Past, present and future of multi-messenger observations of y-ray bursts

- What we learned, work in progress and future prospects -
 - Samuele Ronchini
 - Post-doctoral scholar at the PennState University

Samuele Ronchini, PennState University

The past

Massive star collapse

Central engine

Compact binary merger, containing at least one neutron star

Samuele Ronchini, PennState University

Several prompt emission scenarios

Massive star collapse

Central engine

Compact binary merger, containing at least one neutron star

Samuele Ronchini, PennState University

Several prompt emission scenarios

Photospheric emission

Eichler + 2000, Ryde + 2005, Pe'er + 2006

Massive star collapse

Central engine

Compact binary merger, containing at least one neutron star

Samuele Ronchini, PennState University

Several prompt emission scenarios

agnetic field

Synchestes Earliation

shock front

Shell 2

shell 1

Internal shocks

Rees & Mezsaros 1994 Kobayashi + 1997 Daigne & Mochkovich 1998

Photospheric emission

Eichler + 2000, Ryde + 2005, Pe'er + 2006

Massive star collapse

Central engine

Compact binary merger, containing at least one neutron star

Samuele Ronchini, PennState University

Magnetic reconnections

Drenkhahn 2002, Lyutikov & Blandford 2003 Zhang 2011

Several prompt emission scenarios

Internal shocks

Rees & Mezsaros 1994 Kobayashi + 1997 Daigne & Mochkovich 1998

Photospheric emission

Eichler + 2000, Ryde + 2005, Pe'er + 2006

Samuele Ronchini, PennState University

Forward shock —> long lasting, visible from radio to VHE

Reverse shock —> duration limited by shock crossing and radio

External shock front

On-axis

e.g., Salafia 2022

Samuele Ronchini, PennState University

Forward shock —> long lasting, visible from radio to VHE

Reverse shock —> duration limited by shock crossing time, visible mainly in optical and radio

External shock front

On-axis

e.g., Salafia 2022

e.g., Makhathini 2021

Samuele Ronchini, PennState University

Forward shock —> long lasting, visible from radio to VHE

Reverse shock —> duration limited by shock crossing time, visible mainly in optical and radio

External shock front

On-axis

e.g., Salafia 2022

e.g., Makhathini 2021

Samuele Ronchini, PennState University

Forward shock \longrightarrow long lasting, visible from radio to VHE

Reverse shock —> duration limited by shock crossing time, visible mainly in optical and radio

External shock front

+ cocoon shock breakout (Potentially visible at large viewing angles)

Nakar & Sari 2012, Nakar & Piran 2017

Open questions about γ -ray bursts physics

Emission processes in the jet, acceleration mechanisms

Jet launching mechanism

Nature of the progenitor and its impact on the prompt and afterglow features

The multi-messenger revolution: GW178017

- Heavy elements are synthesized in the ejecta of BNS mergers —> their radioactive decay powers the kilonova (KN) emission (Li & Paczynski 1998)
- Evidence of a relativistic jet with an angular structure, observed off-axis

The first smoking gun of BNS merger / sGRB / KN association: GW170817, GRB 170817A and AT2017gfo

MM discoveries: their impact and new challenges

Samuele Ronchini, PennState University

requires a well defined strategy for future observations:

Coordination between GW-EM community

Optimized observational strategies

to maximize the multi-

What GW data can tell about the remnant and the GRB progenitor:

- 1. NS-NS or NS-BH?
- 2. constraints on exotic scenarios (GRBs from BBH)
- 3. central engine: BH vs NS paradigm

4. fraction of binary mergers able to produce a relativistic jet

Properties of the KN ejecta:

- 1. geometrical and dynamical structure
- 2. neutron richness
- 3. Heavy elements nucleosynthesis
- 4. Probe the Jet-KN interaction

Samuele Ronchini, PennState University

What are the questions still open in the MM field?

Joint GW+EM detection:

1. a fundamental tool to test alternative theories of gravity, through speed of gravity/light comparison

2. critical to probe the physics of the launching mechanism and the jet breakout through the circum-burst ejecta

3. Bright siren measurement of Hubble constant

The missing messenger:

- Where are high-energy neutrinos from CBMs?
- 2. Can GRBs contribute to the flux of high-energy neutrinos observed by IceCube

