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Prologue:
A story of an open question:
Is parity conserved by gravitation?



ONE THING LEADS TO ANOTHER
[s parity conserved by gravitation ?

How to check? =» centrifuge (EEP)

0 (QxF)=c-V=0p/m

Can we test gravity via APV ?
Probably not...

... but can look for exotic cosmic fields
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We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar
and pseudovector cosmic fields with electrons, protons and neutrons. Candidates for such fields are
dark matter (including axions) and dark energy, as well as several more exotic sources described
by standard-model extensions. Calculations of parity nonconserving amplitudes and atomic electric
dipole moments induced by these fields are performed for Li, Na, K, Rb, Cs, Ba™, Tl, Dy, Fr, and
Ra”. From these calculations and existing measurements in Dy and Cs, we constrain the parity-
violating interaction of a static pseudovector cosmic field at 2.1 x 10™'¥ GeV for the electron, and
3.1 x 107" GeV for the proton.

TABLE II. Limits on the dimensionless constants b; and bf)
quantifying the interaction strength of a PV cosmic field with
electrons and protons, respectively.

Limits
PNC quantity 5] [HER -
Cs Epnc(6s-Ts) 21 x 10° 5.1 x 10™
Tl Epnc(6p1 /2-6ps/2) 95 x 10* 1.4 x 10*
Dy (A|h|B) 340
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MEVR MiEWG: an elephant in the room

Cover image from D. Budker and A. O. Sushkov,
Physics on Your Feet; Second Edition, 280 pp,

OUP 2021


http://ukcatalogue.oup.com/product/9780199681662.do
https://global.oup.com/academic/product/physics-on-your-feet-9780198842378?lang=en&cc=us

What can it be ?

@ Ultralight bosonic particles

= Axions (pseudoscalar) . .
= ALPs (pseudoscalar) Relaxions (mixed)

= Dilatons (scalar)
= Vector particles

@ Antiquark Nuggets (AQN)

= Millicharged particles
@ Not even particles

@ A gross misunderstanding of gravity (MOND, ...) 777
m Proca MHD (finite photon mass) ®?
@ Black holes, dark planets, interstellar gas, ... ®?

= WIMPS ©



Elephant Safari

Direct searches Indirect searches
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*  Spectroscopy

. NMR
. Antimatter
. EDMs

* Astrophysics
e Accelerator based searches



Indirect searches via fifth forces (examples)



The latest catalog of exoTic potentials

PHYSICAL REVIEW A 99, 022113 (2019)

Revisiting spin-dependent forces mediated by new bosons: Potentials in the coordinate-space
representation for macroscopic- and atomic-scale experiments

Pavel Fadeev,' Yevgeny V. Stadnik,' Filip Ficek,”? Mikhail G. Kozlov,>* Victor V. Flambaum,'> and Dmitry Budker'-®’

PHYSICAL REVIEW A 105, 022812 (2022)
Pseudovector and pseudoscalar spin-dependent interactions in atoms

Pavel Fadeev®,""" Filip Ficek ®,> Mikhail G. Kozlov®,** Dmitry Budker®,'> and Victor V. Flambaum®'-°

Previous catalogs:

* J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984)
* B. A. Dobrescu and I. Mocioiu, J. High Energy Phys. 11 (2006)



SAPPHIRE: Search for exotic parity-violation interactions with quantum spin
amplifiers

Yuanhong Wang,''?® Ying Huang,''?>'® Chang Guo,'? Min Jiang,1'?>'® Xiang Kang,'2 Haowen Su,!'?
Yushu Qin,*'? Wei Ji,>* Dongdong Hu,® Xinhua Peng,1'?>'® and Dmitry Budker®*°

DCAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences,

University of Science and Technology of China, Hefei, Anhui 230026, China arXiv:2205.07222

Science Advances 9, eade0353 (2023
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SAPPHIRE: Search for exotic parity-violation interactions with quantum spin
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In another geometry---also sensitive to
parity-conserving fifth forces
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PHYSICAL REVIEW LETTERS 129, 051801 (2022)

