

From Elementary Particles & Feynman Integrals...

Feynman Integrals

Momentum-space Representation

N-denominator generic Integral

Integration-by-parts Identites

$$\int \prod_{i=1}^{L} d^{d}k_{i} \ \frac{\partial}{\partial k_{j}^{\mu}} \left(v_{\mu} \prod_{n=1}^{N} \frac{1}{D_{n}^{a_{n}}} \right) = 0$$

• IBP identities

 $\sum b_i I_{a_1,...,a_i \pm 1,...,a_N} = 0$

L loops, E+1 external momenta,

 $N = LE + \frac{1}{2}L(L+1)$ (generalised) denominators

total number of *reducible* and *irreducible* scalar products

't Hooft & Veltman

 $v_{\mu} = v_{\mu}(p_i, k_j)$ arbitrary

Chetyrkin, Tkachov (1981) Laporta, Remiddi (1996) Remiddi (1996) Caffo, Czyz, Laporta, Remiddi (1998) Gehrmann, Remiddi (1999) Laporta (2000) Remiddi + Bonciani, Argeri & P.M. ... [Bologna Legacy]

...

Linear relations for Feynman Integrals identities

• Relations among Integrals in dim. reg.

Chetyrkin, Tkachov (1981) Laporta (2000)

N-denominator generic Integral

• 1st order Differential Equations for MIs

Kotikov (1991) Remiddi (1996)

Dimension-Shift relations and Gram determinant relations

Tarasov (1998) Laporta (2000)

Pinches

N-denominator Master Integrals

...to Astrophysical Systems and Gravitational Waves

Motivation

- Gravitational Waves a new window on the Universe
- Two-body dynamics and radiative effects to exploring the most extreme conditions of spacetime and matter
- Next generation detectors, ground-based and in space, need of accurate waveform templates
- Precision Physics vs Precision Calculations: Multi-Loop Calculus, Scattering Amplitudes and General Relativity

Motivation

- Gravitational Waves a new window on the Universe
- Two-body dynamics and radiative effects to exploring the most extreme conditions of spacetime and matter
- Next generation detectors, ground-based and in space, need of accurate waveform templates
- Precision Physics vs Precision Calculations: Multi-Loop Calculus, Scattering Amplitudes and General Relativity

Outline

- 1. Gravitational Waves Detection and Computational Techniques
- 2. Two-body problem in Classical GR and EFT Diagrammatic Approach
- 3. Conservative Effects from Near and Far Zone
- 4. Spin and Tidal Effects

Based on collaborations with:

G. Brunello, J. Steinhoff, M.K. Mandal, R. Patil, H.O. Silva

- D. Bini, T. Damour, A. Geralico, S. Laporta
- S. Foffa, R. Sturani, C. Sturm, W.J. Torres Bobadilla

LIGO-Virgo Detection: **GW150914**

Bologna is here

LIGO-Virgo Detection: GW150914

LIGO-Virgo-KAGRA Collaboration

Hanford

Kagra

O3b - Catalogue

Livingston

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

:: Current GW Detectors: advanced programs

Prospects for observations within advanced Programs updated [Abbot et al. 2020]

O3 --> O5 <=> O(10) --> O(100) GW detections/year

:: (some) Future GW Detectors

[Bailes et al. 2021]

Einstein Telescope

5 million km Earth 20° 1 AU (150 million km)

Waveform Model and Computing Techniques

• Waveform Model and Computing Techniques

Standard Model of GW Physics

[adapted from: Barak]

Waveform Model and Computing Techniques

Effective One Body (EOB) Formalism

the contributions coming from different kinematic regions for combined and calibrated with Numerical Relativity

- Post-Minkowskian Expansion [relativistic scattering]
- $G_N \frac{m}{r} \ll v^2 \sim 1$

Expansion in powers of G_N

 Post-Newtonian Expansion [non relativistic system]

$$G_N \frac{m}{r} \sim v^2 << 1$$

Expansion in powers of v/c

BH perturbation theory / self force

Expansion for small metric deformation $\delta g_{\mu\nu} \sim \epsilon = m_2/m_1 \ll 1$

Effective Field Theory for General Relativity

Coalescing Binary System

:: Double Hierarchy

 r_s

Dissipative system :: GW emission

Coalescing Binary System

:: Double Hierarchy

 r_{s}

:: Effective Field Theory Approach

 $S[\phi, \psi]$ Fundamental [complete] theory

^o Heavy fields ψ : Λ, short distance r_s

° Light modes ϕ : $\omega \ll \Lambda$, large distance r

Dissipative system :: **GW** emission

► Effective [incomplete] theory $S_{eff}[\psi]$

 λ_{rad}

Sensitive to the Lower-scale dynamics: $\omega \ll \Lambda$

GREFT / Action

$S_{tot}[x_a, g] =$

• Einstein Hilbert + gauge fixing

$$\begin{split} S_{GR}[g] &= 2\Lambda^2 \int d^{d+1}x \ \sqrt{-g} \left(R - \frac{1}{2} \Gamma^{\mu} \Gamma_{\mu} \right) \\ \Lambda^{-1} &= \sqrt{32\pi G_N} \end{split}$$

Non-relativistic approximation [method of regions]: [Beneke Smirnov] Weak field expansion:

$$y \ll 1$$
 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ h

- Potential gravitons $H_{\mu\nu}$: $(k_0, \mathbf{k}) \sim \left(\frac{v}{r}, \frac{1}{r}\right)$ ------• Radiation gravitons $\bar{h}_{\mu\nu}$: $(k_0, \mathbf{k}) \sim \left(\frac{v}{r}, \frac{v}{r}\right)$
- Worldline/BH x_a :

• Effective action by integrating out gravitons:

$$e^{iS_{eff}[x_a]} = \int D\bar{h}$$

$$S_{GR}[g] + S_{m_a}[x_a, g]$$

[Goldberger, Rothstein]

Source/Worldline

$$S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$
$$= -m_a \int d\tau_a = -m_a \int dt \sqrt{-g_{\mu\nu}(x_a)}$$

 $h_{\mu\nu} = H_{\mu\nu} + h_{\mu\nu}$

$$(H_{\mu\nu})$$

$$e^{iS_{eff}[x_a]} = \int D\bar{h} \int DH \ e^{iS_{tot}[x_a, H, \bar{h}]} = \int$$

Near zone (r): $S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$

Far zone (λ_{rad}) : $S_{rad}[g, \{Q_i\}] = S_{GR}[g] + S_{mult}[g, \{Q_i\}]$

Conservative Dynamics :: Near Zone Spinless

Near Zone/EFT Diagrammatic Approach

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

$$S_{m_a}[x_a, g] = S_{pp}[x_a]$$

Kaluza-Klein parametrization:

[Kol Smolkin] [Blanchet Damour]

$$g_{\mu\nu} = e^{2\phi/\Lambda} \begin{pmatrix} -1 \\ A_i/\Lambda \end{pmatrix}$$

$$\gamma_{ij} = \delta_{ij} + \frac{\sigma_{ij}}{\Lambda}$$
 $c_d = 2\frac{d-1}{d-2}$

Feynman rules for:
$$\phi A^i \sigma^{ij} \chi_a$$

Static / non-propagating source: X_a

Source couplings:

[Goldberger, Rothstein] [Gilmore, Ross] [Foffa, Sturani]

 $[x_a, g] + \delta S_{m_a}[x_a, g]$

see **PEGORIN**

Propagators:

Self-interactions:

+ ...