Other recent peculiarities in the MM field: GRB 211211A

Samuele Ronchini, PennState University

First long GRB associated with a binary merger

D = 350 Mpc

If NSBH, detectable by LVK? —> YES, at high SNR

If BNS, detectable by LVK? —> YES, at SNR~10, because we know that is face-on

Rastinejad et al. 2022, Mei et al. 2022, Troja et al. 2022, Yang et al. 2022

Other recent peculiarities in the MM field: GRB 211211A

Samuele Ronchini, PennState University

First GeV emission associated with a binary merger

Late-time low-power jet, which drills through the KN ejecta

Mei et al. 2022

Other recent peculiarities in the MM field: GRB 230307A

Samuele Ronchini, PennState University

First detection by JWST of a merger driven GRB Levan et al. 2023

- Second brightest GRB ever detected
- Sub-luminous X-ray afterglow
- $D = 300 \text{ Mpc} \longrightarrow \text{detectable by LVK}$
- KN emission detected by JWST at 30d from GRB
- Color evolution remarkably similar to the KN of 211211A and AT2017gfo

Proposal of a unified scenario

GRB 211211A is:

- NS-BH? —>Seems in contrast with the blue component of the KN
- HMNS?—>more plausible

230307A

• ???

Samuele Ronchini, PennState University

Gottlieb et al. 2023

Duration mostly driven by M_{disk}

- Long merger driven GRB powered by
- NS-BH with moderate mass ratio
- BNS with $M_{
 m tot} \gtrsim 2.8 M_{\odot}$

Short merger driven GRB powered by:

• BNS with $M_{\rm tot} \lesssim 2.8 M_{\odot}$

Proposal of a unified scenario

GRB 211211A is:

- NS-BH? —>Seems in contrast with the blue component of the KN
- HMNS?—>more plausible

230307A

• ???

Samuele Ronchini, PennState University

Gottlieb et al. 2023

Duration mostly driven by M_{disk}

- Long merger driven GRB powered by
- NS-BH with moderate mass ratio
- BNS with $M_{
 m tot} \gtrsim 2.8 M_{\odot}$

Short merger driven GRB powered by:

• BNS with $M_{
m tot} \lesssim 2.8 M_{\odot}$

Proposal of a unified scenario

GRB 211211A is:

- NS-BH? —>Seems in contrast with the blue component of the KN
- HMNS?—>more plausible

230307A

• ???

Samuele Ronchini, PennState University

Gottlieb et al. 2023

Duration mostly driven by M_{disk}

- Long merger driven GRB powered by
- NS-BH with moderate mass ratio
- BNS with $M_{
 m tot} \gtrsim 2.8 M_{\odot}$

Short merger driven GRB powered by:

• BNS with $M_{
m tot} \lesssim 2.8 M_{\odot}$

Samuele Ronchini, PennState University

The present

71 in O4

•O4: 18 months of active observing time, started end of May

•So far, only LIGOs

Samuele Ronchini, PennState University

Significant events:

- 1. CBC events: FAR threshold 1/month (post trials)
- 2. Burst events: FAR threshold 1/year (post trials)

Low-significance events: 1456 in O4 Sent with a max FAR of 2/day

Abbott et al. 2020, Living Reviews in relativity

Observation run	Network	Expected BNS detections	Expected NSBH detections	Expected BBH detections
03	HLV	1^{+12}_{-1}	0^{+19}_{-0}	17^{+22}_{-11}
O4	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79^{+89}_{-44}
		Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.
03	HLV	270^{+34}_{-20}	330^{+24}_{-31}	280^{+30}_{-23}
O4	HLVK	33^{+5}_{-5}	50^{+8}_{-8}	41^{+7}_{-6}

71 in O4

•O4: 18 months of active observing time, started end of May

•So far, only LIGOs

Samuele Ronchini, PennState University

Significant events:

- 1. CBC events: FAR threshold 1/month (post trials)
- 2. Burst events: FAR threshold 1/year (post trials)

Low-significance events: 1456 in O4 Sent with a max FAR of 2/day

O4 multimessenger prospects for BNS and NSBH

V O4 GRB After			Afterglow + C	GW O4	GRB Prom	GRB Prompt + GW O4		
	g	Radio	Optical	X-rays	Swift/BAT	Fermi/GBM		
3 3)	22 5.7 ^{+8.7} (74%)	$\begin{array}{c} 0.1 \\ 0.29^{+0.44}_{-0.22} \\ (4\%) \end{array}$	$\begin{array}{c} 22\\ 0.06\substack{+0.09\\-0.04}\\(0.8\%)\end{array}$	$10^{-13}\\0.32^{+0.51}_{-0.23}\\(4\%)$	$3.5 \\ 0.03^{+0.04}_{-0.02} \\ (0.4\%)$	$\begin{array}{c} 4 \\ 0.17\substack{+0.26 \\ -0.13 } \\ (2\%) \end{array}$		