Limits on Axions and Axionlike Particles within the
Axion Window Using a Spin-Based Amplifier
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...and
velocity-dependent monopole-dipole coupling



Search for exotic spin-dependent interactions with

a spin-based amplifier

Sci. Adv. 7, eabi9535 (2021)

Haowen Su'**t, Yuanhong Wang"?3t, Min Jiang"*3*, Wei Ji*, Pavel Fadeev>°, Dongdong Hu’,

Xinhua Peng'***, Dmitry Budker>®®
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Fig. 1. Experimental setup. The 8Rb magnetometer uses a 0.5-cm> cubic cell con-
sisting of 5 torr isotopically enriched '**Xe, 250 torr N, as buffer gas, and a droplet
of 8’Rb. The vapor cell is placed inside a five-layer cylindrical u-metal shield to re-
duce the ambient magnetic field. A bias field BYZ is applied along z to tune the
129 e Larmor frequency to vo = 4.995Hz. The 8Rb spins are polarized by optical
pumping with 795-nm D1 light. 8’Rb-'?*Xe spin-exchange collisions polarize '*’Xe
spins to ~30% (40, 47). The x component of 8’Rb spins is measured via optical rota-
tion of a linearly polarized probe beam (54-57), which is blue-detuned 110 GHz to
87Rb D2 transition at 780 nm. The right inset shows the configuration of a bismuth
germanate insulator [BisGe301; (BGO)] mass and a motor. A single BGO mass at the
end of an aluminum rod rotates with frequency vy = 4.995 Hz to generate the spin-
and velocity-dependent interactions. BE, beam expander; LP, linear polarizer; A/4,
quarter-wave plate; PD, photodiode; PEM, photoelastic modulator; DAQ, data ac-
quisition; OS, optoelectronic switch.
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Search for exotic spin-dependent interactions with
a spin-based amplifier  Sci. Adv. 7, eabi9535 (2021)
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Fig. 4. Constraints (95% C.L.) on fa.5 and f12413. % In (A), the dashed lines repre-
sent bounds of f; , 5 from (41, 42). Our work (solid line) sets the most stringent con-
straints on fy , s for the force range from 0.04 to 100 m. In (B), the dashed lines are
from (43,44). The solid line is the constraint of f;, , 13 established by our work,
which set the most stringent constraints in the force range from 0.05 to 6 m.




More fun with spin amplifiers

PHYSICAL REVIEW LETTERS 128, 233201 (2022)

Floquet Spin Amplification

N 1,2 12 1,2 1,2 1,2
Min Jiang®, ™ Yushu Qin, = Xin Wang, = Yuanhong Wang, ™= Haowen Su,
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Xinhua Peng®,”™ and Dmitry Budker
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Direct searches for pseudoscalars (example)
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How to search for halo Axions (ALPs) ?

Axi1on (ALP) Interactions
Gravity

/ +\
Gauge Fields Fermions

axion field amplitude

symmetry breaking scale

Most Searches, nEDM, HfF",... GNOME, QUAX, nEDM, comag,...
DMELTe CASPEr-E CASPEr-grad
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A. Sushkov

Nonrelativistic forms

Uil o
f ‘Iff’Y"%‘I’f
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G, G
fa, l fa,

A s

coupling to gluons coupling to fermions

— creates oscillating nucleon — via axion field gradient
electric dipole moment (EDM)
this is why axions were invented

, _ . — spin o to axion
— spin o to axion coupling: gradient coupling:

H, xao - E* Hy xo-Va

CASPEr-electric CASPEr-gradient

CASPEr (Cosmic Axion Spin Precession Experiments)
searches for experimental signatures of these couplings

P-odd, T-odd
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CASPETr: cosmic axion spin-precession experiments; first physics results: 2019-21

detection

circuit
coupled
to sensor

Boston and Mainz
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D. Aybas et al PhysRevlLett.126.141802 (2021)



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.141802

-
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A lot is going on in UBDM searches...



