Joint nuclear-physics and multi-messenger astrophysics interpretation of compact binary mergers

- X-ray observations of rotating neutron stars
- radio measurements of rotating neutron stars
- Binary mergers:
 - gravitational waves
 - gamma-ray, X-ray, ultraviolet, optical, infrared, radio observations

Science cases

State of matter at extreme densities

- X-ray observations of rotating neutron stars
- radio measurements of rotating neutron stars
- Binary mergers:
 - gravitational waves
 - gamma-ray, X-ray, ultraviolet, optical, infrared, radio observations

Science cases

State of matter at extreme densities

- X-ray observations of rotating neutron stars
- radio measurements of rotating neutron stars
- Binary mergers:
 - gravitational waves
 - gamma-ray, X-ray, ultraviolet, optical, infrared, radio observations

<section-header>

Science cases

State of matter at extreme densities

- X-ray observations of rotating neutron stars

- radio measurements of rotating neutron stars
- Binary mergers:
 - gravitational waves
 - gamma-ray, X-ray, ultraviolet, optical, infrared, radio observations

Heavy element production

Expansion rate of our Universe

The Binary Neutron Star Merger Simulation

gravitational wave emission

The Binary Neutron Star Merger Simulation

gravitational wave emission

deformation before merger, ejection of material, heavy element production

The Binary Neutron Star Merger Simulation

gravitational wave emission

deformation before merger, ejection of material, heavy element production

black hole formation

GW170817

 Λ determines tidal deformability

GW170817

 Λ determines tidal deformability

→ no assumption about the type of the compact object

Phys.Rev. X9 (2019) 011001

GW170817

 Λ determines tidal deformability

_____ Science

NEUTRON STARS

RESEARCH

Multimessenger constraints on the neutron-star equation of state and the Hubble constant

Tim Dietrich^{1,2}*, Michael W. Coughlin³, Peter T. H. Pang^{2,4}, Mattia Bulla⁵, Jack Heinzel^{3,6,7}, Lina Issa^{5,8}, Ingo Tews⁹, Sarah Antier¹⁰

The principle idea: **Multi-Messenger Interpretation of the Equation of State**

- (initially) multistep procedure
- incorporation of nuclear physics and astrophysics information

10

12

14

 $\begin{array}{c} \text{H} \\ \begin{array}{c} 10 \\ 5 \\ 0 \\ 8 \end{array} \end{array} \times 10^{-1}$

10

12

14

M

 $\begin{bmatrix} 10 \\ -5 \\ 0 \\ -8 \end{bmatrix} \times 10^{-1}$

H 10 ×10⁻¹

 $0\frac{1}{8}$

10

12

 $R \,[\mathrm{km}]$

14

TD et al. Science, Vol. 370, Issue 6523, pp. 1450-1453 Huth et al., Nature 606 (2022) 276-280

TD et al. Science, Vol. 370, Issue 6523, pp. 1450-1453 Huth et al., Nature 606 (2022) 276-280

EM Signals – Maximum Neutron Star Mass

lower bound

Measurement of massive pulsars through Shapiro time delay

Pulsar	Mass in M_{\odot}
PSR J0740+6620	$2.08\substack{+0.07\\-0.07}$
PSR J0348+4032	$2.01\substack{+0.04\-0.04}$
PSR J1614-2230	$1.908\substack{+0.016\\-0.016}$

upper bound

postmerger evolution of GW170817's remnant

EM Signals – Maximum Neutron Star Mass

lower bound

Measurement of massive pulsars through Shapiro time delay

Pulsar	Mass in M_{\odot}
PSR J0740+6620	$2.08\substack{+0.07\\-0.07}$
PSR J0348+4032	$2.01\substack{+0.04 \\ -0.04}$
PSR J1614-2230	$1.908\substack{+0.016\\-0.016}$

upper bound

postmerger evolution of GW170817's remnant

TD et al. Science, Vol. 370, Issue 6523, pp. 1450-1453

TD et al. Science, Vol. 370, Issue 6523, pp. 1450-1453 Huth et al., Nature 606 (2022) 276-280

1.) compute lightcurves for a set (grid) of ejecta properties with a radiative transfer code

1.) compute lightcurves for a set (grid) of ejecta properties with a radiative transfer code

2.) interpolate within this grid through Gaussian Process Regression or a Neural Network

1.) compute lightcurves for a set (grid) of ejecta properties with a radiative transfer code

2.) interpolate within this grid through Gaussian Process Regression or a Neural Network