Newton Potential

Diagrammatic approach

Just 1 diagram:

 $\mathcal{M}_{0PN} =$

Fourier transform: from amplitude to the effective action:

$$= \frac{im_1m_2}{2c_d\Lambda^2} \frac{1}{\mathbf{p}^2}$$
$$\mathscr{L}_{0PN} = -i\lim_{d\to 3} \int \frac{d^d\mathbf{p}}{(2\pi)^d} e^{i\mathbf{p}(x_1-x_2)} \left(\begin{array}{c} \\ \\ \end{array} \right) = \frac{G_N m_1 m_2}{r}$$

Newton Potential

Diagrammatic approach

Just 1 diagram:

Fourier transform: from amplitude to the effective action:

 $\mathcal{M}_{0PN} =$

Corrections to the Newtonian potential:

Non-relativistic velocities: $v^2 \ll 1$		G	$(1^{+} + v^{2} + v^{4} + v^{6} + v^{8} + v^{10} + v^{12} + \dots)$	1
	1979-81 →	G^2	$(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} +)$	2
Dynamics in Post-Minkowskian	2019	G^3	$(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} +)$	3
perturbative scheme	2021	G^4	$(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \dots)$	4
		G^5	$(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \dots)$	5
At nPM order: G_N^n		G^6	$(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \dots)$	6
		G'	$(1 + v^2 + v^4 + v^6 + v^8 + v^{10} + v^{12} + \dots)$	7

$$\frac{im_1m_2}{2c_d\Lambda^2}\frac{1}{\mathbf{p}^2}$$

$$\mathscr{L}_{0PN} = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p}(x_1 - x_2)} \left(\underbrace{\qquad} \right) = \frac{G_N m_1 m_2}{r}$$

Astrophysicists/Cosmologists' whishlist

[credit: Bern et al.]

...Westphal, Damour, Cheung, Rothstein, Solon, Bern, Roiban, Shen, Zeng, Parra-Martinez, Ruf, Hermann, Buonanno, Porto, Dlapa, Kalin, Liu, Neef, Bjerrum-Bohr, Vanhove, Plante, Cristofoli, Damgaard, Guevara, Ochirov, Vines, Di Vecchia, Veneziano, Heisenberg, Russo, Plefka, Jakobsen, Mogull, Brandhuber, Travaglini, De Angelis, Accetulli-Huber, Luna, Kosmopoulos, and collaborators...

Newton Potential

Diagrammatic approach

Just 1 diagram:

 $\mathcal{M}_{0PN} =$

Fourier transform: from amplitude to the effective action:

Corrections to the Newtonian potential:

Non-relativistic velocities: $v^2 \ll 1$

Virial theorem:

 $\frac{G_N m}{m} \approx v^2$

Dynamics in Post-Newtonian perturbative scheme

At nPN order: $G_N^{n-\ell} v^{2\ell}$

$$\frac{im_1m_2}{2c_d\Lambda^2}\frac{1}{\mathbf{p}^2}$$

-

$$\mathscr{L}_{0PN} = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p}(x_1 - x_2)} \left(\underbrace{\qquad} \right) = \frac{G_N m_1 m_2}{r}$$

Astrophysicists/Cosmologists' whishlist

...Jaranowski, Schaefer, Damour, Blanchet, Faye, Porto, Rothstein, Goldberger, Foffa, Sturani, Bini, Buonanno, Geralico, Sturm, Torres Bobadilla, Bluemlein, Maier, Marquard, Levi, Steinhoff, Vines, Antonelli, Kavanagh, Khalil, Galley, von Hippel, McLeod, Edison, Kim, Morales, Yin, Mandal, Patil, Teng, P.M. ...and collaborators

Post-Newtonian Corrections/EFT Potential

► 1PN corrections:

Einstein, Infeld, Hoffman (1938)

> 2PN corrections:

Ohta-Okamura-Kimura-Hiida (1974) Gilmore, Ross (2008)

Jaranowski, Schaefer (1997); Damour, Jaranowski, Schaefer (1997); Blachę, Faye (2000); Damour, Jaranowski Schaefer (2001); Foffa Sturani (2011)

• 4PN: corrections:

Damour, Jaranowski, Schaefer (2014); Bernard, Blanchet, Bohe, Faye, Marsa (2016); Foffa, Sturani, Sturm & P.M. (2016); Foffa, Porto, Rothstein, Sturani (2019) Blumlein, Maier, Marquard, Schaefer (2020)

5PN: corrections:

Bini, Damour, Geralico (2019); Foffa, Sturani, Sturm, Torres Bobadilla & P.M. (2019); Blumlein, Maier, Marquard, Schaefer (2020,2021)

A closer look to 4PN anatomy

Loop nr. $0 \le \ell \le n-1$

GREFT Diagrams & 2pt-QFT Integrals / a key observation

Computational techniques:

- From Effective diagrams to QFT Amplitudes:
- World-lines are not propagating
- EFTGravity Amplitudes of order G_N^{ℓ} mapped into $(\ell - 1)$ —loop 2-point functions with massless internal lines:
- Amplitudes evaluation with QFT multi-loop techniques
- From QFT Amplitudes to Effective Lagrangians:

 $\mathscr{L}_{eff}[x_a] = -$

Foffa, Sturani, Sturm, & P.M. (2016)

$$\mathcal{M} = \sum_{i} c_{i} I_{i}^{MI}$$

^o Dimensional Regularization $d = 3 + \epsilon$ Integration-by-parts (IBP) decomposition Master Integrals and Differential Equations

Chetyrkin, Tkachov (1981) Laporta, Remiddi (1996) Remiddi (1996) Caffo, Czyz, Laporta, Remiddi (1998) Gehrmann, Remiddi (1999) Laporta (2000) Remiddi + Bonciani, Argeri & P.M. ...

[Bologna Legacy]

...

28

GREFT Diagrams & 2pt-QFT Integrals / a key observation

Computational techniques:

- From Effective diagrams to QFT Amplitudes:
- World-lines are not propagating
- EFTGravity Amplitudes of order G_N^{ℓ} mapped into $(\ell - 1)$ —loop 2-point functions with massless internal lines:
- Amplitudes evaluation with QFT multi-loop techniques
- From QFT Amplitudes to Effective Lagrangians:

4PN static O(G^5): 50 4-loop GREFT diagrams

Foffa, Sturani, Sturm, & P.M. (2016)

$$\mathcal{M} = \sum_{i} c_{i} I_{i}^{MI}$$

^o Dimensional Regularization $d = 3 + \epsilon$ Integration-by-parts (IBP) decomposition Master Integrals and Differential Equations

29 4-loop QFT diagrams

GREFT Diagrams & 2pt-QFT Integrals / Factorization Th'm

Newton Potential (reloaded):

Foffa, Sturani, Sturm, Torres-Bobadilla & P.M. (2019)

30

GREFT Diagrams & 2

 $\int d^d p \ e^{ip \cdot r}$

41

(2n+1)-PN corrections: Type-B

2n

static (2n+1)-PN Potential as product of lower-PN Potential terms

Conservative Dynamics :: Far Zone Spinless

Far Zone/EFT Diagrammatic Approach

Far zone contributions to the conservative dynamics are needed, starting at 4PN order

Long-wavelength EFT:

Multipole Action:

