256
iπζ(3) + 1

96
iπ ln3 2

+ 3
64
iπ3 ln 2− 31

96
iKπ2

−
7
8
iK ln2 2 + 5iβ(4) − 7

2
iQ3 ln 2− 7iQ4

H1,−1,−1,0(i) 55
9216

π4
−

7
96
π2 ln2 2− 1

16
ζ(3) ln 2− 13

384
ln4 2− 13

16
a4 + 1

2
Kπ ln 2 + 1

2
πQ3 −

K2

2
−

279
256

iπζ(3)− 1
96
iπ ln3 2

−
7
96
iKπ2

−
7
8
iK ln2 2 + 5iβ(4) − 7

2
iQ3 ln 2− 7iQ4

H1,−1,1,0(i) 29
9216

π4 + 1
2
ζ(3) ln 2 + 5

48
π2 ln2 2 + 13

384
ln4 2 + 13

16
a4 −

3
4
Kπ ln 2− K2

2
− πQ3 + 167

256
iπζ(3) + 1

96
iπ ln3 2

−
1
32
iπ3 ln 2 + 37

96
iKπ2 + 9

8
iK ln2 2− 5iβ(4) + 9

2
iQ3 ln 2 + 9iQ4

H1,1,−1,0(i) 91
9216

π4
−

13
16
ζ(3) ln 2 + 5

96
π2 ln2 2− 9

128
ln4 2− 27

16
a4 + 1

4
Kπ ln 2 + 1

2
πQ3 + 111

256
iπζ(3)− 1

192
iπ3 ln 2

+ 1
96
iπ ln3 2− 1

8
iK ln2 2− 1

32
iKπ2

− iβ(4)− 1
2
iQ3 ln 2− iQ4

H1,1,1,0(i) 71
15360

π4
−

1
2
ζ(3) ln 2− 5

384
ln4 2− 5

16
a4 + 29

256
iπζ(3) + 1

192
iπ3 ln 2− 1

32
iKπ2

−
1
8
iK ln2 2− 1

96
iπ ln3 2

−
1
2
iQ3 ln 2− iQ4

Li4(1/2) a4

ImLi2(i) K

ImLi4(i) β(4)

ImH0,1,1(i) Q3

ImH0,1,1,1(i) Q4

O(200) coefficients: 
4 of them coefficients only numerically

3

∝ G4/c8 [15]. The corresponding nonlocal scattering co-
efficient, coming from m = 0 and n = 0, is Ah

0 (p∞, ν) =
π
[

− 37
5 ln

(p∞

2

)

− 63
4

]

+ O(p2∞) [14]. The higher-order
logarithmic coefficients Aln

mn(ν) were analytically deter-
mined [11–13] so that we shall henceforth focus on the
non-logarithmic coefficients Amn(ν). The classical GR
perturbative approach of [2, 11–13] yields explicit integral
expressions for the non-logarithmic coefficient Amn(ν)
with integrands that are polynomials in the symmet-
ric mass ratio ν. Writing Amn(ν) =

∑

k Amnkνk, with
k = 0, 1, 2, · · · , this finally yields explicit, parameter-free
double-integral expressions for the (numerical) coefficient
Amnk of νk in the polynomial Amn(ν), say

Amnk =

∫ +1

−1

∫ +1

−1

dTdT ′

|T − T ′|
amnk(T, T

′) . (2.12)

The structure of the integrands amnk(T, T ′) reads

amnk(T, T
′) = Rmnk

0 (T, T ′)

+ Rmnk
1 (T, T ′) (arctanh(T )− arctanh(T ′))

+ Rmnk
2 (T, T ′) (arctanh(T )− arctanh(T ′))

2

+ Rmnk
3 (T, T ′) (arctan(T )− arctan(T ′)) ,

(2.13)

where the coefficients Rmnk
N (T, T ′) are rational functions

of T and T ′. The integration variables are related via
T = tanhv

2 and T ′ = tanhv′

2 to the “hyperbolic eccentric
anomalies” v and v′ that parametrize the original time
variables t and t′ via the relativistic generalization [16,
17] of the Keplerian representation of hyperbolic motion.
The latter notably involves a relativistic version of the
hyperbolic Kepler equation: n̄(t − t0) = et sinh v − v +
O( 1

c4 ).
It was possible to analytically compute the numerical

coefficients Amnk appearing at the 4PM (G4) and 5PM
(G5) levels (i.e., for m = 0, 1), up to the 6PN, i.e., 1

c12 ac-
curacy. By contrast, the integrands of Eq. (2.12) become
so involved at the 6PM order (corresponding to 5-loop
classical scattering diagrams), that the use of standard
GR integration methods failed to give the analytical val-
ues of the 6PM scattering coefficients A220, A240, A241,
A242. Even the numerical evaluation of the latter coef-
ficients in [13] met with difficulties and only produced
8-digit-accurate results.
The lack of analytical determination of the 6PM co-

efficients A220, A240, A241, A242 is an imperfection that
limits the application of the method of [2] at the 6PN
level. In particular, the combination

D =
1

π

(

5

2
A221 +

15

8
A200 +A242

)

, (2.14)

crucially enters the definition of the flexibility factor f(t),
and thereby the analytical definition of the third contri-
bution, H f−h(t), Eq. (2.3), to the total Hamiltonian.
The coefficient D, Eq. (2.14), is of direct physical sig-
nificance for the dynamics of coalescing binary systems

because it enters the elliptic-motion observables (such as
periastron precession).

We achieve here the important goal of analytically de-
termining all the 6PM scattering coefficients, A2nk (and
thereby also the coefficient D, Eq. (2.14)), by applying
to the integral representations, Eqs. (2.12), (2.13), some
of the high-precision numerical techniques and analytic
methods that have been developed for evaluating QFT
observables, expressed in terms multi-loop Feynman in-
tegrals.

III. A2nk AND COMPANION COEFFICIENTS

In the following we use the notation of Ref.[13] and
parametrize the (non-logarithmic) scattering coefficients
A2nk in terms of the equivalent set of coefficients denoted
dnk, and related to them via2

π−1A200 = d00,

π−1A220 = d20 + 3d00,

π−1A221 = d21 − 2d00,

π−1A240 = d20 + d40 +
3

2
d00,

π−1A241 = d21 −
11

2
d00 + d41 − 2d20,

π−1A242 = d42 − 2d21 + 3d00 . (3.1)

The coefficients d00 and d21 (and therefore A200 and
A221) were computed analytically [13],

d00 = −
99

4
−

2079

8
ζ(3) ,

d21 =
1541

8
+ 306 ζ(3) . (3.2)

In addition, some parts of the integrals giving d20, d40,
d41 and d42 could be analytically evaluated, leaving as
remaining unknown coefficients the quantities Q20, Q40,
Q41 and Q42 related to d20, d40, d41 and d42 (and thereby

2 For simplicity, we shall not use here the coefficients cnk that are
related to the dnk ’s through Eq. (4.14) of Ref. [13].
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the instantaneous values, q(t), p(t), of position and mo-
menta variables. By contrast, Hnonloc,f(t) is a nonlocal-
in-time Hamiltonian, which involves integrals over (at
least one) auxiliary time-shifted variable t′ = t+ τ :

Hnonloc,h(t) =
GM
c3

Pf2rh12(t)/c

∫ +∞

−∞

dt′

|t− t′|
F split

GW (t, t′)+· · ·

(2.2)
Here, M (= E

c2 ) denotes the total conserved (center-of-
mass) mass-energy of the binary system; Pf2rh12(t)/c de-
notes the partie-finie regularization, using the time scale
∆th = 2rh12(t)/c, of the logarithmically divergent t′ inte-
gration at t′ = t; rh12(t) denotes the harmonic-coordinate
distance between the two bodies; and F split

GW (t, t′) is a
time-split version of the gravitational-wave energy flux
(absorbed and then) emitted by the system1. The ellipsis
in Eq. (2.2) denotes higher-order tail effects, containing
higher powers of GM

c3 , such as the second-order tail (∝
(

GM
c3

)2
) analytically derived in [13] up to the combined

6PM and 5.5PN accuracy. The local Hamiltonian H loc,f

starts at Newtonian level, while Hnonloc,h gets contribu-
tions from the 4PN order on, and its structure is known
up to 6PN [11–13]. Finally, the last term H f−h(t) is
a local-in-time contribution which involves the (unsplit)
gravitational wave energy flux FGW(t) = F split

GW (t, t), and
a flexibility factor f(t) = 1+O

(

1
c2

)

that is a function of
the instantaneous state of the system:

H f−h(t) = +2
GM
c3

FGW(t) ln (f(t)) . (2.3)

The latter Hamiltonian contribution is local-in-time, but
the determination of the flexibility factor f(t) depends
on the explicit knowledge of the scattering angle induced
by the nonlocal-in-time Hamiltonian Hnonloc,h(t).