3.) link ejecta properties through numerical-relativity predictions to the binary properties

TD et al. Science, Vol. 370, Issue 6523, pp. 1450-1453 Huth et al., Nature 606 (2022) 276-280

nature

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > articles > article

Article Open Access Published: 08 June 2022

Constraining neutron-star matter with microscopic and macroscopic collisions

<u>Sabrina Huth</u> ⊠, <u>Peter T. H. Pang</u> ⊠, <u>Ingo Tews</u>, <u>Tim Dietrich</u>, <u>Arnaud Le Fèvre</u>, <u>Achim Schwenk</u>,

Wolfgang Trautmann, Kshitij Agarwal, Mattia Bulla, Michael W. Coughlin & Chris Van Den Broeck

A nuclear-physics and multi-messenger astrophysics framework

github.com/nuclear-multimessenger-astronomy

NMMA: Main Contributions by

Observations

Theory

University of Potsdam and Max Planck Institute for Gravitational Physics

- computational astrophysics
- gravitational-wave modelling
- multi-messenger data analysis

University of Minnesota

optical and near-infrared observations multi-messenger analysis

Observatory of la Côte d'Azur

- optical and near-infrared observations
- multi-messenger analysis

Utrecht University

- gravitational-wave data analysis
- multi-messenger data analysis

University of Ferrara

- modelling of electromagnetic signals

Los Alamos National Lab - nuclear physics

Nuclear Physics and Multi-messenger Astrophysics

Gravitational Waves

Kilonova

Gamma-ray burst and afterglow

Nuclear-Physics Computation

Nuclear-Physics Experiments

$$p(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Probability of the data given
the hypothesis
$$p(\mathcal{H}|d) = \frac{p(d|\mathcal{H})P(\mathcal{H})}{P(d)}$$
Probability of the Hypothesis
Probability of the Hypothesis

given the data

Probability of the data

$$p(\vec{\theta}|d, \mathcal{H}) = \frac{p(d|\vec{\theta}, \mathcal{H})p(\vec{\theta}|\mathcal{H})}{p(d|\mathcal{H})} \equiv \frac{\mathcal{L}(\vec{\theta})\pi(\vec{\theta})}{\mathcal{Z}(d)}$$

$$p(\vec{\theta}|d,\mathcal{H}) = \frac{p(d|\vec{\theta},\mathcal{H})p(\vec{\theta}|\mathcal{H})}{p(d|\mathcal{H})} \equiv \frac{\mathcal{L}(\vec{\theta})\pi(\vec{\theta})}{\mathcal{Z}(d)}$$
$$\mathcal{L}(\vec{\theta}) = \mathcal{L}_{\rm GW}(\vec{\theta}_{\rm GW}) \times \mathcal{L}_{\rm EM}(\vec{\theta}_{\rm EM})$$

Parameter estimation through Bayes theorem

$$p(\vec{\theta}|d,\mathcal{H}) = \frac{p(d|\vec{\theta},\mathcal{H})p(\vec{\theta}|\mathcal{H})}{p(d|\mathcal{H})} = \frac{\mathcal{L}(\vec{\theta})\pi(\vec{\theta})}{\mathcal{Z}(d)}$$

$$\mathcal{L}(\vec{\theta}) = \mathcal{L}_{\rm GW}(\vec{\theta}_{\rm GW}) \times \mathcal{L}_{\rm EM}(\vec{\theta}_{\rm EM})$$

$$\mathcal{L}_{\rm GW} \propto \exp\left(-\frac{1}{2}\langle d - h(\vec{\theta})|d - h(\vec{\theta})\rangle\right) \qquad \mathcal{L}_{\rm EM} \propto \exp\left(-\frac{1}{2}\sum_{ij}\left(\frac{m_i^j - m_i^{j,\text{est}}(\vec{\theta})}{\sigma_i^j}\right)^2\right)$$

$$\langle a|b\rangle = 4\Re \int_{f_{\text{high}}} \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_n(f)} df$$

Hypothesis testing through Bayes theorem

$$\frac{p(\mathcal{H}_1|d, I)}{p(\mathcal{H}_2|d, I)} = \frac{p(d|\mathcal{H}_1, I)p(\mathcal{H}_1|I)}{p(d|\mathcal{H}_2, I)p(\mathcal{H}_2|I)}$$
$$\mathcal{O}_2^1 = \mathcal{B}_2^1 \Pi_2^1$$