Binary system as a linear source $T_{\mu\nu}$ of size r emitting $h_{\mu\nu}$:

$$S_{mult}[\bar{h}, \{Q_i\}] = \int dt \left[\frac{1}{2}E\bar{h}_{00} - \frac{1}{2}\epsilon_{ijk}L^i\bar{h}_{0j,k} - \frac{1}{2}Q^{ij}\mathscr{E}_{ij} - \frac{1}{2}Q^{ij}\mathscr{E}_{ij}\right]$$

 \mathscr{E}_{ii}, B_{ii} are the electric and magnetic components 0 of the Riemann tensor

• $\{Q_i\}$: multipole moments $E, L^i, Q^{ij}, O^{ijk}, J^{ij}$

$$B_{ij} = \frac{1}{2} \epsilon_{ikl} R_{0jk}$$

Thorne (1980)

Far Zone/EFT Diagrammatic Approach

Hereditary Effects

Contributions to the conservative dynamics by integrating out radiation gravitons:

$$S_{eff}[\{Q_i\}] = -i \lim_{d \to 3}$$

Hereditary Effects: GWs emitted by the source and then back-scattered into the system:

Back-scattering

Tail-Effects

EFTGravity Amplitude mapped into multi-loop 1-point functions with massive internal lines:

Goldberger, Rothstein (2005) Goldberger, Ross (2009) Galley, Tiglio (2009,2012) Foffa, Sturani (2012); Ross (2012) Galley, Leibovich, Porto, Ross (2015) Leibovich, Maia, Rothstein, Yang (2019) Blanchet et al.(2021) Almeida, Foffa, Sturani (2021,2022) Blumlein, Maier, Marquard, Schaefer (2021) Edison, Levi (2022) Brunello, Mandal, Patil & P.M. in progress

Memory effects

Double emission

Scattering Angle

$$M = m_1 + m_2$$
 $\mu = \frac{m_1 m_2}{m_1 + m_2}$ $\nu = \frac{\mu}{M}$

$$p_r = p_r(r, E, L, S_{(a)}) = p_r(r, v, b, S_{(a)})$$

 $\mathbf{p}^2 = p_r^2 + \frac{L}{r}$

 $H^{cons.} = H^{loc} + H^{nonloc.,cons.}$

PM-expansion: $\frac{1}{2}\chi(b,E) = \sum_{n} \chi_{b}^{(n)}(E) \left(\frac{GM}{b}\right)^{n} = \sum_{n} \chi_{j}^{(n)}(E) \frac{1}{j^{n}},$ **PN-**expansion: k

$$\chi_b^{(n)} = \sum_{k \ge 0} \chi_b^{(n,k)} \left(\frac{\mathbf{v}^2}{c^2}\right)^k$$

$$\frac{L^2}{r^2} = p_{\infty}^2 - V_{eff} , \qquad V_{eff}(r) = -\sum_{n \ge 1} f_n(E) \left(\frac{G_N}{r}\right)^n , \qquad p_r = \sqrt{p_{\infty}^2 - \frac{L^2}{r} - V_{eff}(r)} , \qquad V_{eff}(r \to \infty)$$

$$\chi = \chi^{loc} + \chi^{nonloc}.$$

$$\chi_j^{(n)} = \hat{p}_{\infty}^n \chi_b^{(n)}, \qquad \hat{p}_{\infty} = p_{\infty}/\mu. \qquad j = \frac{L}{G_N M \mu}$$
$$E = M \Gamma \qquad \Gamma = \sqrt{1 + 2\nu(\gamma - 1)} \qquad \gamma = \frac{1}{\sqrt{1 - v_{\infty}^2}} \qquad p_{\infty} = \frac{m_1 m_2}{E} \sqrt{\gamma^2 - 1} = \mu^2$$

Scattering Angle / far zone (no spin) : 6PN & 7PN

 χ^{loc} analytically known

$$\chi^{nonloc.} = \frac{\partial}{\partial L} \int_{-\infty}^{\infty} dt \ H^{nonloc.}(t)$$

PM-expansion:

$$\frac{1}{2}\chi^{nonloc.} = \nu p_{\infty}^{4} \left(\frac{A_{0}}{j^{4}} + \frac{A_{1}}{p_{\infty} j^{5}} + \frac{A_{2}}{p_{\infty}^{2} j^{6}} + \dots \right) \qquad p_{\infty} \equiv \sqrt{\gamma^{2} - 1} , \quad \text{at}$$

PN-expansion:

$$A_m = \sum_{n \ge 0} \left(A_{mn} + A_{mn}^{\ln} \log(p_{\infty}/2) \right) p_{\infty}^n , \qquad A_{mn} = \sum_{k \ge 0} A_{mnk} \nu^k$$

$$A_{mnk} = \int_{-1}^{+1} \int_{-1}^{+1} \frac{dTdT'}{|T - T'|} a_{mnk}(T, T')$$

O(G^6) Coefficients

O(200) coefficients: 4 of them coefficients only numerically

[Bini Damour Geralico]

Analytic evaluation

 $A_{220}, A_{240}, A_{241}, A_{242}$ [Bini Damour Geralico Laporta & P.M.]

Extended to O(G^7) Coefficients

 $\frac{d_{41}}{Q_{42}}$

 Q_{40} Q_4

 $Q_{20} \\ d_{20} \\ Q_{40} \\ d_{40} \\ Q_{41}$

Hnonloc

 $Q_{ij} \equiv$

Bini Damour Geralico (2020) Bini Damour Geralico Laporta & P.M.(2020)

Multipole Radiation Formula

 $= \frac{L}{G_N M \mu}$

$$G(t) \propto \ddot{Q}_{ij}(t) \operatorname{PF}_T \int_{-\infty}^{\infty} \frac{d\tau}{|\tau|} \ddot{Q}_{ij}(t+\tau) + \text{higher-multipole terms}$$
 time scale $T \equiv 2\pi$

Quadrupole moment

$$\sum_{a} m_a \left(x_a^i x_a^j - \frac{1}{3} \delta^{ij} \mathbf{x}_a^2 \right) + \text{PN corrections}$$

Hadamard Partie Finie

$$Pf_T \int_0^{+\infty} \frac{dv}{v} g(v) \equiv \int_0^T \frac{dv}{v} [g(v) - g(0)] + \int_T^+ \frac{dv}{v} [g(v) - g(0)] dv$$

(... similar to the plus-distribution formula)

TABLE I: Numerical values of the Q_{nk} integrals with 200-digit accuracy

8613485679

870842521159234233393649815247226338079050337694321196917178747431442826772804761699

-1029.52887537403849684626420906288951311349891044967686745420133893416002700068331 5024513617

8433814664

TABLE II: PSLQ reconstruction of the various integrals

$\frac{\frac{25883}{1800} + \frac{22333}{140} \mathrm{K} - \frac{625463}{3360} \pi - \frac{361911}{560} \pi \ln 2 + \frac{99837}{160} \pi \zeta(3) \\ -\frac{32981}{112} - \frac{9216}{7} \ln 2 + \frac{99837}{64} \zeta(3)$
$\frac{\frac{750674317}{1905120} + \frac{442237}{5040}\mathrm{K} - \frac{571787}{103680}\pi\frac{7207043}{6720}\pi\ln 2 - \frac{190489}{320}\pi\zeta(3)}{\frac{725051}{1296} + \frac{19920}{7}\ln 2 - \frac{190489}{128}\zeta(3)}$
$-\frac{703435949}{1587600} - \frac{5747}{24}\text{K} + \frac{1154149}{17280}\pi + \frac{1897771}{3360}\pi\ln 2 - \frac{306219}{640}\pi\zeta(3)$ $\frac{607867}{8064} + \frac{20224}{21}\ln 2 - \frac{306219}{256}\zeta(3)$
$-\frac{59610947}{793800} - \frac{1499}{20} \mathrm{K} - \frac{402163}{2520} \pi + \frac{4497}{80} \pi \ln 2 - \frac{11871}{160} \pi \zeta(3) - \frac{186743}{864} - \frac{11871}{64} \zeta(3)$