O4 multimessenger prospects for BNS and NSBH

V O4 GRB Afterglow + GW O4			GRB Prompt + GW O4			
	g	Radio	Optical	X-rays	Swift/BAT	Fermi/GBM
3 3)	22 5.7 ^{+8.7} (74%)	$\begin{array}{c} 0.1 \\ 0.29^{+0.44}_{-0.22} \\ (4\%) \end{array}$	$\begin{array}{c} 22\\ 0.06\substack{+0.09\\-0.04}\\(0.8\%)\end{array}$	$10^{-13}\\0.32^{+0.51}_{-0.23}\\(4\%)$	$3.5 \\ 0.03^{+0.04}_{-0.02} \\ (0.4\%)$	4 $0.17^{+0.26}_{-0.13}$ (2%)

O4 multimessenger prospects for BNS and NSBH

Colombo et al. 2023

NSBH

Independently of the local NS-BH rate, it is challenging to detect the EM emission, since:

1. Only for some combinations of mass ratios and spins a massive disk is formed and a jet launched

2. If formed, wider jets are expected, hence less luminous

The KN is less bright 3. than BNS case

	GW	KN + GW		GRB Afterglow + GW			GRB Prompt +		
		J	Z	8	Radio	Optical	X-rays	Swift/BAT	Ferr
LVK O4									
Rate DD2, $\chi_{BH} = 0$	$19.0^{+19.5}_{-11.1}$	$0.30\substack{+0.31 \\ -0.18}$	$0.56^{+0.57}_{-0.33}$	$0.54^{+0.56}_{-0.32}$	$0.03^{+0.04}_{-0.02}$	$0.007\substack{+0.007\\-0.004}$	$0.04^{+0.04}_{-0.02}$	$0.003^{+0.003}_{-0.002}$	0.0

Samuele Ronchini, PennState University

- 1. To consider low-significance GW candidates
- 2. Circulate their info in low latency

Samuele Ronchini, Gran Sasso Science Institute

Why we need:

Subthreshold searches

What is Swift/BAT-GUANO

- coded mask
- Occurring during slew
- Located out of the FOV

The efficiency of the trigger algorithm degrades as we move from the center of the FoV

$$P(det|F > F_{th}) = 100\%$$

 $P(det|F > F_{th}) < 100\%$

Samuele Ronchini, PennState University

Some GRBs potentially detectable by Swift-BAT are missed because, e.g.:

- occurring close to the edge of the

Application to the multi-messenger science case:

- GW trigger
- Swift-BAT does not trigger
- The GUANO analysis 3. reveals a significant event, providing arcmin localization
- 4. EM follow up

NITRATES workflow and results

GUANO workflow and results

Why we need a well localized EM counterpart

1: poorly localized gamma-ray bursts (~ 100 deg^2)

We can study:

- the GW-EM delay
- jet properties,
- masses-jet connection in terms of spectrum, duration...
- jet structure from knowledge of inclination angle

2: well localized gamma-ray bursts (~ 10 deg^2)

We may (or may not) find the host galaxy and determine the redshift, but it may require hours/days

- cosmology
- speed of gravity tests

Possible scenarios for a joint GW-gamma-ray detection:

We can study: • D_L-redshift relation for

• spectral and photometric evolution of KN emission 3: arcmin localized gamma-ray bursts

The source is identified after few seconds and in addition to case 2 we can study:

- full evolution in X-rays (plateau ?) and optical up to the appearance of KN component
- possible UV early emission due to free neutron decay

What if we don't have an arcmin localized burst?

What if we don't have an arcmin localized burst?

Combine maps!

Example: S230701z, P(NSBH)=0.12, max TS=8.0

TS	Delta LLH Out	Delta LLH Peak
8.0	10.07	0.68
7.36	12.26	1.49
7.3	12.73	0.4
7.02	10.7	0.58

The BAT sky map is renormalized considering a probability identical to zero in correspondence of the region occulted by Earth. This is done imposing:

$$1 = P_{\oplus} + (1 - P_{\oplus}) \sum_{i \notin \oplus} P_{BAT}(x_i, y_i) \Delta \Omega_i$$
$$P_{\oplus} = \frac{\Delta \Omega_{\oplus}}{4\pi}$$

The resulting convoluted map is

$$P_{joint}(x_i, y_i) = P_{GW}(x_i, y_i) \times \begin{cases} 0, & (x_i, y_i) \\ P_{BAT}(x_i, y_i), & (x_i, y_i) \end{cases}$$