 \mathcal{O}_2^1 :Odds ratio \mathcal{B}_2^1 :Bayes factor Π_2^1 :Prior odds

Occam's razor is automatically built in, i.e., if two hypotheses explain the data equally well, the simpler one is preferred

Hypothesis testing through Bayes theorem

- Estimate the posterior distribution
 - Sample from the posterior distribution
 - Markov chain Monte Carlo (MCMC)

- Estimate the Bayesian evidence
 - Monte Carlo integration
 - Parallel-tempering MCMC
 - Nested sampling

https://johannesbuchner.github.io/UltraNest/_static/mcmc-demo/app.html

NMMA Details:

• EOS information

- precomputed EOS sets
- Sampling in tidal deformability/compactness
- additional astrophysical information
 - e.g. NICER/pulsar measurements through full posteriors
- GW models employing LALSimulation/sampling through bilby
- kilonova models
 - simple analytic models
 - radiative transfer simulations (POSSIS, Kasen et al.)
- GRB afterglow:
 - afterglowpy
 - soon also Pyblastafterglow (Nedora et al.)

NMMA Applications: Constraining Nuclear Parameters

• Clear evidence for speed of sound above the conformal limit

shortest long GRB (no BNS merger, but collapsar)

T. Ahumada, et al., Nature Astron. 5 (2021) 9, 917-927

shortest long GRB (no BNS merger, but collapsar)

T. Ahumada, et al., Nature Astron. 5 (2021) 9, 917-927

shortest long GRB (no BNS merger, but collapsar)

T. Ahumada, et al., Nature Astron. 5 (2021) 9, 917-927

shortest long GRB (no BNS merger, but collapsar)

T. Ahumada, et al., Nature Astron. 5 (2021) 9, 917-927

brightest observed GRB to date

GRANDMA analysis

Kann et al., APJL 948 (2023) 2, L12

GW190814

- under the assumption that GW170817 produced a BH, GW190814 was a BBH P(BBH) > 0.999
- relaxing this assumption, it was a BBH P(BBH) ~ 0.83

Tews et al., APJL 908 (2021) 1, L1

NMMA Applications: Predicting the Chemical Evolution

Understanding the composition of material in the mass outflow

Anand et al., 2307.11080

NMMA Applications: Observing scenarios

Hubble constraints for future observing runs

Kiendrebeogo et al., APJ 958 (2023) 2, 158

Trigger NMMA Studies directly from fritz

Brian Healy

Trigger NMMA Studies directly from fritz

Brian Healy

Trigger NMMA Studies directly from fritz

Brian Healy

Where to find more?

- Weekly NMMA calls to discuss progress and problems
- Discussion about issues and problems on git
- Documentation on git

Where to find more?

- Weekly NMMA calls to discuss progress and problems
- Discussion about issues and problems on git
- Documentation on git

Files - Q ₽ main Q Go to file > 📄 .aithub) 📄 api 🧹 📄 doc > 📄 static > images Cluster_Resources.md GW-EM-resampling.md Makefile combined_analysis.md Conf.pv contributing.md data_inj_obs.md 🗋 fitting.md gw_inference.md gwemopt_light_curves_detect... index.rst joint_inference.md C models.md auick-start-quide.rst training.md example_files 📄 nmma priors tools 🗸 盲 tutorials README.md tutorial-KN-models-training.ip... tutorial-lightcurve_simulation.i... 🗋 .flake8 .gitattributes 🗋 .gitignore