The Hamiltonian decomposition (2.1) yields a corre-
sponding decomposition of the total scattering angle χtot,
as displayed in Eq. (1.1). At the needed accuracy, the
nonlocal contribution χnonloc,h can be written as [14],

χnonloc,h(E, J, ν) =
∂W nonloc,h(E, J, ν)

∂J
, (2.4)

where,

W nonloc,h(E, J ; ν) =

∫ +∞

−∞
dtHnonloc,h(t) , (2.5)

is the integrated nonlocal action. Inserting Eq. (2.2)
into Eq. (2.5), one sees that the knowledge of
χnonloc,h(E, J ; ν) depends on the evaluation of a (regu-

1 We consider the conservative dynamics of a binary system inter-
acting in a time-symmetric way.

larized) two-fold integral,

W nonloc,h(E, J ; ν) =
GE

c5
×

Pf2rh12(t)/c

+∞
∫

−∞

+∞
∫

−∞

dtdt′

|t− t′|
F split

GW (t, t′)

+ · · · (2.6)

The latter integral is to be evaluated along an
hyperbolic-motion solution of the local-in-time Hamilto-
nian H loc,f(t).
The method of [2] requires as crucial input the ex-

plicit knowledge of the double, PM and PN, perturba-
tive expansion of W nonloc,h(E, J ; ν), i.e., its combined
expansion in powers of G (PM expansion), and of 1

c2

(PN expansion). It is convenient to express the com-
bined PM+PN expansion of W nonloc,h(E, J ; ν) in terms
of the dimensionless variables

p∞ ≡
√

γ2 − 1 , and j ≡
cJ

Gm1m2
, (2.7)

where the effective-one-body specific energy γ is defined
as

γ =
Eeff
µc2

≡
E2 −m2

1c
4 −m2

2c
4

2m1m2c4
. (2.8)

As j ∝ c
G , the PM expansion of W nonloc,h is equivalent

to an expansion in inverse powers of j, and reads (after
setting aside the second-order tail contribution)

cW nonloc,h(γ, j; ν)

2Gm1m2
= −νp4∞

(

Ah
0 (p∞, ν)

3j3
+

Ah
1 (p∞, ν)

4p∞j4

+
Ah

2 (p∞, ν)

5p2∞j5
+O

(

1

j6

))

. (2.9)

Using Eq. (2.4), this corresponds to the following PM
expansion of the corresponding nonlocal scattering angle

1

2
χnonloc,h(γ, j; ν) = +νp4∞

(

Ah
0 (p∞, ν)

j4
+

Ah
1 (p∞, ν)

p∞j5

+
Ah

2 (p∞, ν)

p2∞j6
+O

(

1

j7

))

. (2.10)

The dimensionless coefficients Ah
m(p∞, ν), m =

0, 1, 2, · · · , then admit a PN expansion, i.e., an expan-
sion in powers of p∞ = O

(

1
c

)

, modulo logarithms of p∞,
say

Ah
m(p∞, ν) =

∑

n≥0

[

Amn(ν) +Aln
mn(ν) ln

(p∞
2

)]

pn∞ .

(2.11)
The coefficient Amn(ν) parametrizes a term of order
p4+n−m

∞

j4+m ∼ G4+m

c8+n (with m ≥ 0, n ≥ 0) in the com-
bined PM+PN expansion of the nonlocal scattering an-
gle. The leading-order contribution to the nonlocal dy-
namics is at the combined 4PM and 4PN level, i.e.,

j =
L

GN M μ
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where PfT is a Hadamard partie finie with time scale T ≡ 2r12/c and where
...
I i j

denotes a third time derivative of the Newtonian quadrupole moment Ii j of the binary
system,

Ii j ≡
∑

a

ma

(
xiax

j
a − 1

3
δi jx2a

)
. (6.14)

The Hadamard partie finie operation is defined as (Damour et al. 2014)

PfT

∫ +∞

0

dv
v
g(v) ≡

∫ T

0

dv
v
[g(v) − g(0)] +

∫ +∞

T

dv
v
g(v). (6.15)

Let us also note that in reduced variables the quadrupole moment Ii j and its third time
derivative

...
I i j read

Ii j = (GM)2µ

(
r ir j − 1

3
r2δi j

)
,

...
I i j = − ν

Gr2

(
4n〈i p j〉 − 3(n · p)n〈i n j〉

)
,

(6.16)
where 〈· · · 〉 denotes a symmetric tracefree projection andwhere in

...
I i j the time deriva-

tives ṙ, r̈, and
...
r were eliminated by means of Newtonian equations of motion.

From the reduced conservativeHamiltonians displayed above, where a factor of 1/ν
is factorized out [through the definition (6.5) of the reducedHamiltonian], the standard
test-body dynamics is very easily obtained, simply by putting ν = 0. The conservative
Hamiltonians ĤN through Ĥ4PN serve as basis of the EOB approach, where with the
aid of a canonical transformation the two-body dynamics is put into test-body form
of an effective particle moving in deformed Schwarzschild metric, with ν being the
deformation parameter (Buonanno and Damour 1999, 2000; Damour et al. 2000a,
2015). These Hamiltonians, both directly and through the EOB approach, constitute
an important element in the construction of templates needed to detect gravitational
waves emitted by coalescing compact binaries. Let us stress again that the complete
4PN Hamiltonian has been obtained only in 2014 (Damour et al. 2014), based on
earlier calculations (Blanchet and Damour 1988; Bini and Damour 2013; Jaranowski
and Schäfer 2013) and a work published later (Jaranowski and Schäfer 2015).

6.2 Nonlocal-in-time tail Hamiltonian at 4PN order

Thenonlocal-in-time tailHamiltonian at the 4PN level (derived and applied byDamour
et al. 2014, 2015, respectively) is the most subtle part of the 4PN Hamiltonian. It
certainly deserves some discussion. Let us remark that though the tail Hamiltonian
derived in 2016 by Bernard et al. (2016) was identical with the one given in Damour
et al. (2014), the derivation there of the equations of motion and the conserved energy
was incorrectly done, as detailed by Damour et al. (2016), which was later confirmed
by Bernard et al. (2017b).

The 4PN-level tail-related contribution to the action reads

Stail4PN = −
∫

H tail
4PN(t) dt, (6.17)

123

Qij

+ higher-multipole terms

‣PM-expansion:   

‣PN-expansion:   

Multipole Radiation Formula

Quadrupole moment

+ PN corrections

Hadamard Partie Finie

O(G^6) Coefficients 

[Bini Damour Geralico]

‣Analytic evaluation

1. Numerical reconstruction w/200 digits 2. Analytic integration w/ HPL’s

χloc
analytically known

Extended to O(G^7) Coefficients 
36
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Far-Zone GREFT / validation
χcons,tot

4 = χSchw
4 + νχν

4‣Mass polynomiality of the scattering angle: 

‣Compatible with “Tutti Frutti“ method and PM-Amplitudes-based calculations

‣GREFT calculations point at possible quadratic behaviour:           χcons,tot
4 = χSchw

4 + νχν
4 + ν2χν2

4 , χν2

4 ≠ 0

‣known unknown: FarZone-GREFT is an challenging theoretical puzzle:

[Damour] [Bern et al.]
[Damour, Bini, Geralico]

[Bluemlein et al.]

[Brunello et al.]
[Almeida et al.] [Porto et al.]

‣Which effects do the GREFT diagrams contain?

‣Double counting or missing contribution?

‣FarZone/Radiation and proper choice of Green-Functions

‣Interplay between conservative and dissipative effects?

ν =
μ
M
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Near Zone with Spin/PN Corrections

Spot[xa, g] = SGR[g] + Sma
[xa, g]

Sma
[xa, g]

Levi, Steinhoff (2015)

uμ
(a) ≡ ·xμ

a

Sma
[xa, g] = Spp[xa, g] + δSma

[xa, g]

…… 
Kim, Levi, Yin (2022) 

Mandal, Patil, Steinhoff & P.M. (2022) 
Levi, Morales, Yin (2022) 

Levi, Yin (2022)

Porto (2013)

STF = Symmetrized Trace-Free

the electric component of the Riemann tensor as

Eµν ≡ Rµανβu
αuβ , (4.10)

and the magnetic component of the Riemann tensor as

Bµν ≡
1

2
εαβγµR

αβ
δνu

γuδ, (4.11)

where here the dual of the Riemann tensor ∗Rγµδν ≡ 1
2εαβγµR

αβ
δν is used. In the current

work, we consider only couplings linear in Riemann, that is as we noted we are not con-

cerned with the tidal response to external gravitational fields, which does not contribute

at the PN orders of interest.

From the definitions in eqs. (4.10), (4.11), one obtains that both the electric and

magnetic components of the Riemann tensor are symmetric, traceless, and orthogonal to

the 4-velocity, using the symmetries of the Riemann tensor, the first Bianchi identity, and

their being a vacuum field solution. These SO(3) tensors are then also considered in the

body-fixed frame, where only their projection on the spatial triad is non-vanishing due to

the covariant gauge of the tetrad. It follows then that they are symmetric and traceless

also with respect to their internal spatial indices.

Next, we also consider the covariant derivatives of the electric and magnetic tensors.

These are also projected to the body-fixed frame, i.e. D[i] = eµ[i]Dµ, where we clarify

that the covariant derivative shall not act on the 4-velocity, contained in Eµν and Bµν ,

since it is a function of the worldline parameter σ only. As for the time derivative

D[0] = uµDµ ≡ D/Dσ, it is just the covariant derivative along the worldline. Now, at

linear order in the curvature time derivatives of the curvature can be integrated by parts

to time derivatives of the particle variables. Terms including such higher order time deriva-

tives of the worldline variables can be removed via variable redefinitions with a shift of,

e.g. the worldline coordinate, using lower order EOM, and get absorbed into other Rie-

mann dependent finite size operators without higher order time derivatives of the worldline

variables, namely into their Wilson coefficients. Therefore, we can consider here only the

spatial derivatives, projected orthogonally to uµ.

The indices of the covariant derivatives are also symmetrized among themselves, and

with respect to the indices of the electric and magnetic tensors. The first symmetrization

follows since the commutation of covariant derivatives leads to further curvature terms, and

as only terms linear in the curvature are considered here, such contributions can be taken

to vanish. The second symmetrization with indices from the covariant derivatives, and

from the electric and magnetic components, follows from the differential Bianchi identity

of the Weyl tensor in vacuum, which leads to equations analogous to Maxwell’s:

ε[ikl]D[k]E[lj] =Ḃ[ij], (4.12)

ε[ikl]D[k]B[lj] =− Ė[ij]. (4.13)

Notice that the left hand side contains the commutator of derivative and curvature com-

ponents indices. Since as was explained time derivatives of the curvature can be ignored at
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Electric and Magnetic  
components of Riemann tensor

Wilson coefficients that describe the internal structure
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Near Zone with Spin/EFT Diagrammatic Approach

Spin dependence

Spot[xa, g] = SGR[g] + Sma
[xa, g] Sma

[xa, g] = Spp[xa, g] + δSma
[xa, g]

‣Kaluza-Klein parametrization:   

gμν = e2ϕ/Λ(
−1 Aj /Λ

Ai/Λ e−cd
ϕ
Λ γij − AiAj /Λ2)

γij = δij +
σij

Λ
cd = 2

d − 1
d − 2

σijgμν ⇒ ϕ Ai

Graviton = Scalar + Vector + Sym. Tensor
10 1 + 3 + 6

[Kol Smolkin]

Spin dependence
Mandal, Patil, Steinhoff & P.M. (2022)

‣Feynman rules for: 

Propagators: 
ϕ
Ai

σij

Self-interactions: Source couplings: 

σijϕ Ai xa

Static / non-propagating source: xa

+ … 
+ … 

Kim, Levi, Yin (2022)
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GREFT Diagrams & 2pt-QFT Integrals

ℳ = ∑
i

ci IMI
i

⇔

ℒeff[xa, ·xa, ··xa, …, Sa,
·Sa, …] = − i lim

d→3 ∫
ddp

(2π)d
eip⋅r( )

Mandal, Patil, Steinhoff & P.M. (2022)
Kim, Levi, Yin (2022)
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‣Mapping to 2-point Functions

Dimensional Regularization   
Integration-by-parts (IBP) decomposition 
Master Integrals evaluation  

d = 3 + ϵ
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Near Zone with Tidal Effects/PN Corrections
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EFT Action for Tidal Effects
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of the body is given by
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(a)A = ⌘

a
A + 2
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(a)�
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z(a)
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(ua
(a) + z(a)�
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0
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, (2.2)

where z(a) =
q

u
2

(a). The boost operator satisfies the properties: B
a
(a)AB

bA
(a) = ⌘

ab and B
a
(a)0 = u

a
(a)/z(a).