With the inclusion of Earth

 $\in \oplus$ $\notin \oplus$

With the inclusion of Earth

Without the inclusion of Earth

Samuele Ronchini, PennState University

GRB 230822A - Weak Short GRB

Samuele Ronchini, PennState University

GAUNO data dump

> **NITRATES** analysis

significance

Fermi candidates

Possible scenarios, in descending order of goodness:

- 1. The candidate is localized inside the Swift-BAT field of view, with arcmin precision
- 2. The candidate is outside the FOV, but with the skymap we can exclude a large portion of the sky
- 3. The skymap is non-informative (low-significance candidate) and we can just exclude the area covered by Earth

Samuele Ronchini, PennState University

The future

The 3rd generation of GW detectors: steps forwards

Einstein Telescope (ET)

- Triangle geometry
- Xilophone concept: low
 - frequency at cryogenic

temperature + high

frequency at room

temperature

Underground to

minimise seismic noise

(CE)

Extension of LIGO concept with **10x longer**

arms

From Chan et al. 2018

_	_		_	_	_	_	_	T	_	_		
											1	
											ľ	-
											L	
											ŀ	-
											L	
											Ŀ	
											E	_
											Г	7
											Ŀ	-
1	C	1	-	r	٦	r	٦	4	ב		L	
	9	`	-	Ļ	,	Þ	,	s	-		ŀ	-
											L	
											ŀ	-
			F	2	r						t	_
-	'		~	-	•						L	
		1						7			J	-
								1				
-	-	-	-	-	-	-		Ť	-	-	-	-
								1				
	5	Ē	1					ż	-			
		ũ						ĩ				
								ĩ				
		-	-		-	-	-	Ť	-		-	-
								ł.				
	-	1			-		-	Ť				-
	1							î.				
-	-)	-	-			-		÷			-	-
					2			Σ				
								Т				
-	1	1	-	-	-	-	-	ĩ	-	-	-	-
								i.				
-	-	-				-		Ť				-
								5				
_	5	E	-	_	-	-	-	t	-	-	-	
_	0	-	_	_	_	_	_	ĩ	_	_	_	
								1				
-		-	-	-	-	-	-	Т	-	-	-	-
								1				
	1					-		î				-
								i.				
=	2	E	=	-	=	-		÷				
			_	-	ē		-	1				
1		1						ľ				
		ĩ	-	-	-		-	ĩ	-	-	-	1
								j.				
		-						Ť				-
								ł.			-	
2	5		-	-	-			Ċ	5		1	
ŝ		-	-		_		_	í.				
								Į.			1	
								T			-	۱
	_							1				
1	-	ĩ	-	1	-	-	7	ŝ	1	7	-	1
					-			2				
					2	1	-	t		-	-	
2		-						Į.				
	_			_	_			i.				
	1			-				ĩ			-	1
								5				
-		-	-	-	-	-	-	T	-	-	-	-
								î.				
	5	C				-	-	î			-	
_		1	-	-	_	_	_	ĩ		_		_

The 3rd generation of GW detectors: science case

- 10^{5} - 10^{6} detections / yr of stellar mass BH mergers up to z~100
- Detection of primordial BH lacksquare
- Detection of ~10⁵ BNS mergers/yr beyond the star formation peak \bullet
 - ET more sensitive at low frequency \rightarrow the inspiral is followed for a longer time -> better sky localisation
 - Access the effects of tidal deformations at the moment of the merger \rightarrow NS EoS
- Test of GR during the inspiral and in the post-merger (e.g. BH ringdown)
- Nature of dark energy and modifications of GR at cosmological distances

Samuele Ronchini, PennState University

The 3rd generation of GW detectors: science case

- - time -> better sky localisation
 - **NS EoS**

Joint detection of γ -ray emission and GWs

INSTRUMENT	band	$F_{ m lim}$	$FOV/4\pi$	loc acc	Joint ET	$N_{\rm HD}/N_{\rm c}$	Joint (ET+CE)	N_{JD}/N_{γ}
	MeV	$erg cm^{-2} s^{-1}$	101/1/		+γ-ray	πημηγ	+γ-ray	
Fermi-GBM	0.01 - 25	0.5(*)	0.75	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$
Swift-BAT	0.015 - 0.15	2×10^{-8}	0.11	1-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$
SVOM-ECLAIRs	0.004 - 0.250	1.792(*)	0.16	< 10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	$95^{+5}_{-4}\%$
SVOM-GRM	0.03 - 5	0.23(*)	0.16	~ 5 deg	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$
THESEUS-XGIS	0.002 - 10	3×10^{-8}	0.16	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$
HERMES	0.05 - 0.3	0.2(*)	1.0	1 deg	84_{-30}^{+42}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$
TAP-GTM	0.01 - 1	1(*)	1.0	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	$95^{+5}_{-6}\%$