1. Numerical reconstruction w/200 digits

	TABLE III. Independent sets of HPLs, at the point $r = i$, up to weight four
	TABLE III. Independent sets of III LS, at the point $x = i$, up to weight four
$H_{-1}(i)$	$\frac{\ln 2}{2} + i \frac{\pi}{4}$
$H_0(i)$	$i\frac{\pi}{2}$
$H_1(i)$	$\frac{-\frac{m^2}{2}+i\frac{\pi}{4}}{\pi^2+i\frac{\pi}{4}}$
$H_{0,-1}(i)$ $H_{1,-1}(i)$	$\frac{1}{48} + i K$ $\pi^2 + i K$
$H_{1,1}(i)$	$-\frac{\pi^2}{48} + i\pi - \frac{\pi^2}{48} + \frac{\ln^2 2}{4} + \frac{1}{4}i\pi \ln 2$
$H_{-1,1}(i)$	$-\frac{\pi^2}{22} - \frac{\ln^2 2}{\pi^2} - \frac{3}{2}i\pi \ln 2 + iK$
$H_{1,-1}(i)$	$-\frac{\pi^2}{22} - \frac{\ln^2 2}{2} + \frac{3}{2}i\pi \ln 2 - iK$
$H_{1,1}(i)$	$-\frac{\pi^2}{32}+\frac{\ln^2 2}{8}-\frac{1}{8}i\pi\ln 2$
$H_{0,-1,-1}(i)$	$\frac{29}{64}\zeta(3) - \frac{1}{4}K\pi - iQ_3$
$H_{0,-1,1}(i)$	$\frac{27}{64}\zeta(3) - \frac{1}{4}K\pi + i\frac{\pi^3}{32} - 3iQ_3 - 2iK\ln 2$
$H_{0,1,-1}(i)$	$\frac{27}{64}\zeta(3) - \frac{1}{4}\mathrm{K}\pi - i\frac{\pi^3}{32} + 3i\mathrm{Q}_3 + 2i\mathrm{K}\ln 2$
$H_{0,1,1}(i)$	$\frac{29}{64}\zeta(3) - \frac{1}{4}K\pi + iQ_3$
$H_{0,-1,-1,-1}(i)$	$\frac{\frac{51}{15360}\pi^4 - \frac{35}{128}\zeta(3)\ln 2 + \frac{5}{384}\pi^2\ln^2 2 - \frac{5}{384}\ln^4 2 - \frac{5}{16}a_4 + \frac{\pi Q_3}{4} + iQ_4$
$H_{0,-1,-1,0}(i)$	$-\frac{\pi}{4608} + \frac{K}{2} + \frac{\pi}{2} + \frac{\pi}{28} i \pi \zeta(3) - \frac{1}{48} i K \pi^2$ 97 4 91 c(a) 1 a 13 21 2 a 13 13 14 a 3 a 4 K ²
$H_{0,-1,1,-1}(i)$	$-\frac{1}{9216}\pi^{-} + \frac{1}{128}\zeta(3) \ln 2 - \frac{3}{384}\pi^{-} \ln^{-} 2 + \frac{1}{16}a_{4} - \frac{3}{384}\ln^{-} 2 + \frac{a}{4}\pi Q_{3} + \frac{1}{2} - \frac{1}{8}i\pi\zeta(3)$
$H_0 \rightarrow 1 \rightarrow 0(i)$	$-\frac{71}{16}\pi \pi^{4} + \frac{3}{2}\pi\Omega_{2} + K\pi\ln 2 + \frac{K^{2}}{4} + \frac{27}{i\pi}i\pi(3) + \frac{1}{2}i\pi^{3}\ln 2 - \frac{5}{2}iK\pi^{2} - 3i\beta(4)$
$H_{0,1-1,-1}(i)$	$\frac{169}{100}\pi^4 - \frac{77}{100}\zeta(3)\ln 2 + \frac{9}{100}\pi^2\ln^2 2 - \frac{27}{128}a_4 - \frac{9}{100}\ln^4 2 - \frac{3}{48}\pi Q_3 - \frac{1}{6}K\pi \ln 2 - \frac{21}{128}$
•,-, -, -()	$ +iK\ln^2 2 + i\beta(4) + 2iQ_3\ln 2 + iQ_4 $
$H_{0,1,-1,0}(i)$	$\frac{73}{4608}\pi^4 + \frac{K^2}{2} - K\pi \ln 2 - \frac{3}{2}\pi Q_3 + \frac{27}{128}i\pi\zeta(3) - \frac{1}{8}i\pi^3 \ln 2 - \frac{7}{48}iK\pi^2 + 3i\beta(4)$
$H_{0,1,1,-1}(i)$	$\frac{61}{9216}\pi^4 + \frac{21}{128}\zeta(3)\ln 2 + \frac{13}{384}\pi^2\ln^2 2 - \frac{13}{384}\ln^4 2 - \frac{13}{16}a_4 - \frac{1}{2}K\pi\ln 2 + \frac{K^2}{2} - \frac{1}{4}\pi Q_3$
	$+iK\ln^{2}2 + \frac{3}{16}iK\pi^{2} - 5i\beta(4) + 4iQ_{3}\ln 2 + 7iQ_{4}$
$H_{0,1,1,0}(i)$	$-\frac{\pi^{4}}{4608} + \frac{K^{2}}{2} - \frac{1}{2}\pi Q_{3} - \frac{5}{48}iK\pi^{2} + \frac{29}{128}i\pi\zeta(3)$
$H_{-1,-1,-1,0}(i)$	$-\frac{31}{15360}\pi^4 + \frac{1}{2}\zeta(3)\ln 2 - \frac{1}{32}\pi^2\ln^2 2 + \frac{5}{384}\ln^4 2 + \frac{5}{16}a_4 + \frac{29}{256}i\pi\zeta(3) + \frac{1}{96}i\pi\ln^3 2 + \frac{1}{16}i\chi\ln^2 2 + \frac{1}{96}i\pi\ln^3 2 + \frac{1}{96}i\pi\ln^3$
$H_{1,1,1,0}(i)$	$-\frac{115}{8}\pi^4 + \frac{13}{2}(3)\ln 2 - \frac{1}{2}\pi^2 \ln^2 2 + \frac{9}{2}\ln^4 2 + \frac{27}{2}a_4 + \frac{1}{2}K\pi \ln 2 + \frac{1}{2}\pi \Omega_2 + \frac{27}{2}$
11-1,-1,1,0(0)	$\begin{array}{c} _{9216} i = 1 \\ + \frac{1}{22} i \pi^3 \ln 2 - \frac{1}{22} i \mathrm{K} \pi^2 - \frac{1}{2} i \mathrm{K} \ln^2 2 - i \beta(4) - \frac{1}{2} i \mathrm{Q}_3 \ln 2 - i \mathrm{Q}_4 \end{array}$
$H_{-1,1,-1,0}(i)$	$\frac{24}{911}\pi^4 - \frac{1}{2}\zeta(3)\ln 2 + \frac{17}{16}\pi^2\ln^2 2 - \frac{13}{134}\ln^4 2 - \frac{13}{16}a_4 - \pi Q_3 + \frac{K^2}{2} - \frac{3}{4}K\pi\ln 2 + \frac{3}{2}$
	$-\frac{3}{64}i\pi^{3}\ln 2 + \frac{13}{96}iK\pi^{2} + \frac{9}{8}iK\ln^{2} 2 - 5i\beta(4) + \frac{9}{2}iQ_{3}\ln 2 + 9iQ_{4}$
$H_{-1,1,1,0}(i)$	$-\frac{79}{9216}\pi^4 + \frac{1}{16}\zeta(3)\ln 2 - \frac{7}{48}\pi^2\ln^2 2 + \frac{13}{384}\ln^4 2 + \frac{13}{16}a_4 + \frac{K^2}{2} + \frac{1}{2}\pi Q_3 + \frac{1}{2}K\pi\ln 2$
	$+\frac{3}{64}i\pi^{3}\ln 2 - \frac{31}{96}iK\pi^{2} - \frac{7}{8}iK\ln^{2} 2 + 5i\beta(4) - \frac{7}{2}iQ_{3}\ln 2 - 7iQ_{4}$
$H_{1,-1,-1,0}(i)$	$\frac{55}{9216}\pi^4 - \frac{7}{96}\pi^2 \ln^2 2 - \frac{1}{16}\zeta(3)\ln 2 - \frac{13}{384}\ln^4 2 - \frac{13}{16}a_4 + \frac{1}{2}K\pi\ln 2 + \frac{1}{2}\pi Q_3 - \frac{K^2}{2} - \frac{1}{16}\chi(3)\ln^2 2 - \frac{13}{16}\lambda_4 + \frac{1}{2}K\pi\ln^2 2 - \frac{1}{2}\pi Q_3 - \frac{K^2}{2} - \frac{1}{2}\lambda_4 + \frac{1}{2}K\pi\ln^2 2 - \frac{1}{2}\pi Q_3 - \frac{K^2}{2} - \frac{1}{2}\lambda_4 + \frac{1}{2}K\pi\ln^2 2 - \frac{1}{2}\pi Q_3 - \frac{K^2}{2} - \frac{1}{2}\lambda_4 + \frac{1}{2}K\pi\ln^2 2 - \frac{1}{2}\pi Q_3 - \frac{1}{2}\lambda_4 + \frac{1}{2}\pi Q_4 $
	$-\frac{7}{96}i\mathrm{K}\pi^{2} - \frac{1}{8}i\mathrm{K}\ln^{2}2 + 5i\beta(4) - \frac{7}{2}i\mathrm{Q}_{3}\ln 2 - 7i\mathrm{Q}_{4}$
$H_{1,-1,1,0}(i)$	$\frac{27}{9216}\pi^{2} + \frac{1}{2}\zeta(3)\ln 2 + \frac{3}{48}\pi^{2}\ln^{2} 2 + \frac{13}{384}\ln^{2} 2 + \frac{14}{16}a_{4} - \frac{3}{4}K\pi\ln 2 - \frac{K}{2} - \pi Q_{3} + \frac{1}{2}$
$H_{1,1} \rightarrow o(i)$	$-\frac{1}{32}i\pi \ln 2 + \frac{1}{96}iK\pi + \frac{1}{8}iK\ln 2 - 3i\beta(4) + \frac{1}{2}iQ_3\ln 2 + 9iQ_4$ $-\frac{91}{24}\pi^4 - \frac{13}{2}i(3)\ln 2 + \frac{5}{2}\pi^2\ln^2 2 - \frac{9}{2}\ln^4 2 - \frac{27}{24}a_4 + \frac{1}{2}K\pi\ln 2 + \frac{1}{2}\pi\Omega_0 + \frac{111}{24}ia_5$
111,1,-1,0(i)	$ \begin{array}{l} _{9216} i = \frac{1}{16} \zeta(5) \ln 2 + \frac{1}{96} i = \frac{1}{128} \ln 2 - \frac{1}{128} \ln 2 - \frac{1}{16} a_4 + \frac{1}{4} \pi \ln 2 + \frac{1}{2} \pi \zeta_3 + \frac{1}{256} i \\ + \frac{1}{16} i \pi \ln^3 2 - \frac{1}{16} i \ln^2 2 - \frac{1}{16} i \pi^2 - i \beta(4) - \frac{1}{16} i \rho_2 \ln 2 - i \rho_4 \end{array} $
$H_{1,1,1,0}(i)$	$\frac{71}{29200}\pi^4 - \frac{1}{2}\zeta(3)\ln 2 - \frac{5}{294}\ln^4 2 - \frac{5}{16}a_4 + \frac{29}{296}i\pi\zeta(3) + \frac{1}{100}i\pi^3\ln 2 - \frac{1}{20}iK\pi^2 - \frac{1}{8}iK\pi^2 - \frac{1}$
	$-\frac{1}{2}iQ_3\ln 2 - iQ_4$
$Li_4(1/2)$	a_4
$\mathrm{ImLi}_2(i)$	К
$\operatorname{ImLi}_4(i)$	eta(4)
$\mathrm{Im}H_{0,1,1}(i)$	Q_3
$Im H_{0,1,1,1}(i)$	Q4