To build the EFT description of dynamical tides, we start by modifying the Lagrangian (1.2) by
introducing the conjugate momenta Pµ⌫ with respect to the quadrupole moment, that is,

P(a)µ⌫ =
1

c

@L
@(dQµ⌫

(a)/d⌧)
=

c

2�!2

fz(a)

dQ(a)µ⌫

d⌧
. (2.3)

The advantage of working with Pµ⌫ , is that the new Lagrangian will depend only linearly on the
complicated covariant derivative of the quadrupole moment tensor Qµ⌫ [29]. The new Lagrangian is

LDT = cPµ⌫
dQµ⌫

d⌧
� z


�!

2

fP
µ⌫
Pµ⌫ +

1

4�
Q
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� z
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Eµ⌫Q

µ⌫
. (2.4)

The gauge fixing condition for the dynamical degrees of freedom (1.3) in the rest frame of the star
becomes:

Q
A0

(a) = 0 , and P
A0

(a) = 0 , (2.5)

where, we now explicitly see that QAB
(a) and P

AB
(a) are spatial tensors that encode only the physical degrees

of freedom. Thus, hereafter, we write the spatial tensor QAB
(a) �

i
A�

j
B = Qij

(a) and P
AB
(a) �

i
A�

j
B = P ij

(a).
We can obtain the action for dynamical tides, written explicitly in terms of the physical degrees

of freedom, Qij
(a) and P ij

(a), by bringing the dynamical variables to the rest frame of each body by
using the boost operator (2.2) on the various terms in the Lagrangian (2.4). This gives us the e↵ective
point-particle (“pp”) action

Spp =
X
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Z
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c
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2 + LFD(a) + LMQ(a) + LEQ(a)

⇤
. (2.6)

The first term is simply the action for a point particle, while the remaining terms originate from the
Lagrangian (2.4) as follows. The first term in Eq. (2.4) gives rise to,
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, (2.7)

which describes frame-dragging (“FD”) e↵ects on the quadrupole moment of each binary component.
Here, we introduced the “tidal spin” tensor

Sij
Q(a) = 2 (Qki

(a)P
jk
(a) �Qkj

(a)P
ik
(a)) , (2.8)

which describes the angular momentum of the dynamical quadrupole moment. The second term in
Eq. (2.4) yields,

LMQ(a) = �z(a)
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ij
(a) +

1

4�(a)
Qij

(a)Q
ij
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�
= �z(a)MQ(a) . (2.9)
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be of constant density, the gravity waves travel only on the surface, and thus do not have any nodes in
the radial direction. These waves are called surface gravity waves and their frequency depend only on
the mean density of star. Therefore, they are approximately insensitive to the EOS [14, 15].

R(a)

m(a)

�(a)

Figure 1 Illustration of the problem. Two neutron
stars with massesm(a) and radiiR(a) (a = 1, 2) orbit
one another. Each star experiences a tidal field due
to the gravitational field of its companion. The
tidal field induces a quadrupolar deformation (with
magnitude encoded in the tidal Love number �(a))
and the displacement away from equilibrium of the
star’s fluid elements is described as an harmonic
oscillator with angular frequency !f(a), related to
the star’s fundamental (f-)mode. The values of �(a)

and !f(a) depend on the star’s mass and internal
composition. The conservative dynamics of this
dynamical tidal problem is studied here to second
post-Newtonian order using an e↵ective field theory
description.

The lowest frequency surface gravity waves is known as the f-mode, which is one of the dominant
modes in the context of tidal excitation [16]. The relation between orbital motion and the quadrupolar
f-modes was first studied by Cowling [17] in Newtonian gravity and then in Refs. [18–22] in general
relativity. The quadrupole f-mode oscillation of a NS coupled to the external tidal field can be described
by the Newtonian Lagrangian (see Ref. [4] or Ref. [23], Sec. 2.5)

LN =
1

4�!2

f


dQij

dt

dQij

dt
� !

2

fQ
ijQij

�
� 1

2
EijQij

, (1.1)

where !f is the frequency of the f-mode and � is the tidal deformability.1 While this Lagrangian only
describes the f-mode, it phenomenologically provides a very good approximation for the total linear
gravitoelectic tidal response, since tidal contributions from other modes (e.g. p-modes) are typically
much smaller. Then Qij is the quadrupole moment of the star and Eij = @i@j�ext is the quadrupolar
tidal field given in terms of spatial derivatives of the external Newtonian gravitational potential �ext.
In the limit in which !f ! 1, the Lagrangian Eq. (1.1) describes adiabatic tides. In this limit, the
tidal bulges do not oscillate, and are instead locked to the external tidal field as Qij = ��Eij [24–26].
Qualitatively, the tidal deformability, encoded by the Love numbers, describe how easily a body is
deformed in response to external tidal forces [27]. The value of the Love numbers depend on the body’s
internal composition, and as the compactness of the body increases, the value of the Love numbers
decrease and eventually approaches zero for a black hole [25] (see also Ref. [28].)

The relativistic version of the (1.1) can be obtained by demanding that the Lagrangian is invariant
under Lorentz transformations and reparametrization of worldlines, as first proposed in Ref. [29],

LDT =
z

4�!2

f


c
2

z2

dQµ⌫

d⌧

dQµ⌫

d⌧
� !

2

fQµ⌫Q
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�
� z

2
Eµ⌫Q

µ⌫
, (1.2)

1
The tidal deformability is related to the dimensionless electric-type quadrupolar Love number k2 of the body and

the radius R of the star as k2 = 3GN�/(2R5
) [4].
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Tidal Effects

Mandal, Patil, Silva, Steinhoff & P.M. (2023)

Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
0 3
1 1

2PN 21
0 6
1 10
2 5

(a) Point particle sector

Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
0 3
1 1

2PN 26
0 6
1 12
2 8

(b) EQ sector

Order Diagrams Loops Diagrams

1PN 2 0 2

2PN 13
0 5
1 8

(c) FD sector

Order Diagrams Loops Diagrams

1PN 1 0 1

2PN 4
0 3
1 1

(d) MQ sector

Table 1: Number of Feynman diagrams contributing di↵erent sectors.

where Ke↵ is an e↵ective kinetic term, which does not dependent on any potential graviton (i.e., it does
not depend on �, A, and �). We can compute Ke↵ directly up to the required PN order. Explicitly,
we decompose Ke↵ in a point-particle, a frame-dragging, and a “quadrupole mass” contribution, i.e.,
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The terms that are obtained after performing the integral are collectively denoted by the potential
Ve↵ . These terms are computed by summing over the connected Feynman diagrams without graviton
loops, as shown below,

Ve↵ = i lim
d!3

Z
ddp

(2⇡)d
e
ip·(x(1)�x(2))

(2)

(1)

, (3.6)

where p is the linear momentum transferred between the two bodies. To calculate (3.6), we first
generate all the topologies that correspond to graviton exchanges between the worldlines of the two
compact objects. There is one topology at tree-level (GN ), two topologies at one-loop (G2

N ), and nine
topologies at two-loop (G3

N ). We then dress these topologies with the Kaluza-Klein fields �, A and
�. The number of diagrams3 appearing in the point-particle sector is given in Table 1a, whereas that
in the tidal sector are given in Tables 1b, 1c and 1d. We then compute these Feynman diagrams by
means of an in-house code that uses tools from EFTofPNG [81] and xTensor [82], for the tensor algebra

3
The diagrams which can be obtained from the change in the label 1 $ 2, are not counted as separate diagrams.
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Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
0 3
1 1

2PN 21
0 6
1 10
2 5

(a) Point particle sector

Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
0 3
1 1

2PN 26
0 6
1 12
2 8

(b) EQ sector

Order Diagrams Loops Diagrams

1PN 2 0 2

2PN 13
0 5
1 8

(c) FD sector

Order Diagrams Loops Diagrams
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0 3
1 1

(d) MQ sector

Table 1: Number of Feynman diagrams contributing di↵erent sectors.
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correspondence with a nested commutator.

An additional important feature of our work is that the BCJ numerators we obtain
for each cubic graph are uniquely determined, manifestly gauge invariant (i.e. written
in terms of field strengths) and local with respect to the massless gluons or gravitons.

This is to be contrasted with the situation in Yang-Mills amplitudes, where the BCJ
numerators are in general neither gauge invariant nor unique. As a byproduct of our

analysis, we also show how to derive BCJ numerators in pure Yang-Mills by taking
appropriate limits of our BCJ numerators.