Duclear-multimessenger-astronomy / nmma (Public △ Notifications ♀ Fork 44 ☆ Star 21 <> Code 🕤 Issues 23 🛟 Pull requests 9 😡 Discussions 🕞 Actions 🗄 Projects 🔃 Security 🗠 Insights ... nmma / doc / quick-start-guide.rst 🐢 mcoughlin Update docs to use new executable names 🗸 🗸 34dba79 · 3 months ago 🚯 History Raw 🖸 🛃 Blame 38 lines (21 loc) · 2.35 KB Preview Code **Quick Start** nmma provides a number of example models to compare to: kilonovae, gamma-ray burst afterglows, shock cooling supernovae, corecollapse supernovae, etc. We can demonstrate the functionality of the pipeline using a quick example. Taking the Metzger (2017) blue kilonova model as an example, we can generate a set of injections simply using the prior file (all are found in priors/). nmma-create-injection --prior-file priors/Me2017.prior --eos-file example_files/eos/ALF2.dat --binary-type BNS --n-i This generates a file called injection ison that includes an injection file drawn from the prior file with a number of injections specified by --ninjection. It is this file that is used for the Bayesian inference analysis. An example analysis is as follows: lightcurve-analysis --model Me2017 --outdir outdir --label injection --prior priors/Me2017.prior --tmin 0.1 --tmax 2 🖵 Here, the time array is specified by a minimum, maximum, and delta t (in days) as specified by --tmin, --tmax, and --dt. The particular injection chosen is drawn from an index specified by --injection-num. The --filters available are specified with --filters u,g,r,i,z,y,J,H,K. Summary plots are available in outdir/. Please note that Me2017 is a non-SVD model which means it does not need the --svd-path option to be specified. An SVD model example is as follows: nmma-create-injection --prior-file priors/Bu2019lm.prior --eos-file example_files/eos/ALF2.dat --binary-type BNS --n 🖓 lightcurve-analysis --model Bu2019lm --svd-path ./svdmodels --outdir outdir --label injection --prior priors/Bu2019lu 🖓

Where to find more?

Connecting Electromagnetic signals to Binary Source Properties

In NMMA, it is possible to use the results from GW inferences together with kilonova inferences or joint KN+GRB afterglow inferences to get estimates on the binary properties. A binary system can be a binary neutron star (BNS) merger or a neutron-star-black-hole (NSBH) merger. We can connect observed electromagnetic signals to potential source properties via phenomenological relations, i.e., via fits based on numerical-relativity relations, see (Pang et al. 2022) and Refs. therein for further details.

For estimating the source properties, the following input files are required:

- EMsamples is the posterior sample file from a previous Bayesian inference (e.g. Kilonova+GRB inference) on electromagnetic (EM) signals,
- EMprior is the prior file that was used for the EM inference
- · EOS number of equation of state files which will be used in the resampling
- EOSpath path to the folder of all EOS files
- GWsamples some fiducial randomly generated posterior samples for masses, chirp mass, mass ratio, luminosity distance, and EOS samples,
- GWprior a prior file for gravitational wave sources

The prior file from the EM inference needs to be supplemented by two additional parameters α and ζ that are used in the numerical fit expressions that link the disk, wind and total ejecta masses:

```
alpha = Gaussian(mu=0., sigma=4e-4, name='alpha',latex_label='$\\alpha$')
zeta = Uniform(minimum=0., maximum=1.0, name='ratio_zeta',latex_label='$\\zeta$')
```

Estimating BNS properties

Here, we take the observed gamma-ray burst <u>GRB211211A</u> as an example and assume that associated electromagnetic signals originated from a BNS merger. For this signal, a joint inference (kilonova + GRB) can be carried out and will provide you with the required <u>EMsamples</u>. For the <u>GWsamples</u> input file, we need to generate some fiducial dummy GW samples. A script for the generation can be found <u>here</u>. The <u>GW sample generation</u> is based on the EOS set <u>15nsat_cse_uniform_R14</u> which can be found on <u>Zenodo</u>. The <u>EMprior</u> file is the same as used for the KN+GRB inference (see <u>priors</u>) and the GWprior file should be adjusted to the GW samples.

гŅ

Finally, we can use this command:

gwem-resampling --outdir outdir --GWsamples example_files/tools/gwem_resampling/GWsamples.dat --GWprior priors/GWBNS 🕛

Summary: Multi-messenger Astronomy helps to answer fundamental physics questions

Hubble Constant

Heavy element formation

and MMA is one tool to enable multi-messenger studies, but there is
still plenty to do: improved models
more robust sampling
faster sampling

. . . .

Peter T. H. Pang, Michael W. Coughlin, Mattia Bulla, Tim Dietrich, Ingo Tews, Thibeau Wouters, Tyler Barna, Brendan, King, Mouza Almualla,, Weizmann Kiendrebeogo, Nina Kunert, Gargi Mansingh, Brandon Reed, Nidharika Sravan, Andrew Toivon, Sarah Antier, Robert O. VandenBerg, Jack Heinzeln, Vsevolod Nedora, Pouyan Salehi, Ritwik Sharma, Chris Van den Broeck, Rahul Somasundaram, Shraya Anand, Thomas Hussenot-Desenonges, Theophile Jegou du Laz, Anna Neuweiler, Ivan Markin, Hauke Koehn, Henrik Rose, Edoardo Giangrandi, Sahil Jhawar

github.com/nuclear-multimessenger-astronomy