2. Analytic integration w/ HPL's

Far-Zone GREFT / validation

Mass polynomiality of the scattering angle:

 $\chi^{cons,to}_{\Delta}$

Compatible with "Tutti Frutti" method and PM-Amplitudes-based calculations

[Damour]

[Bern et al.]

[Damour, Bini, Geralico]

► GREFT calculations point at possible quadratic behaviour:

[Bluemlein et al.] [Almeida et al.] [Porto et al.] [Brunello et al.]

known unknown: FarZone-GREFT is an challenging theoretical puzzle:

- Which effects do the GREFT diagrams contain?
- Interplay between conservative and dissipative effects?
- Double counting or missing contribution?
- FarZone/Radiation and proper choice of Green-Functions

$$\chi_4^{Schw} + \nu\chi_4^{\nu}$$

$$\nu = \frac{\mu}{M}$$

$$\chi_4^{cons,tot} = \chi_4^{Schw} + \nu\chi_4^{\nu} + \nu^2\chi_4^{\nu^2}, \qquad \chi_4^{\nu^2} \neq 0$$

Conservative Dynamics :: Near Zone with Spin and Tidal Effects

Near Zone with Spin/PN Corrections

EFT Action for Spinning compact object

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g]$$

$$S_{m_a}[x_a, g] = \sum_{a=1,2} \int d\tau \left(-m_{(a)} c \sqrt{u_{(a)}^2} - \frac{1}{2} S_{(a)\mu\nu} \Omega_{(a)}^{\mu\nu} - \frac{S_{(a)\mu\nu} u_{(a)}^{\nu}}{u_{(a)}^2} \frac{du_{(a)}^{\mu}}{d\tau} + \mathcal{L}_{(a)}^{(R)} + \mathcal{L}_{(a)}^{(R^2)} + \dots \right) \quad u_{(a)}^{\mu} \equiv \dot{x}_a^{\mu}$$