The rest of the paper is organised as follows. In the next section and in Section 3
we briefly review basic properties of heavy-quark effective theory and of the double

copy, respectively. In Section 4 we present the construction of amplitudes from the
novel double copy. We briefly review the approach based on fusion rules, which we

then discuss in the context of our HEFT. In particular we discuss the construction
of the pre-numerator from fusion rules and from an ansatz, in terms of which the
BCJ numerators are expressed. In Section 5 we systematically treat cases up to six

particles. Importantly, we find unique, gauge-invariant BCJ numerators. In Section 6
we briefly discuss how to obtain pure Yang-Mills numerators from HEFT numerators

in a particular limit. We present our conclusions and an outlook on future work in
Section 7.

2 Elements of heavy-mass effective theory

Heavy-quark effective theory [1–4] plays an important role in hadron physics. In this
set-up, the momentum of an incoming heavy quark is written as

pµ = mvµ , (2.1)

where m is the heavy mass of the quark and v2 = 1, which after an interaction with a
soft particle becomes

pµ = mvµ + kµ . (2.2)

In QCD, the momentum kµ would be taken to be of order ΛQCD ! m. We are ultimately
interested in applications to classical physics (discussed in the companion paper [81]),

in which case it is convenient to think of the residual soft momentum as being rescaled
as kµ = !k̄µ [5], keeping k̄ fixed as ! → 0. If p is the momentum of an on-shell state,
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for example an outgoing heavy quark, we also get the constraint v·k = −k2/(2m),
which implies that v·k = 0 in the large-mass limit. The leading terms of the effective

Lagrangian are

Leff = −
1

4
(F a

µν)
2 + iQ̄vv·(∂ − igA)

1 + /v

2
Qv +O(1/m) , (2.3)

where for external fermion states one also has /vQv = Qv. If one ignores the O(1/m)

terms, the velocity v and the polarisation of Qv are conserved. The Feynman rules for
the fermion propagator and vertex are easily found to be

v, k
i

v·k + iε

1 + /v

2
,

p1 p3

µ, p2

v

igT avµ
1 + /v

2
, (2.4)

which are accompanied by the standard Feynman rules for gauge fields. Importantly,
the leading-order contribution in the heavy-mass limit is universal, that is the heavy
quark field can be replaced by a heavy scalar or vector field without changing the

amplitudes.

One can now use these Feynman rules to compute directly HEFT amplitudes, at
least for a small number of legs. For higher multiplicities this becomes very involved,

and we will introduce more efficient techniques in the next two sections.2 The three-
point amplitude is given by

AYM−M
3 (123) =

p1 p3

ε2

= mε2·v , (2.5)

while the four-point amplitude is

AYM−M
4 (1234) =

p1 p4

p2 p3

+

p1 p4

p2 p3

= 2m
(

−
ε2·p3v·ε3

s23
−

ε2·ε3v·p2
s23

+
ε3·p2v·ε2

s23
+

v·ε2v·ε3
2v·p2

)

. (2.6)

The Feynman diagrams contributing to the five-point amplitude are

p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

2In the following we quote colour-ordered amplitudes and drop an ubiquitous factor of i gn−2.
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For instance [62]

Jε2 ! Jε3 := 2
(s23

4

v·ε3
v·p2

Jε2 −
1

2
Jε2⊗ε3⊗p2 + ε3·p2Jε2

)

. (4.5)

The fusion rule always generates a rational function which we call the pre-numerator:

Nn(23 · · ·n− 1, v) :=
2 3 n− 1· · ·

= Jε2 ! Jε3 ! · · · ! Jεn−1, (4.6)

where we always assume associativity of the !-product. In this diagram, the red box

denotes the two massive particles, while the lines correspond to the massless particles
(gluons or gravitons). The general form of the fusion rule with these properties is known
in pure Yang-Mills from [62] for n-point MHV amplitudes and for NMHV amplitudes up

to eight points. The claim is that BCJ numerators in HEFT can be written efficiently
in terms of the pre-numerator, in a way we describe below.

To begin with, it is useful to introduce the notion of ordered and un-ordered nested
commutators. In the case of ordered nested commutators, which is relevant for colour-

ordered amplitudes, the order of a set of indices is fixed while commutators are applied
in all possible ways. For example, for n = 5, the ordered set {2, 3, 4} gives rise to two

ordered, nested commutators: [[2, 3], 4] and [2, [3, 4]]. In the case of graviton amplitudes,
we need to include also un-ordered nested commutators (omitting numerators that differ

by minus signs): [[2, 3], 4], [[2, 4], 3] and [[3, 4], 2]. Then the gluon-matter and graviton-
matter amplitudes are given by the following expressions:

AYM−M
n (12 · · ·n) =

∑

Γ∈ordered commutators {2,3,··· ,n−1}

Nn(Γ, v)

dΓ
,

AGR−M
n (12 · · ·n) =

∑

Γ∈non-ordered commutators{2,3,··· ,n−1}

[

Nn(Γ, v)
]2

dΓ
,

(4.7)

where particles 1 and n are heavy and all others are massless. Each nested commutator
(and hence BCJ numerator) is in one-to-one correspondence with a specific cubic graph,

from which one can also read off the relevant massless scalar propagators, denoted as
dΓ in (4.7). For instance, the nested commutator [[2, 3], 4] and the associated BCJ

numerator corresponds to the cubic graph

N5([[2, 3], 4], v) ←→

2 3 4

, (4.8)
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The redundant operators proportional to the leading order equation of motion can be
removed by the field redefinition [37]

Q !

✓
1�

D2

?
8m2

�
e

16m2
�µ⌫F

µ⌫ +
1

16m3
Dµ

?(iv ·D)D?µ �
e

16m3
vµD?⌫F

µ⌫

�
i

16m3
�µ⌫D

µ
?(iv ·D)D⌫

? �
ie

16m3
v⇢�µ⌫D

µ
?F

⌫⇢

◆
Q (3.7)

to order O(1/m4), leading to the Lagrangian

LHQET = Q̄

✓
iv ·D �

D2

?
2m

+
D4

?
8m3

�
e

4m
�µ⌫F

µ⌫
�

e

8m2
vµ[D⌫

?Fµ⌫ ] (3.8)

+
ie

8m2
v⇢�µ⌫{D

µ
?, F

⇢⌫
}+

e

16m3
{D2

?,�µ⌫F
µ⌫
}+

e2

16m3
Fµ⌫F

µ⌫

◆
Q+O(m�4).

Square brackets enclosing a derivative denote that the derivative acts only within the brack-
ets.

Once Fourier transformed, partial derivatives produce the momentum of the differen-
tiated field. In the specific case of HQET, the partial derivatives produce either a residual
momentum (when acting on the spinor field) or a photon momentum (when acting on the
vector field) in the Feynman rules. As both types of momenta correspond to massless
modes, they both scale with ~, and hence partial derivatives always result in one positive
power of ~.

4 Heavy Black Hole Effective Theory

We now turn to the case of a heavy particle minimally coupled to gravity. The derivation of
the Lagrangian for a heavy scalar coupled to gravity differs from the derivation of the spinor
theory, because the scalar field whose heavy-mass limit we are interested in describing is
real. The initial Lagrangian is that of a minimally coupled scalar matter field:

p
�gLsc-grav =

p
�g

✓
1

2
gµ⌫@µ�@⌫��

1

2
m2�2

◆
. (4.1)

The metric is given by a small perturbation around flat space, gµ⌫ = ⌘µ⌫ +hµ⌫ , where the
perturbation hµ⌫ is identified with the graviton.

The heavy-field limit of a real scalar field can be expressed in terms of a complex
scalar field � by employing a suitable field-redefinition. Motivated by earlier analyses in
Refs. [39–41], we decompose

� !
1

p
2m

�
e�imv·x�+ eimv·x�⇤� . (4.2)

Substituting this into Eq. (4.1) and dropping quickly oscillating terms (those proportional
to e±2imv·x) gives the HBET Lagrangian for scalars:

p
�gLs=0

HBET
=

p
�g�⇤


gµ⌫ivµ@⌫ +

1

2
m(gµ⌫vµv⌫ � 1)�

1

2m
gµ⌫@µ@⌫

�
�+O(1/m2). (4.3)
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decomposed into a large part, mQvµ, and a small residual momentum, kµ. Altogether,

pµ = mQv
µ + kµ, |kµ| ⇠ O(⇤QCD) where ⇤QCD ⌧ mQ. (3.1)

A hierarchy of scales is present, and we can organize an effective theory which expands in
this hierarchy.

An interesting feature of HQET, as will be seen below, is that its propagating degrees
of freedom are massless. The propagating degrees of freedom carry the residual momentum
kµ. Therefore, since we are interested in classical scattering, we can rewrite the residual
momentum according to Eq. (2.1):

pµ = mQv
µ + ~k̄µ. (3.2)

The procedure we will use to derive the HBET Lagrangian for spinors in the next
section is identical to that used to derive the HQET Lagrangian. As such, we outline the
derivation of the HQET Lagrangian for one quark coupled to a U(1) gauge field.3 Our
starting point is the QED Lagrangian,

LQED =  ̄
�
i /D �m

�
 , where Dµ ⌘ (@µ + ieAµ) . (3.3)

Next, following the pedagogical derivation in Ref. [38], we introduce the projection operators

P± ⌘
1± /v

2
, (3.4a)

and two eigenfunctions of these operators

Q ⌘ eimv·xP+ , (3.4b)
Q̃ ⌘ eimv·xP� . (3.4c)

This allows us to decompose the spinor field as

 =
1 + /v

2
 +

1� /v

2
 = e�imv·x

⇣
Q+ Q̃

⌘
. (3.5)

The details pertaining to the external states of the fields Q and Q̃ are discussed in Ap-
pendix A.

Substituting Eq. (3.5) into Eq. (3.3), using some simple gamma matrix and projection
operator identities, and integrating out Q̃ using its equation of motion, we arrive at the
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i
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[�µ, �⌫ ] is the Dirac sigma matrix and Dµ

? ⌘ Dµ
� vµ(v ·D) is the covariant

derivative orthogonal to vµ.
3The non-abelian case is discussed in e.g. Ref. [37].
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for example an outgoing heavy quark, we also get the constraint v·k = −k2/(2m),
which implies that v·k = 0 in the large-mass limit. The leading terms of the effective

Lagrangian are

Leff = −
1

4
(F a

µν)
2 + iQ̄vv·(∂ − igA)

1 + /v

2
Qv +O(1/m) , (2.3)

where for external fermion states one also has /vQv = Qv. If one ignores the O(1/m)

terms, the velocity v and the polarisation of Qv are conserved. The Feynman rules for
the fermion propagator and vertex are easily found to be

v, k
i

v·k + iε

1 + /v

2
,

p1 p3

µ, p2

v

igT avµ
1 + /v

2
, (2.4)

which are accompanied by the standard Feynman rules for gauge fields. Importantly,
the leading-order contribution in the heavy-mass limit is universal, that is the heavy
quark field can be replaced by a heavy scalar or vector field without changing the

amplitudes.