Searching for Ultralight Bosonic (and other)

NMR (CASPEr)

Spin-based sensors for : masers, spin amplifiers
Spin-based sensors for fifth-force searches (single NV, cells) iy S
GNOME, clock networks, hybrid networks . &‘“‘“')

Gravimeters
Atomic spectroscopy
Antimatter

Levitated magnets




Hot off the press:

*Abhishek Banerjee et al, Oscillating nuclear charge radii as
sensors for ultralight ,arXiv:2301.10784 (2023)

|.M. Bloch et al , Scalar induced oscillation of
permanent-magnet field, Phys. Rev. D 107, 075033,
arXiv:2301.08514 (2023)

*Xue Zhang et al, Search for ultralight with
spectroscopy of radio-frequency atomic transitions, Phys.
Rev. Lett. (accepted) arXiv:2212.04413 (2022)

*Kai Wei et al, Ultrasensitive atomic comagnetometer with
enhanced nuclear spin coherence, Phys. Rev. Lett. 130,
063201 (2023), arXiv:2210.09027
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Hot off the press:

Kai Wei, Zitong Xu, Yuxuan He, Xiaolin Ma, Xing Heng, Xiaofei Huang, Wei
Quan, Wei Ji, Jia Liu, Xiaoping Wang, Jiancheng Fang, and Dmitry Budker,
Dark matter search with a strongly-coupled hybrid spin

system, arXiv:2306.08039 (2023)
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FIG. 4. The 95% C.L. upper limits (red lines) for axion-neutron coupling g,,, and axion-proton coupling g,,, from measurements in both the
self-compensating (SC) and hybrid spin-resonance (HSR) regimes. The full data of the limits cannot be shown in the figure, but are tabulated
in [31]. To guide the readers’ eye, for each f,, the couplings g,,, and g, are averaged in a bin from 0.99f, to 1.01f,. We plot the average as
the dark blue line in the [0.01, 10] Hz range for the SC data and as the brown line (HSR) for [3, 1000] Hz for HSR data. We also show other
terrestrial limits from Jiang et al. [19], K-3He comagnetometer [18], NASDUCK-Floquet [32], NASDUCK-SERF [16], CASPEr-ZULF [14]
and PSI [33]. The astrophysical limits from neutron star (NS) cooling [21], supernova SN1987A [20] and solar axion at SNO [34] are shown

as horizontal lines respectively.
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PHYSICAL REVIEW LETTERS 129, 051801 (2022)

Limits on Axions and Axionlike Particles within the
Axion Window Using a Spin-Based Amplifier
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FIG. 1. The experimental setup consists of a spin-based
amplifier and a spin source. (a) Experimental schematic in the
xz plane. The spin source (cell 2) is shielded by a small-size two-
layer magnetic shield. The spin sensor (cell 1) is shielded by a
small-size one-layer magnetic shield. Both the source and the
sensor are enclosed in five-layer magnetic shield. The cell 1
[60,61,65] containing 5 torr of isotopically enriched '*°Xe,
250 torr N, and a droplet of 3'Rb is heated to 165 °C. The
87Rb spins are polarized with a circularly polarized beam of
795 nm D1 light. '>°Xe spins are polarized to ~30% in spin-
exchange collisions with polarized 8’Rb spins [10,66]. The x
component of ¥’Rb spins is measured via optical rotation of a
linearly polarized probe beam, which is detuned to higher
frequencies by 110 GHz from the D2 resonance. (b) Experimental
schematic in the xy plane. BE, beam expander; LP, linear
polarizer; A/4, quarter-wave plate; A/2, half-wave plate; PD,
photodiode; TA, tapered amplifier; PBS, polarizing beam splitter;
FC, fiber coupler; PEM, photoelastic modulator; DAQ, data
acquisition.
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