Wilson coefficients that describe the internal structure

$$\mathcal{L}_{(a)}^{(R)} = -\frac{1}{2m_{(a)}c} \left(C_{\mathrm{ES}^2}^{(0)} \right)_{(a)} \frac{E_{\mu\nu}}{u_{(a)}} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{\mathrm{STF}} + \dots$$
$$\mathcal{L}_{(a)}^{(R^2, S^0)} = \frac{1}{2} \left(C_{\mathrm{E}^2}^{(2)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\nu} E^{\mu\nu}}{u_{(a)}^3} S_{(a)}^2 + \dots$$
$$\mathcal{L}_{(a)}^{(R^2, S^2)} = \frac{1}{2} \left(C_{\mathrm{E}^2 \mathrm{S}^2}^{(0)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\alpha} E_{\nu}^{\ \alpha}}{u_{(a)}^3} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{\mathrm{STF}} + \dots$$

Electric and Magnetic components of Riemann tensor

$$E_{\mu\nu} \equiv R_{\mu\alpha\nu\beta} u^{\alpha} u^{\beta}$$

$$B_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\alpha\beta\gamma\mu} R^{\alpha\beta}{}_{\delta\nu} u^{\gamma} u^{\delta}$$

STF = Symmetrized Trace-Free

 S^0 S^1 S^2 S³ S^4 S⁵ S^6

Mandal, Patil, Steinhoff & P.M. (2022) Levi, Morales, Yin (2022)

$$S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$

	PN ord	ler	1.	.5	2.	5	3.	5	4.	5	5.	5	6	.5	(L	_+1)P	M/loop o	rder
	0	,	1		2	3	3		4	Ę	5	(5				tree	
Ι	0PN	1F	PN	2F	PN	3F	PN	4F	PN	5F	PN	6F	'N				1-loop	
Ī			L	0	NI	_0	N2	2LO	N3	LO	N4	LO					2-loop	
T			-	L	0	NL	_0	N2	2LO	N3	LO						3-loop	
T							L	0	NI	_0				-			4-loop	
T								L	.0	N	LO						5-loop	
											L	0	N	LO			6-loop	
												L	0				7-loop	

Near Zone with Spin/EFT Diagrammatic Approach Kim, Levi, Yin (2022)

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g] \qquad S_{m_a}[x_a, g] = S_{pp}[x_a, g]$$

Kaluza-Klein parametrization: [Kol Smolkin]

$$\gamma_{ij} = \delta_{ij} + \frac{\sigma_{ij}}{\Lambda}$$
 $c_d = 2\frac{d-1}{d-2}$

Feynman rules for: $\phi A^i \sigma^{ij} \chi_{\alpha}$

Static / non-propagating source: X_a

Source couplings:

T

Mandal, Patil, Steinhoff & P.M. (2022)

 $g] + \delta S_{m_a}[x_a, g]$

Spin dependence

 $g_{\mu\nu} = e^{2\phi/\Lambda} \begin{pmatrix} -1 & A_j/\Lambda \\ A_i/\Lambda & e^{-c_d \frac{\phi}{\Lambda}} \gamma_{ii} - A_i A_i/\Lambda^2 \end{pmatrix}$

Graviton =	Scala	r +	Vector	+	Sym.	Tensor
10	1	+	3	+	6	

 $g_{\mu\nu} \Rightarrow \phi A^i \sigma^{ij}$

Self-interactions:

...

+ ...

GREFT Diagrams & 2pt-QFT Integrals

	_					-		
S ⁰					S ¹			
Order	Diagrams	Loops	Diagrams		Order	Diagrams	Loops	Diagrams
0PN	1	0	1	1	LO	2	0	2
1DN	4	1	1	1	NI O	19	1	8
IFIN	4	0	3	1	NLO	10	0	5
		2	5]	$N^{2}LO$	100	2	56
2PN	21	1	10]			1	36
		0	6]			0	8
		3	8				3	288
3DN	130	2	75		N ³ LO	804	2	495
9L N	150	1	38			034	1	100
		0	9				0	11
	(a) Non	-spinning	sector			(b) Spin	n-orbit se	ctor

Mapping to 2-point Functions

Kim, Levi, Yin (2022) Mandal, Patil, Steinhoff & P.M. (2022)

	S ²								
	Order	Diagrams	Loops	Diagrams		Order	Diagrams	Loops	Diagrams
	LO	1	0	1		LO	1	0	1
	NI O	7	1	3		NI O	Λ	1	1
	NLO	1	0	4		NLO	4	0	3
		58	2	27		$N^{2}LO$	25	2	7
	$N^{2}LO$		1	24				1	12
			0	7				0	6
			3	125				3	15
	$N^{3}LO$	553	2	342		$N^{3}LO$	168	2	101
		000	1	76			100	1	43
			0	10				0	9

(a) Spin1-Spin2 and Spin1² (Spin2²) sector

Order	Loops	Diagrams
LO	1	1
	() -2	

(c) E^2 sector

 $\mathcal{M} = \sum c_i I_i^{MI}$

(b) ES^2 sector

Order	Loops	Diagrams
LO	1	1

(d) E^2S^2 sector

see MANDAL

^o Dimensional Regularization $d = 3 + \epsilon$ • Integration-by-parts (IBP) decomposition • Master Integrals evaluation

 \Leftrightarrow

Near Zone with Tidal Effects/PN Corrections

EFT Action for Tidal Effects

$$S_{pot}[x_a, g] = S_{GR}[g] + S_{m_a}[x_a, g] \qquad S_{m_a}[x_a, g] = S_{pp}[x_a, g] + \delta S_{m_a}[x_a, g]$$
$$S_{m_a}[x_a, g] = \sum_{a=1,2} \int \frac{\mathrm{d}\tau}{c} \left[-m_{(a)} z_{(a)} c^2 + \mathcal{L}_{\mathrm{FD}(a)} + \mathcal{L}_{\mathrm{MQ}(a)} + \mathcal{L}_{\mathrm{EQ}(a)} \right] \qquad \text{Tidal Effects}$$

Order	Diagrams	Loops	Diagrams
0PN	1	0	1
1DN	Λ	0	3
	<u>+</u>	1	1
		0	6
2PN	21	1	10
		2	5

(a) Point particle sector

Order	Diagrams	Loops	Diagrams
0PN	1	0	1
1DN	Λ	0	3
	<u>+</u>	1	1
		0	6
$2\mathrm{PN}$	26	1	12
		2	8

(b) EQ sector

$$\mathscr{L}_{eff}[x_a, \dot{x}_a, \ddot{x}_a, \dots, S_a, \dot{S}_a, \dots] = -i \lim_{d \to 3} \int \frac{d^d \mathbf{p}}{(2\pi)^d} e^{i\mathbf{p} \cdot \mathbf{r}}$$

Bini, Damour, Faye (2012) Steinhoff, Hinderer, Buonanno, Taracchini (2016) Mandal, Patil, Silva, Steinhoff & P.M. (2023)

Order	Diagrams	Loops	Diagrams
1PN	2	0	2
2PN	19	0	5
	10	1	8

(c) FD sector

Order	Diagrams	Loops	Diagram
1PN	1	0	1
2PN	4	0	3
		1	1

(d) MQ sector

see MANDAL

- $\mathcal{M} = \sum c_i I_i^{MI}$
- ^o Dimensional Regularization $d = 3 + \epsilon$
- Integration-by-parts (IBP) decomposition
- Master Integrals evaluation