One can now use these Feynman rules to compute directly HEFT amplitudes, at
least for a small number of legs. For higher multiplicities this becomes very involved,

and we will introduce more efficient techniques in the next two sections.2 The three-
point amplitude is given by

AYM−M
3 (123) =

p1 p3

ε2

= mε2·v , (2.5)

while the four-point amplitude is

AYM−M
4 (1234) =

p1 p4

p2 p3

+

p1 p4

p2 p3

= 2m
(

−
ε2·p3v·ε3

s23
−

ε2·ε3v·p2
s23

+
ε3·p2v·ε2

s23
+

v·ε2v·ε3
2v·p2

)

. (2.6)

The Feynman diagrams contributing to the five-point amplitude are

p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

+
p1 p5

p2 p3 p4

2In the following we quote colour-ordered amplitudes and drop an ubiquitous factor of i gn−2.
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Near Zone/PM Corrections
‣Heavy Mass/Black-hole EFT [H(M/B)ET] in Gravity   

The redundant operators proportional to the leading order equation of motion can be
removed by the field redefinition [37]

Q !

✓
1�

D2

?
8m2

�
e

16m2
�µ⌫F

µ⌫ +
1

16m3
Dµ

?(iv ·D)D?µ �
e

16m3
vµD?⌫F

µ⌫

�
i

16m3
�µ⌫D

µ
?(iv ·D)D⌫

? �
ie

16m3
v⇢�µ⌫D

µ
?F

⌫⇢

◆
Q (3.7)

to order O(1/m4), leading to the Lagrangian

LHQET = Q̄

✓
iv ·D �

D2

?
2m

+
D4

?
8m3

�
e

4m
�µ⌫F

µ⌫
�

e

8m2
vµ[D⌫

?Fµ⌫ ] (3.8)

+
ie

8m2
v⇢�µ⌫{D

µ
?, F

⇢⌫
}+

e

16m3
{D2

?,�µ⌫F
µ⌫
}+

e2

16m3
Fµ⌫F

µ⌫

◆
Q+O(m�4).

Square brackets enclosing a derivative denote that the derivative acts only within the brack-
ets.

Once Fourier transformed, partial derivatives produce the momentum of the differen-
tiated field. In the specific case of HQET, the partial derivatives produce either a residual
momentum (when acting on the spinor field) or a photon momentum (when acting on the
vector field) in the Feynman rules. As both types of momenta correspond to massless
modes, they both scale with ~, and hence partial derivatives always result in one positive
power of ~.

4 Heavy Black Hole Effective Theory

We now turn to the case of a heavy particle minimally coupled to gravity. The derivation of
the Lagrangian for a heavy scalar coupled to gravity differs from the derivation of the spinor
theory, because the scalar field whose heavy-mass limit we are interested in describing is
real. The initial Lagrangian is that of a minimally coupled scalar matter field:

p
�gLsc-grav =

p
�g

✓
1

2
gµ⌫@µ�@⌫��

1

2
m2�2

◆
. (4.1)

The metric is given by a small perturbation around flat space, gµ⌫ = ⌘µ⌫ +hµ⌫ , where the
perturbation hµ⌫ is identified with the graviton.

The heavy-field limit of a real scalar field can be expressed in terms of a complex
scalar field � by employing a suitable field-redefinition. Motivated by earlier analyses in
Refs. [39–41], we decompose

� !
1

p
2m

�
e�imv·x�+ eimv·x�⇤� . (4.2)

Substituting this into Eq. (4.1) and dropping quickly oscillating terms (those proportional
to e±2imv·x) gives the HBET Lagrangian for scalars:

p
�gLs=0

HBET
=

p
�g�⇤


gµ⌫ivµ@⌫ +

1

2
m(gµ⌫vµv⌫ � 1)�

1

2m
gµ⌫@µ@⌫

�
�+O(1/m2). (4.3)
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Comparing the Feynman rules for this theory in Appendix D with the Feynman rules
for the full theory in Ref. [15], we see that they are related by simply decomposing the
momenta as in Eq. (3.1) and dividing by 2m.

Next, we consider the case of a heavy spin-1/2 particle. We begin with the Lagrangian
of a minimally coupled Dirac field  

p
�gLgrav =

p
�g ̄ (ieµa�

aDµ �m) , (4.4)

where eµa is a vierbein, connecting curved space (with Greek indices) and flat space (with
Latin indices) tensors. The expansion of the vierbein in terms of the metric perturbation
is given in Ref. [15]. The covariant derivative is [42]

Dµ ⌘

✓
@µ +

i

2
!µ

ab�ab

◆
 , (4.5)

where the spin connection !µ
ab is given in terms of vierbeins in Eq. (41) of Ref. [42]. To

quadratic order in the graviton field, the spin-connection is [15]

!µ
ab = �



4
@bhµ

a
�
2

16
h⇢b@µh

a
⇢ +

2

8
h⇢b@⇢hµ

a
�
2

8
h⇢b@ahµ

⇢
� (a $ b). (4.6)

Eq. (4.6) differs from that in Ref. [15] by a factor of �1/2. The spin connection of Ref. [42]
differs from that of Ref. [15] by this same factor, and we use the connection of Ref. [42].

We make the same decomposition of the fermion field  as in HQET, Eq. (3.5), and
integrate out the anti-field by substituting its equation of motion. As for HQET, the HBET
Lagrangian has a non-local form:

p
�gLs=1/2

HBET
=
p
�gQ̄


(i /r+ B) + (i /r+ B)P�

1

2m� (i /r+ B)P�
(i /r+ B)

�
Q, (4.7)

where /r ⌘ �µa�arµ and

B = (eµa � �µa )(i�
a
rµ +m�avµ). (4.8)

This is the main result of the paper.
We can recover a local form of this Lagrangian by expanding the denominator in both

1/m and . We will only need vertices involving two spinors and at most two gravitons, so
we expand up to O(2). The resulting Feynman rules are given in Appendix D for reference.

Although we started with massive matter fields, Eqs. (4.3) and (4.7) contain no mass
terms for the matter fields. The propagating modes of HBET are therefore massless, so
their momenta scale with ~ in the classical limit. As in the case of HQET, this allows us
to interpret the operator expansion of HBET as an expansion in ~.

The Feynman rules of both theories (Appendix D) are suggestive of the universality
of the multipole expansion from Ref. [15]; all terms present in the scalar Feynman rules
also appear in the spinor Feynman rules. There are, of course, extra terms in the spinor
Feynman rules which encode spin effects. Moreover, we find additional spin-independent
terms in the spinor Feynman rules that do not appear in the scalar rules. This is not
necessarily inconsistent with Ref. [15]: as will be discussed further below, we expect these
additional terms to not contribute to the properly defined potential at one-loop level.
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p1 � q

p1
q

p2 + q

p2

Figure 1: Classical scattering of two particles at tree-level.

5 Long range 2 ! 2 gravitational scattering amplitudes

We will demonstrate the utility of the above EFTs for systems of two heavy particles. We
do so by calculating the amplitudes for the scattering of scalars and fermions mediated by
gravitons up to the leading quantum order at one-loop level. To maximize the efficiency
of the computation of the following amplitudes, one could obtain them as double copies
of HQET amplitudes. Focusing on the validation of HBET, however, we compute them
using standard Feynman diagram techniques applied directly to the HBET Lagrangians in
Eqs. (4.3) and (4.7), with graviton dynamics described by the usual Einstein-Hilbert action,

SGR =
1

16⇡G

Z
d4x

p
�gR. (5.1)

To obtain the classical portions of the amplitudes, we use only the HBET operators de-
scribed in Section 2. The leading quantum terms arise by also including operators that
scale with one more factor of ~.

In what follows we make use of the reparameterization invariance of HBET [43–45]
to work in a frame in which the initial momenta are pµi = miv

µ
i , where vµi is the initial

four-velocity of particle i. We then define ! ⌘ v1µv
µ
2
, which, in such a frame, is related to

the Mandelstam variable s = (p1 + p2)2 via

s� s0 = 2m1m2(! � 1), (5.2)

where s0 ⌘ (m1 +m2)2. From Eq. (5.2) it is evident that the non-relativistic limit of the
kinematics of both particles, s � s0 ! 0, is equivalent to the limit ! ! 1. As a check on
the results, we reproduce the amplitudes in Ref. [15] in the non-relativistic limit.

Amplitudes for scalar-scalar scattering arise as a portion of the fermion-fermion scat-
tering amplitude [15]. For this reason we present here the amplitudes for fermion-fermion
scattering.

5.1 First Post-Minkowskian Order

At 1PM order, the relevant diagram is the tree-level graviton exchange diagram, shown in
Fig. 1. Using the ~-counting in Section 2, we see that the coupling constants provide one
inverse power of ~, while the graviton propagator scales as 1/~2. The leading tree-level
amplitude becomes

M
(1)

t = �
4⇡m1m2G

~3q2


(2!2

� 1)U1U2 +
2i!

m2

1
m2

E1U2 +
2i!

m1m2

2

E2U1
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AYM−M
n (12 · · ·n) =

∑

Γ∈ordered commutators {2,3,··· ,n−1}

Nn(Γ, v)

dΓ
,

For instance [62]

Jε2 ! Jε3 := 2
(s23

4

v·ε3
v·p2

Jε2 −
1

2
Jε2⊗ε3⊗p2 + ε3·p2Jε2

)

. (4.5)

The fusion rule always generates a rational function which we call the pre-numerator:

Nn(23 · · ·n− 1, v) :=
2 3 n− 1· · ·

= Jε2 ! Jε3 ! · · · ! Jεn−1, (4.6)

where we always assume associativity of the !-product. In this diagram, the red box

denotes the two massive particles, while the lines correspond to the massless particles
(gluons or gravitons). The general form of the fusion rule with these properties is known
in pure Yang-Mills from [62] for n-point MHV amplitudes and for NMHV amplitudes up

to eight points. The claim is that BCJ numerators in HEFT can be written efficiently
in terms of the pre-numerator, in a way we describe below.