 \Leftrightarrow

Conservative Dynamics :: PM Corrections

Near Zone/PM Corrections

Heavy Quark EFT [HQET] in QCD

 $\mathcal{L}_{\text{QED}} = \bar{\psi} \left(i D - m \right) \psi, \quad \text{where} \quad D^{\mu} \psi \equiv (\partial^{\mu} + i e A^{\mu}) \psi.$

$$p^{\mu} = mv^{\mu} \quad v^{2} = 1.$$

$$\mathcal{L}_{IIQET} = \bar{Q} \left(iv \cdot D - \frac{D_{\perp}^{2}}{2m} + \frac{D_{\perp}^{4}}{8m^{3}} - \frac{c}{4m} \sigma_{\mu\nu} F^{\mu\nu} - \frac{c}{8m^{2}} v^{\mu} [D_{\perp}^{\nu} F_{\mu\nu}] + \frac{ie}{8m^{2}} v_{\rho} \sigma_{\mu\nu} \{D_{\perp}^{\mu}, F^{\rho\nu}\} + \frac{e}{16m^{3}} \{D_{\perp}^{2}, \sigma_{\mu\nu} F^{\mu\nu}\} + \frac{e^{2}}{16m^{3}} F_{\mu\nu} F^{\mu\nu} \right) Q + \mathcal{O}(m^{-4})$$

$$\frac{i}{v \cdot k} \quad \frac{i}{v \cdot k + i\varepsilon} \frac{1 + \dot{p}}{2}, \qquad p_{1} \rightarrow \frac{\dot{q}}{v} p_{3} \qquad igT^{n} v_{\mu} \frac{1 + \dot{p}}{2}$$

$$A_{3}^{YM-M}(123) = p_{1} \rightarrow p_{3} = m\varepsilon_{2} \cdot v \qquad A_{4}^{YM-M}(1234) = p_{1} \rightarrow p_{4} + p_{1} \rightarrow p_{4} \qquad p_{1} \rightarrow p_{4} = 2m\left(-\frac{\varepsilon_{2} \cdot p_{3} v \cdot \varepsilon_{3}}{s_{23}} - \frac{\varepsilon_{2} \cdot \varepsilon_{3} v \cdot p_{2}}{s_{23}} + \frac{\varepsilon_{3} \cdot p_{2} v \cdot \varepsilon_{3}}{s_{23}} + \frac{v \cdot \varepsilon_{2} \cdot v}{s_{23}} + \frac{v \cdot v}{s_{23}} + \frac{v \cdot \varepsilon_{2} \cdot v}{s_$$

Georgi Manohar Neubert, Becher Brambilla, Vairo, Pineda

...

Near Zone/PM Corrections

Heavy Mass/Black-hole EFT [H(M/B)ET] in Gravity

$$\sqrt{-g}\mathcal{L}_m = \sqrt{-g}\left(\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}m^2\phi^2\right)$$

$$\sqrt{-g}\mathcal{L}_m = \sqrt{-g}\bar{\psi}\left(ie^{\mu}_{a}\right)$$

 p_1

$$S_{\rm GR} = \frac{1}{16\pi G} \int d^4$$

$$p^{\mu} = mv^{\mu} \qquad v^2 = 1$$

$$A_n^{\rm YM-M}(12\cdots n) =$$

 $\Gamma \in \text{ordered}$

$$A_n^{\rm GR-M}(12\cdots n) =$$

 $\Gamma \in \text{non-ord}$

 $_a\gamma^a D_\mu - m) \psi$

 $4x\sqrt{-g}R$

Damgaard, Haddad, Helset Brandhuber, Travaglini, Chen, Wen + Brown, De Angelis, Gowdy

$$\sum_{\substack{\text{d commutators } \{2,3,\cdots,n-1\}}} \frac{\mathcal{N}_n(\Gamma,v)}{d_{\Gamma}},$$

$$\sum_{\substack{\text{dered commutators } \{2,3,\cdots,n-1\}}} \frac{\left[\mathcal{N}_n(\Gamma,v)\right]^2}{d_{\Gamma}}$$

Conclusion

• GW Astronomy: a growing research field, where accuracy is not an option

Compact objects evolution can benefit of the interplay between Cosmology, Astrophysics, and High-Energy Theoretical Physics

Remarkable combination of traditional methods developed for the GR two-body problem and methods developed for elementary particle scattering to improve the GW waveforms modelling

• Scattering processes: a universal framework to investigate Nature at its most extreme conditions

• Under a diagrammatic viewpoint, Gravity is not so different from the other Fundamental Interactions

Conclusion

EFT - NRGR

- PN & PM EFT
- In-in formalism
- NRQFT
- HQEFT
- H(P,B,M)EFT

Amplitudes

- Unitarity-based methods
- Double-copy & BCJ relations
- Higher-spin
- Classical Scattering

Multiloop Techniques

- IBPs
- Difference & Differential Equations
- Theory of Special Functions
- High Precision arithmetics and Finite Fields
- Numerical Integration
- Asymptotic expansions

GR-Techniques

- PN & PM
- Self-Force
- EOB
- Numerical Relativity
- Tutti Frutti

Observable-based methods

- Eikonal approach
- Inclusive & differential formalisms
- Radial action
- S-matrix

quations ns s and Finite Field

Definition. *Physics is a part of mathematics devoted to the calculation of inte*grals of the form $\int g(x)e^{f(x)}dx$. Different branches of physics are distinguished by the range of the variable x and by the names used for f(x), g(x) and for the integral. [...]

Of course this is a joke, physics is not a part of mathematics. However, it is true that the main mathematical problem of physics is the calculation of integrals of the form

$$I(g) =$$

easy to derive from the relation

$$\int \partial_a(h)$$

that the functional I(q) vanishes in the case when g has the form

Addressing a common math problem might be useful to make progress in different disciplines

$$\int g(x)e^{-f(x)}dx$$

[...] If f can be represented as $f_0 + \lambda V$ where f_0 is a negative quadratic form, then the integral $\int g(x)e^{f(x)} dx$ can be calculated in the framework of perturbation theory with respect to the formal parameter λ . We will fix f and consider the integral as a functional I(g) taking values in $\mathbb{R}[[\lambda]]$. It is

$$a(x)e^{f(x)})dx = 0$$

 $g = \partial_a h + (\partial_a f)h.$

Schwarz, Shapiro (2018)

Far Zone/EFT Diagrammatic Approach

In the second second

known unknown: FarZone-GREFT within Keldysh-Schwinger "in-in" formalism under scrutiny

Conservative Dynamics :: Near Zone with Spinkim, Levi, Yin (2022)

Elimination of higher-order time derivatives / equation of motion borrowed from: Damour, Schafer, Barker, O'Connell