To begin with, it is useful to introduce the notion of ordered and un-ordered nested
commutators. In the case of ordered nested commutators, which is relevant for colour-

ordered amplitudes, the order of a set of indices is fixed while commutators are applied
in all possible ways. For example, for n = 5, the ordered set {2, 3, 4} gives rise to two

ordered, nested commutators: [[2, 3], 4] and [2, [3, 4]]. In the case of graviton amplitudes,
we need to include also un-ordered nested commutators (omitting numerators that differ

by minus signs): [[2, 3], 4], [[2, 4], 3] and [[3, 4], 2]. Then the gluon-matter and graviton-
matter amplitudes are given by the following expressions:

AYM−M
n (12 · · ·n) =

∑

Γ∈ordered commutators {2,3,··· ,n−1}

Nn(Γ, v)

dΓ
,

AGR−M
n (12 · · ·n) =

∑

Γ∈non-ordered commutators{2,3,··· ,n−1}

[

Nn(Γ, v)
]2

dΓ
,

(4.7)

where particles 1 and n are heavy and all others are massless. Each nested commutator
(and hence BCJ numerator) is in one-to-one correspondence with a specific cubic graph,

from which one can also read off the relevant massless scalar propagators, denoted as
dΓ in (4.7). For instance, the nested commutator [[2, 3], 4] and the associated BCJ

numerator corresponds to the cubic graph

N5([[2, 3], 4], v) ←→

2 3 4

, (4.8)
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p1 p3

a b

p2 = p1 − q p4 = p4 + q

Figure 1: Basic kinematics of gravitational scattering.

2 Spin-Independent Scattering

We first set the kinematic framework for our study. We consider the gravi-
tational scattering of two non-identical particles—particle a with mass ma,
and incoming four-momentum p1 and particle b with mass mb, and incoming
four-momentum p3. After interacting the final four-momentum of particle a
is p2 = p1 − q and that of particle b is p4 = p3 + q—cf. Fig. 1. Now we need
to be more specific.

2.1 Spin-0 – Spin-0 Scattering

We begin by examining the gravitational scattering of two spinless particles.
The gravitational coupling of a spin-0 particle is found by expanding the
minimally coupled scalar field matter Lagrangian

√
−gLm =

√
−g

(

1

2
gµν∂µφ∂νφ−

1

2
m2φ2

)

(3)

in terms of the gravitational field hµν which is a small fluctuation of the
metric about flat Minkowski space defined as

gµν = ηµν + κhµν (4)

with κ =
√
32πG ∝ 1/MP . The inclusion of this factor κ in the definition of

the graviton field hµν gives this field a mass-dimension of unity and thus yields

3
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correspondence with a nested commutator.

An additional important feature of our work is that the BCJ numerators we obtain
for each cubic graph are uniquely determined, manifestly gauge invariant (i.e. written
in terms of field strengths) and local with respect to the massless gluons or gravitons.

This is to be contrasted with the situation in Yang-Mills amplitudes, where the BCJ
numerators are in general neither gauge invariant nor unique. As a byproduct of our

analysis, we also show how to derive BCJ numerators in pure Yang-Mills by taking
appropriate limits of our BCJ numerators.

The rest of the paper is organised as follows. In the next section and in Section 3
we briefly review basic properties of heavy-quark effective theory and of the double

copy, respectively. In Section 4 we present the construction of amplitudes from the
novel double copy. We briefly review the approach based on fusion rules, which we

then discuss in the context of our HEFT. In particular we discuss the construction
of the pre-numerator from fusion rules and from an ansatz, in terms of which the
BCJ numerators are expressed. In Section 5 we systematically treat cases up to six

particles. Importantly, we find unique, gauge-invariant BCJ numerators. In Section 6
we briefly discuss how to obtain pure Yang-Mills numerators from HEFT numerators

in a particular limit. We present our conclusions and an outlook on future work in
Section 7.

2 Elements of heavy-mass effective theory

Heavy-quark effective theory [1–4] plays an important role in hadron physics. In this
set-up, the momentum of an incoming heavy quark is written as

pµ = mvµ , (2.1)
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‣GW Astronomy: a growing research field, where accuracy is not an option 
 
 

‣Compact objects evolution can benefit of the interplay between Cosmology, Astrophysics, and High-Energy Theoretical Physics 
 
 

‣Remarkable combination of traditional methods developed for the GR two-body problem  
and methods developed for elementary particle scattering to improve the GW waveforms modelling 
 
 

‣Scattering processes: a universal framework to investigate Nature at its most extreme conditions 
 
 

‣Under a diagrammatic viewpoint, Gravity is not so different from the other Fundamental Interactions 
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the geometric Langlands program [6]. It is natural to think that the Langlands
program in number theory can also be analyzed by means of a corresponding
version of gauge theory.

We stressed that we want to use number theory in conventional physics.
It is possible, however, that all physical quantities are quantized (there exists
elementary length, etc). Then it is natural to believe that the theories over
integers have direct physical meaning.

To explain what we have in mind when speaking about “physics over a ring”
we start with the following:

Definition. Physics is a part of mathematics devoted to the calculation of inte-
grals of the form

∫
g(x)ef(x)dx. Different branches of physics are distinguished

by the range of the variable x and by the names used for f(x), g(x) and for
the integral. For example, in classical statistical physics x runs over a symplec-
tic manifold, f(x) is called the Hamiltonian function and the integral has the
meaning of a partition function or of a correlation function. In a d-dimensional
quantum field theory x runs over the space of functions on a d-dimensional
manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
it is true that the main mathematical problem of physics is the calculation of
integrals of the form

∫
g(x)ef(x) dx. If we work over an arbitrary ring K the

exponential function and the notion of the integral are not defined. We will
show that nevertheless one can give a suitable definition of an integral of the
form

∫
g(x)ef(x) dx.

Let us start with some simple remarks about integrals over Rn assuming that
g and f are formal power series in the variable λ with coefficients belonging to
the ring of polynomials on Rn (in other words f, g ∈ R[x1, ..., xn][[λ]]). We note
that this choice is different from R[[λ]][x1, ..., xn] and it is more convenient for
technical reasons. If f can be represented as f0 + λV where f0 is a negative
quadratic form, then the integral

∫
g(x)ef(x) dx can be calculated in the frame-

work of perturbation theory with respect to the formal parameter λ. We will
fix f and consider the integral as a functional I(g) taking values in R[[λ]]. It is
easy to derive from the relation

∫
∂a(h(x)e

f(x))dx = 0

that the functional I(g) vanishes in the case when g has the form

g = ∂ah+ (∂af)h.

One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.
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program in number theory can also be analyzed by means of a corresponding
version of gauge theory.

We stressed that we want to use number theory in conventional physics.
It is possible, however, that all physical quantities are quantized (there exists
elementary length, etc). Then it is natural to believe that the theories over
integers have direct physical meaning.

To explain what we have in mind when speaking about “physics over a ring”
we start with the following:

Definition. Physics is a part of mathematics devoted to the calculation of inte-
grals of the form

∫
g(x)ef(x)dx. Different branches of physics are distinguished

by the range of the variable x and by the names used for f(x), g(x) and for
the integral. For example, in classical statistical physics x runs over a symplec-
tic manifold, f(x) is called the Hamiltonian function and the integral has the
meaning of a partition function or of a correlation function. In a d-dimensional
quantum field theory x runs over the space of functions on a d-dimensional
manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
it is true that the main mathematical problem of physics is the calculation of
integrals of the form

∫
g(x)ef(x) dx. If we work over an arbitrary ring K the

exponential function and the notion of the integral are not defined. We will
show that nevertheless one can give a suitable definition of an integral of the
form

∫
g(x)ef(x) dx.

Let us start with some simple remarks about integrals over Rn assuming that
g and f are formal power series in the variable λ with coefficients belonging to
the ring of polynomials on Rn (in other words f, g ∈ R[x1, ..., xn][[λ]]). We note
that this choice is different from R[[λ]][x1, ..., xn] and it is more convenient for
technical reasons. If f can be represented as f0 + λV where f0 is a negative
quadratic form, then the integral

∫
g(x)ef(x) dx can be calculated in the frame-

work of perturbation theory with respect to the formal parameter λ. We will
fix f and consider the integral as a functional I(g) taking values in R[[λ]]. It is
easy to derive from the relation

∫
∂a(h(x)e

f(x))dx = 0

that the functional I(g) vanishes in the case when g has the form

g = ∂ah+ (∂af)h.

One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.
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‣Addressing a common math problem might be useful to make progress in different disciplines
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‣known known FarZone-GREFT with causal propagators not adequate to describe Radiation/Hereditary effects 

‣known unknown: FarZone-GREFT within Keldysh-Schwinger “in-in” formalism under scrutiny
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Conservative Dynamics :: Near Zone with Spin

4.2 Computation of the EFT Hamiltonians

We derive the EFT Hamiltonian by applying the Legendre transformation on the e↵ective Lagrangian

H(x,p,S) =
X

a=1,2

pi

(a)ẋ
i

(a) � L(x, ẋ,S) , (4.5)

where pi denotes the canonical momenta and it is defined as

pi

(a) =
@L(x, ẋ,S)

@ẋi

(a)

. (4.6)

We express ẋi

(a) in terms of pi

(a) by inverting this relation in every order of 1/c. Exploiting this

equation, we obtain a relation between ẋi

(a) and pi

(a) and using it in the equation (4.5) we obtain the
the required Hamiltonian H(x,p,S).

4.3 Removal of the poles and logarithms

Both the Hamiltonian and the Lagrangian obtained in the previous step contain divergent pieces
and logarithmic terms, which can be eliminated following appropriate coordinate transformations. In
the Lagrangian description, we can employ a set of total derivative terms with arbitrary coe�cients,
which are determined by demanding the cancellation of the divergent pieces during the elimination of
the higher-order time derivatives as described in section 4.1. In the Hamiltonian description, we can
utilize the properties of the canonical transformation 3 to remove the poles and the logarithmic terms,
namely

H0 = H+ {H,G} , (4.8)

where G represents the infinitesimal generator of the arbitrary canonical transformation and H0 is free
of the divergences and logarithmic terms.

Here, we follow the procedure of removal of the poles and the logarithms in the Hamiltonian
description, where we derive all the necessary suitable canonical transformations. Specifically, we
construct an ansatz with several arbitrary coe�cients for the infinitesimal generator G and build a
system of linear equations in terms of those unknown coe�cients by requiring the elimination of the
divergent pieces inH0. The solutions of this system of equations provide a set of values for the arbitrary
coe�cients, thus obtaining the final e↵ective Hamiltonian free of poles and logarithmic terms. In the
next sections, we illustrate the strategies for the elimination of the poles and logarithmic terms from
the 3PN non-spinning sector and the quadratic-in-spin N3LO sector.

4.3.1 3PN non-spinning sector

In the non-spinning sector the 3PN corrections has been known for a long time [83]. Following [83],
we pursue the same procedure, by adding a total derivative term with the complete 3PN Lagrangian,
to remove the divergent pieces.
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2. we remove Ṡ(a) and its higher-order time derivatives from the NLO spin-orbit potential,

3. we remove the a(a) and its higher-order time derivatives from non-spinning 2PN and 3PN po-
tentials as well as LO and NLO quadratic-in-spin potentials,
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5. we remove the a(a), Ṡ(a) and their higher-order time derivatives from the N2LO spin-orbit po-
tential as well as N2LO and N3LO quadratic-in-spin potential.

After each iteration, we obtain a new Lagrangian and compute the equation of motion again to be
used in the next iteration. One can check that at each step contributions cubic in �x(a) and quadratic
in !(a) are negligible (higher order in spin or the PN approximation), in contrast to an (incorrect)
insertion of all higher-order time derivates in a single step. Following these steps, we obtain the
e↵ective Lagrangian, which depends on the position, velocity, and spin only.

2
Here V ⌘ �

⇣
L�

⇣
� 1

2S
ij
(a)⌦

ij
(a)

⌘⌘
.

– 10 –

‘’ =4.2 Computation of the EFT Hamiltonians

We derive the EFT Hamiltonian by applying the Legendre transformation on the e↵ective Lagrangian

H(x,p,S) =
X

a=1,2

pi

(a)ẋ
i

(a) � L(x, ẋ,S) , (4.5)

where pi denotes the canonical momenta and it is defined as

pi

(a) =
@L(x, ẋ,S)

@ẋi

(a)

. (4.6)

We express ẋi

(a) in terms of pi

(a) by inverting this relation in every order of 1/c. Exploiting this

equation, we obtain a relation between ẋi

(a) and pi

(a) and using it in the equation (4.5) we obtain the
the required Hamiltonian H(x,p,S).

4.3 Removal of the poles and logarithms

Both the Hamiltonian and the Lagrangian obtained in the previous step contain divergent pieces
and logarithmic terms, which can be eliminated following appropriate coordinate transformations. In
the Lagrangian description, we can employ a set of total derivative terms with arbitrary coe�cients,
which are determined by demanding the cancellation of the divergent pieces during the elimination of
the higher-order time derivatives as described in section 4.1. In the Hamiltonian description, we can
utilize the properties of the canonical transformation 3 to remove the poles and the logarithmic terms,
namely

H0 = H+ {H,G} , (4.8)

where G represents the infinitesimal generator of the arbitrary canonical transformation and H0 is free
of the divergences and logarithmic terms.

Here, we follow the procedure of removal of the poles and the logarithms in the Hamiltonian
description, where we derive all the necessary suitable canonical transformations. Specifically, we
construct an ansatz with several arbitrary coe�cients for the infinitesimal generator G and build a
system of linear equations in terms of those unknown coe�cients by requiring the elimination of the
divergent pieces inH0. The solutions of this system of equations provide a set of values for the arbitrary
coe�cients, thus obtaining the final e↵ective Hamiltonian free of poles and logarithmic terms. In the
next sections, we illustrate the strategies for the elimination of the poles and logarithmic terms from
the 3PN non-spinning sector and the quadratic-in-spin N3LO sector.

4.3.1 3PN non-spinning sector

In the non-spinning sector the 3PN corrections has been known for a long time [83]. Following [83],
we pursue the same procedure, by adding a total derivative term with the complete 3PN Lagrangian,
to remove the divergent pieces.
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χ = − 2∫
∞
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dr
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where, v ⌘ |ṙ| is the relative velocity of the compact objects, and the relation between the total angular
momentum L and the impact parameter b given by
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where, a(+) = a(1) + a(2) and a(�) = a(1) � a(2). With the above inversions, we trade H for v and L

for b. This allows us to express the scattering angle as
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Now, applying the above procedure with the Hamiltonian given in section 5, we obtain the scattering
angle computed in the COM for aligned spins, which can be expressed as

�(v, b, S(a)) = �pp(v, b) + �SO(v, b, S(a)) + �SS(v, b, S(a)) (6.15)

where �pp and �SO are reported in [65], and
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χ = χloc
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The closest distance between the particles rmin(E, J) is obtained by imposing pr(rmin) = 0.

Introducing p2∞ = p2(r → ∞) and the impact parameter b = J/p∞, we can re-write the

above expression as:

χ(b, E) = −π + 2b

∫ ∞

rmin

dr

r
√
r2p2(r, E)− b2

, (2.4)

with p = p/p∞. Notice that, assuming the interaction turns off at infinity V (r,p2)
r→∞−−−→ 0,

we have

E = E1 + E2 =
√
p2∞ +m2

1 +
√
p2∞ +m2

2 ,

p2∞ =
1

4E2

(
E2 − (m1 −m2)

2)(E2 − (m1 +m2)
2
)
.

(2.5)

The scattering angle can be computed following these simple steps. For example, in New-

tonian mechanics, HN = p2

2µ − GMµ
r , we have (see e.g. [60])

tan
χN

2
=

1√
2Ej2

, (2.6)

where

j =
J

GMµ
, E = M(1 + νE) , (2.7)

with µ = m1m2
m1+m2

, M = m1 + m2, the reduced and total mass, and ν = m1m2
(m1+m2)2

is the

symmetric mass ratio.

2.2 Post-Minkowskian expansion

In General Relativity, on the other hand, the computation is much more challenging due

to the non-linearities involved. For large impact parameter, b $ GM , the scattering angle

can be computed as a series in GM/b, or 1/j, what is known as the Post-Minkowskian

(PM) expansion:

1

2
χ(b, E) =

∑

n

χ(n)
b (E)

(
GM

b

)n

=
∑

n

χ(n)
j (E)

1

jn
, (2.8)

with

χ(n)
j = p̂n∞χ

(n)
b , (2.9)

and p̂∞ = p∞/µ. While it is straightforward to read off from (2.6) the χ(n)
b ’s for the

Newtonian case [60], the scattering angle up to second order [83],

χ(1)
b

Γ
=

2γ2 − 1

γ2 − 1
,

χ(2)
b

Γ
=

3π

8

5γ2 − 1

γ2 − 1
,

(2.10)

was the state-of-the-art in General Relativity for quite some time. In the above expressions

we introduced

γ ≡ 1

2

E2 −m2
1 −m2

2

m1m2
= 1 + E +

1

2
νE2 , (2.11)

Γ ≡ E/M =
√
1 + 2ν(γ − 1) = 1 + νE . (2.12)

– 6 –

χ(n)
b = ∑

k≥0

χ(n,k)
b ( v2

c2 )
k

‣PM-expansion:   

‣PN-expansion:   

where, v ⌘ |ṙ| is the relative velocity of the compact objects, and the relation between the total angular
momentum L and the impact parameter b given by

L =
µ�vb
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where, a(+) = a(1) + a(2) and a(�) = a(1) � a(2). With the above inversions, we trade H for v and L

for b. This allows us to express the scattering angle as

�(v, b, S(a)) = � �

µ�v

Z
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@epr(v, b, r, S(a))
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� ⇡ . (6.14)

Now, applying the above procedure with the Hamiltonian given in section 5, we obtain the scattering
angle computed in the COM for aligned spins, which can be expressed as

�(v, b, S(a)) = �pp(v, b) + �SO(v, b, S(a)) + �SS(v, b, S(a)) (6.15)

where �pp and �SO are reported in [65], and

�SS(v, b, S(a)) = �S1S2(v, b, S(a)) + �S2(v, b, S(a))
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where, v ⌘ |ṙ| is the relative velocity of the compact objects, and the relation between the total angular
momentum L and the impact parameter b given by
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Scattering Angle :: Near Zone with Spin
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‣Aligned spins

2

FIG. 1. Illustration of aligned-spin scattering BHs.

teristic modulation of the emitted GWs. This may allow
improved tests of GR and inference of spins. Measur-
ing BH spins and their orientations is also important for
discriminating binary formation channels [4].

We begin by extending the link between weak-field
scattering and the self-force approximation [17, 25, 26]
to the spin-orbit sector. Using existing self-force results,
we are then able to uniquely determine the N3LO-PN
spin-orbit dynamics, as encoded in the gauge-invariant
scattering angle. We continue by calculating the gyro-
gravitomagnetic ratios and circular-orbit aligned-spin
binding energy. We compare to NR simulations to quan-
tify the accuracy improvement and present our conclu-
sions. G denotes Newton’s constant, and c the speed of
light.