$$\begin{split} \mathbf{x}_{(a)} &\to \mathbf{x}_{(a)} + \delta \mathbf{x}_{(a)} \\ \delta \mathcal{L} &= \left(\frac{\delta \mathcal{L}}{\delta \mathbf{x}_{(a)}^{i}}\right) \delta \mathbf{x}_{(a)}^{i} + \frac{1}{2} \left(\frac{\delta^{2} \mathcal{L}}{\delta \mathbf{x}_{(a)}^{i} \delta \mathbf{x}_{(a)}^{j}}\right) \delta \mathbf{x}_{(a)}^{i} \delta \mathbf{x}_{(a)}^{j} + \mathcal{O}\left(\delta \mathbf{x}_{(a)}^{3}\right) \\ \mathbf{\Lambda}_{(a)}^{ij} &\to \mathbf{\Lambda}_{(a)}^{ij} + \delta \mathbf{\Lambda}_{(a)}^{ij} \qquad \mathbf{S}_{(a)}^{ij} \to \mathbf{S}_{(a)}^{ij} + \delta \mathbf{S}_{(a)}^{ij} \qquad \delta \mathbf{\Lambda}_{(a)}^{ij} = \mathbf{\Lambda}_{(a)}^{ik} \omega_{(a)}^{kj} + \mathcal{O}\left(\omega_{(a)}^{2}\right) \qquad \delta \mathbf{S}_{(a)}^{ij} = 2\mathbf{S}_{(a)}^{k[i} \omega_{(a)}^{j]k} + \mathcal{O}\left(\omega_{(a)}^{2}\right) \\ \delta \mathcal{L} = -\left(\frac{1}{c}\right) \frac{1}{2} \dot{\mathbf{S}}_{(a)}^{ij} \omega_{(a)}^{ij} - \left(\frac{1}{c}\right) \frac{1}{2} \mathbf{S}_{(a)}^{ij} \dot{\omega}_{(a)}^{ik} \omega_{(a)}^{kj} - \left(\frac{\delta V}{\delta \mathbf{S}_{(a)}^{ij}}\right) \delta \mathbf{S}_{(a)}^{ij} + \mathcal{O}\left(\omega_{(a)}^{3}, \delta \mathbf{S}_{(a)}^{2}\right) \end{split}$$

Elimination of 1/(d-3) divergences and spurious Logarithmic terms / canonical transformations

$$\mathcal{H}(\mathbf{x}, \mathbf{p}, \mathbf{S}) = \sum_{a=1,2} \mathbf{p}_{(a)}^{i} \dot{\mathbf{x}}_{(a)}^{i} - \mathcal{L}''(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{S}) \quad \text{may contain divergences and spurious}$$
$$\mathcal{H}' = \mathcal{H} + \{\mathcal{H}, \mathcal{G}\} \longrightarrow \text{educated guess}$$
Effective Hamiltionian free of upphysical terms

Mandal, Patil, Steinhoff & P.M. (2022)

$$\left(\delta \mathbf{x}_{(a)}^3\right)$$

$\mathcal{L}'' = \mathcal{L} + \delta \mathcal{L} + \delta \mathcal{L}'$ free of higher-order time derivatives

is logarithmic term

Ellective Hamiltionian free of unphysical terms

Scattering Angle :: Near Zone with Spin

12,

Aligned spins

 $\chi(v, b, S_{(a)}) = \chi_{pp}(v, b) + \chi_{SO}(v, b, S_{(a)}) + \chi_{SS}(v, b, S_{(a)})$

$$\chi_{\rm SS}(v, b, S_{(a)}) = \chi_{\rm S1S2}(v, b, S_{(a)}) + \chi_{\rm S2}(v, b, S_{(a)}) + \chi_{\rm ES2}(v, b, S_{(a)}) + \chi_{\rm ES2}(v, b, S_{(a)}) + \chi_{\rm E2S2}(v, b, S_{(a)}) + \chi_{\rm E2S2}(v, b, S_{(a)})$$

PM-expansion:

$$\frac{1}{2}\chi(b,E) = \sum_{n} \chi_{b}^{(n)}(E) \left(\frac{GM}{b}\right)^{n}$$

PN-expansion:

$$\chi_b^{(n)} = \sum_{k \ge 0} \chi_b^{(n,k)} \left(\frac{\mathbf{v}^2}{c^2}\right)^k$$

Mandal, Patil, Steinhoff & P.M. (2022)

 \tilde{m}_2 [credit: Antornelli et al.]

 $b, S_{(a)})$

In agreement with: Antonelli et al. (2020) Kim et al. (2022)

Binding Energy :: Near Zone with Spin

Circular Orbit and aligned spins

$$\begin{split} & E_{\rm pp}(x) = -x\frac{1}{2} + x^2 \left\{ \frac{3}{8} + \frac{\nu}{24} \right\} + x^3 \left\{ \frac{27}{16} - \frac{19}{16}\nu + \frac{1}{48}\nu^2 \right\} \\ & + x^4 \left\{ \frac{675}{128} + \left(-\frac{34445}{1152} + \frac{205\pi^2}{192} \right)\nu + \frac{155}{192}\nu^2 + \frac{35}{10368}\nu^3 \right\} \\ & F_{\rm SO}(x,\tilde{S}) = x^{5/2} \left\{ S^* \left(-\nu \right) + S \left(-\frac{4}{3}\nu \right) \right\} \\ & + x^{7/2} \left\{ S^* \left(-\frac{3}{2}\nu + \frac{5}{3}\nu^2 \right) + S \left(-4\nu + \frac{31}{18}\nu^2 \right) \right\} \\ & + x^{9/2} \left\{ S^* \left(-\frac{27}{8}\nu + \frac{39}{2}\nu^2 - \frac{5}{8}\nu^3 \right) + S \left(-\frac{27}{2}\nu + \frac{211}{8}\nu^2 - \frac{7}{12}\nu^3 \right) \right\} \\ & + x^{11/2} \left\{ S^* \left(-\frac{135}{16}\nu + \frac{565}{8}\nu^2 - \frac{1109}{24}\nu^3 - \frac{225}{324}\nu^4 \right) \\ & + S \left(-45\nu + \left(\frac{19679}{144} + \frac{29\pi^2}{24} \right)\nu^2 - \frac{1979}{36}\nu^3 - \frac{265}{3888}\nu^4 \right) \right\}, \end{split}$$

$$& F_{\rm SIS2}(x,\tilde{S}) = \tilde{S}_{(1)}\tilde{S}_{(2)} \left\{ x^3 \left\{ \nu \right\} + x^4 \left\{ \frac{5}{6}\nu + \frac{5}{18}\nu^2 \right\} + x^5 \left\{ \frac{35}{8}\nu - \frac{100}{72}\nu^2 - \frac{271}{216}\nu^3 \right\} \\ & + x^6 \left\{ \frac{243}{16}\nu - \left(\frac{2107}{16} - \frac{123}{32}\pi^2 \right)\nu^2 + \frac{147}{8}\nu^3 + \frac{13}{16}\nu^4 \right\} \right\}, \end{split}$$

$$& F_{\rm SIS2}(x,\tilde{S}) = \tilde{S}_{(1)}^{(1)} \left\{ x^4 \left\{ \frac{25}{18}\nu^2 + \frac{1}{q} \left(-\frac{5}{2}\nu + \frac{5}{6}\nu^2 \right) \right\} \\ & + x^6 \left\{ \frac{243}{16}\nu - \left(\frac{2107}{16} - \frac{123}{32}\pi^2 \right)\nu^2 + \frac{147}{18}\nu^3 + \frac{13}{16}\nu^4 \right\} \right\}, \end{split}$$

In agreement with: Antonelli et al. (2020) Kim et al. (2022)

 $E(x, \widetilde{S}_{(a)}) = E_{pp}(x) + E_{SO}(x, \widetilde{S}_{(a)}) + E_{SS}(x, \widetilde{S}_{(a)})$

Mandal, Patil, Steinhoff & P.M. (2022)

$$E_{\rm SS}(x, \tilde{S}_{(a)}) = E_{\rm S1S2}(x, \tilde{S}_{(a)}) + E_{\rm S^2}(x, \tilde{S}_{(a)}) + E_{\rm ES^2}(x, \tilde{S}_{(a)}) + E_{\rm E^2S^2}(x, \tilde{S}_{(a)}) + E_{\rm E^2}(x, \tilde{S}_{(a)})$$

[credit: Patil]