The mass dependence of the scattering angle. — The
local-in-time conservative dynamics of a two-massive-
body system (without spin or higher multipoles) is fully
encoded in the system’s gauge-invariant scattering-angle
function �(m1,m2, v, b) [43, 44]. This gives the angle
� by which both bodies are deflected in the center-of-
mass frame, as a function of the masses ma (a = 1, 2),
the asymptotic relative velocity v, and the impact pa-
rameter b. Based on the structure of iterative solutions
in the weak-field (post-Minkowskian) approximation, it
has been argued in Sec. II of Ref. [25] that this function
exhibits the following simple dependence on the masses
(at fixed v and b), through the total mass M = m1 +m2

and the symmetric mass ratio ⌫ = m1m2/M
2,

�

�
=

GM

b
X

⌫0

G1(v) +
⇣
GM

b

⌘2

X
⌫0

G2(v) (1a)

+
⇣
GM

b

⌘3h
X

⌫0

G3(v) + ⌫X
⌫1

G3(v)
i

+
⇣
GM

b

⌘4h
X

⌫0

G4(v) + ⌫X
⌫1

G4(v)
i
+O

⇣
GM

b

⌘5

,

where � = E/Mc
2, with E

2 = (m2
1
+m

2
2
+2m1m2�)c4 be-

ing the squared total energy, and � = (1�v
2
/c

2)�1/2 the
asymptotic relative Lorentz factor. The remarkable fact
to be noted here is that the O(GM

b )1,2 terms are inde-
pendent of ⌫, while the O(GM

b )3,4 terms depend linearly
on ⌫.

As will be argued in detail in future work,2 this re-
sult generalizes straightforwardly to the case of spinning

bodies in the aligned-spin configuration, i.e., spins point-
ing in the direction of the orbital angular momentum
(as shown in Fig. 1). The aligned-spin dynamics is fully
described by the aligned-spin scattering-angle function
�(ma, Sa, v, b) [26]. Here, Sa = macaa are the signed spin
magnitudes, positive if aligned as in Fig. 1, negative if
anti-aligned. At the spin-orbit (linear-in-spin) level, the
form of Eq. (1a) holds, with the X functions acquiring
additional (linear) dependence on the spins only through
the dimensionless ratios aa/b = Sa/macb, as follows:2

X
⌫m

Gn ! X
⌫m

Gn (v) +
a+

b
X

⌫m

Gna+
(v) + �

a�
b
X

⌫m

Gna�(v), (1b)

where a± = a2 ± a1 and � = (m2 � m1)/M , with the

special constraints X
⌫0

G1a�
= 0 = X

⌫1

G3a�
; cf. Eq. (4.32)

of Ref. [26], where this is seen to hold through N2LO in
the PN expansion. It is crucial to note that the impact
parameter b in Eq. (1), is the (“covariant”) one orthog-
onally separating the asymptotic worldlines defined by
the Tulczyjew-Dixon condition [45, 46] for each spinning
body [26, 47].
Now, the fourth order in GM/b encodes the complete

spin-orbit dynamics at N3LO in the PN expansion, and
according to Eq. (1) only terms up to linear order in the
mass ratio ⌫ appear on the right-hand side (noting � !

±1 as ⌫ ! 0)—that is, first-order self-force (linear-in-⌫)
results can be employed to fix the functions X⌫m

Gn···(v) for
n  4.

Scattering angle, Hamiltonian, and binding energy. —

We now connect the scattering angle to an ansatz for a
local-in-time binary Hamiltonian including spin-orbit in-
teractions. If nonlocal-in-time (tail) e↵ects are present,
this step requires extra care [17], but this is not the
case at the N3LO-PN spin-orbit level. Crucially, the
Hamiltonian describes the dynamics for both unbound
(scattering) and bound orbits. The latter are not only
most relevant for GW astronomy, but are also where the
vast majority of self-force results are available. Hence,
a gauge-dependent Hamiltonian allows us to connect the
scattering angle (1) with known self-force results.

2 Note that our Eq. (1) is equivalent to Eqs. (2.14) and (2.15) of
Ref. [25], but with all the functions QnPM

··· (�) on the right-hand
side of (2.15) replaced by functions QnPM

··· (�, a1/b, a2/b) which
are linear in a1/b and a2/b, and with the additional constraints
imposed by symmetry under (m1, a1) $ (m2, a2). The argu-
ments leading to this result are very much analogous to those
for the spinless case as given in Ref. [25] — using the structure
of the PM expansion, Poincaré symmetry, dimensional analysis,
etc. — with the given mass dependence holding at fixed “geo-
metric quantities,” except that these are now v, b, a1, a2 instead
of just v (or �) and b. The rescaled spins aa = Sa/mac and
the “covariant” (Tulczyjew-Dixon) worldlines (separated by the
“covariant” impact parameter b) are identified as the appropri-
ate geometrical (mass-independent) quantities, because it is in
terms of these variables that the first-order metric perturbation
is linear in the masses.

[credit: 
Antornelli et al.]
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u
µ

(a) = dx
µ

(a)/d⌧ is the four-velocity and u
2
(a) = gµ⌫u

µ

(a)u
⌫

(a), whereas the proper time ⌧ is related to
the coordinate time t by d⌧ = c dt.

As we will be performing the computation using the techniques of multi-loop Feynman diagrams,
it is necessary to write the gravitational coupling constant in d dimensions as

Gd = GN

⇣p
4⇡e�ER0

⌘d�3
, (2.5)

where, R0 is an arbitrary length scale.

2.2 Post-Newtonian formulation of General Relativity

In the bound state of two compact objects, we have three length scales, namely the length scale
associated with the compact object Rs (Schwarzschild radius), the radius of the orbit r, and the
wavelength of the emitted gravitational wave �. We assume the velocities of the particles to be small
as compared to the velocity of light and the particles are far from each other, hence propagate on a
flat background (gµ⌫ = ⌘µ⌫ + hµ⌫), where the gravitational interaction between the two particles is
governed by the gravitons hµ⌫ . Then we have a hierarchy of length scales

� � r � Rs . (2.6)

As we are only interested in the long-distance physics at the scales of �, we first decompose the
graviton fields in short distance modes - potential gravitons Hµ⌫ with scaling (k0,k) ⇠ (v/r, 1/r) and
long-distance modes - radiation gravitons h̄µ⌫ with scaling (k0,k) ⇠ (v/r, v/r) [40].

Noting that v
2 ⇠ 1/r for bound orbits due to the virial theorem (or the third Kepler law), the

dimensionless expansion parameter can be taken as v2/c2 ⇠ GNM/rc
2, which formally scales as 1/c2.

Hence, following the majority of the PN literature, we equivalently adopt a formal expansion in 1/c
with one PN order corresponding to 1/c2. For the spin variables, it holds S(a) = Gm

2
(a)�(a)/c where

the dimensionless spins �(a) are at most O(1) for black holes and (realistic) neutron stars, so that
S(a) ⇠ 1/c. Henceforth we rescale the spins as S(a) ! S(a)/c in order to make the PN counting in 1/c
manifest.

Now to compute the conservative binding potential of the two-body system, we ignore the radiation
modes and decompose the potential modes in the Kaluza-Klein (KK) parameterization [124, 125]. In
this, the di↵erent components of metric gµ⌫ (= ⌘µ⌫ +Hµ⌫) are encoded in three fields, a scalar �, a
3-dimensional vector Ai and a 3-dimensional symmetric rank two tensor �ij . The decomposition is
given by,

gµ⌫ =

 
e
2�/c

2 �e
2�/c

2 Aj

c2

�e
2�/c

2 Ai
c2

�e
�2�/c

2

�ij + e
2�/c

2 Ai
c2

Aj

c2

!
,

where, �ij = �ij + �ij/c
2.

The 2-body e↵ective action is then given by integrating out the gravitational degrees of freedom
from the above derived actions as

exp
h
i

Z
dt Le↵

i
=

Z
D�DAiD�ij e

i(SEH+Spp) , (2.7)

where, Le↵ is the e↵ective Lagrangian further decomposed as

Le↵ = Ke↵ � Ve↵ , (2.8)

where, Ke↵ is the kinetic term and Ve↵ is the e↵ective contribution due to gravitational interactions
between the two objects.

– 5 –

6 Computation of observables with spin

The derived generic Hamiltonian is still gauge dependent, because of it’s dependence on the radial
coordinate. So, we can compute observable, which are gauge invariant and comparable with other
results in the literature. In this section, we focus on the computation of two gauge invariant observable,
namely, the binding energy, and the scattering angle.

For this purpose, we adopt the COM frame, where p(1) + p(2) = 0, as described in section 5. We
also assume the aligned spin configurations, which implies that the spins are aligned to the direction
of the orbital angular momentum of the compact binary. Such aligned spin configuration is realized
by

S(a) · r = S(a) · p = 0 =) S(a) · (r⇥ p) = S(a)L , (6.1)

with, L = |L| and S(a) = |S(a)|.

6.1 Binding energy for circular orbits with aligned spins

The gauge invariant relation between the binding energy and the orbital frequency for circular orbits
is obtained by eliminating the dependence on the radial coordinate. For circular orbits we have

@ eH(er, eL, eS(a))

@er = 0 . (6.2)

We invert the above relation to express er as a function of eL. Then we substitute eL as a function of e!,
the orbital frequency defined as

e! =
@ eH(eL, eS(a))

@eL
. (6.3)

Additionally, we define a gauge invariant PN parameter x = e!2/3 . Following the above procedure
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6 Computation of observables with spin

The derived generic Hamiltonian is still gauge dependent, because of it’s dependence on the radial
coordinate. So, we can compute observable, which are gauge invariant and comparable with other
results in the literature. In this section, we focus on the computation of two gauge invariant observable,
namely, the binding energy, and the scattering angle.

For this purpose, we adopt the COM frame, where p(1) + p(2) = 0, as described in section 5. We
also assume the aligned spin configurations, which implies that the spins are aligned to the direction
of the orbital angular momentum of the compact binary. Such aligned spin configuration is realized
by

S(a) · r = S(a) · p = 0 =) S(a) · (r⇥ p) = S(a)L , (6.1)

with, L = |L| and S(a) = |S(a)|.

6.1 Binding energy for circular orbits with aligned spins

The gauge invariant relation between the binding energy and the orbital frequency for circular orbits
is obtained by eliminating the dependence on the radial coordinate. For circular orbits we have
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In agreement with:  
Antonelli et al. (2020) 
Kim et al. (2022)
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