Fermi GBM+ET

injected ET detections γ -ray detections joint ET+ γ -ray detections 10³ 10² 10^{1} 0.6 0.8 1.0 redshift 0.2 2.0 3.0 4.0 0.4

Ronchini et al. 2022

Samuele Ronchini, PennState University

Fermi GBM+(ET&CE)

Joint detection of y-ray emission and GWs

Samuele Ronchini, PennState University

4π	loc. acc.	Joint ET	N_{ID}/N_{γ}	Joint (ET+CE)	N_{ID}/N_{γ}	
		+γ-ray	JDT Y	+γ-ray	527 7	
	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$	
CE.	-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$	
	10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	95 ⁺⁵ ₋₄ %	
J	~ 5 deg	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$	
6	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$	
)	1 deg	84 ⁺⁴² ₋₃₀	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$	
)	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	$95^{+5}_{-6}\%$	

Ronchini et al. 2022

Fermi GBM+(ET&CE)

Joint detection of y-ray emission and GWs

4π	loc. acc.	Joint ET	N_{JD}/N_{γ}	Joint (ET+CE)	N_{JD}/N_{γ}	
		+γ-ray	,	+γ-ray	,	
	5 deg (^{<i>a</i>})	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$	
CE.	-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$	
	10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	$95^{+5}_{-4}\%$	
2	~ 5 deg	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$	
6	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$	
)	1 deg	84^{+42}_{-30}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$	
)	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	$95^{+5}_{-6}\%$	

Joint detection of y-ray emission and GWs

4π	loc. acc.	Joint ET	N_{JD}/N_{γ}	Joint (ET+CE)	N_{JD}/N_{γ}		
0		+ y-1ay		+ y-1ay			
ET	$5 \deg(a)$	33^{+14}_{-11}	$68^{+13}_{-18}\%$	47^{+14}_{-14}	$95^{+5}_{-7}\%$		
CE	-3 arcmin	10^{+3}_{-3}	$62^{+11}_{-14}\%$	13^{+5}_{-4}	$94^{+6}_{-7}\%$		
r r	10 arcmin	3^{+1}_{-1}	$69^{+10}_{-9}\%$	4^{+1}_{-1}	$95^{+5}_{-4}\%$		Few
J	~ 5 deg	9^{+4}_{-3}	$59^{+6}_{-6}\%$	14^{+6}_{-4}	$92^{+3}_{-3}\%$	X	loc
6	< 15 arcmin	10^{+5}_{-4}	$63^{+13}_{-13}\%$	15^{+6}_{-4}	$94^{+6}_{-7}\%$		ev
0	1 deg	84_{-30}^{+42}	$61^{+10}_{-11}\%$	139^{+54}_{-36}	$94^{+6}_{-6}\%$		
0	20 deg	60^{+24}_{-24}	$67^{+13}_{-14}\%$	84^{+30}_{-24}	$95^{+5}_{-6}\%$		

Two kinds of joint detections

Fermi-like telescopes

- ~ all sky monitors
- Possibility to build constellations at fairly low cost
- Best sensitivity around the sGRB peak energy
- $\sim \text{deg location accuracy}$

PROS

- Confirm the spatial and temporal coincidence with the GW
- Characterise the spectral shape up to high energies
- High number of joint detections \Rightarrow statistical studies

Samuele Ronchini, PennState University

Swift-like telescopes

- Good sky coverage
- Arcmin location accuracy
- Possibility to promptly follow up with ground-based telescopes

PROS

- Identification of the host galaxy
- Determination of the redshift
- Detection of X-ray counterparts (standard GRB afterglow, jet-KN ejecta interaction, SBO, wind from magnetar...)
- Less number of events but with deeper understanding of the GRB physics

Samuele Ronchini, PennState University

THESEUS: Transient High-Energy Sky and Early Universe Surveyor

Mission concept optimized for:

- 1. Multi-messenger studies, follow up and identification of EM counterpart of GW and neutrino events
- 2. Detection and characterization of GRBs up to redshifts close to the reionization epoch of the Universe
- 3. Systematic survey of the transient sky in the high-energy

THESEUS: Transient High-Energy Sky and Early Universe Surveyor

Soft X-ray Imager (SXI)

X/gamma-ray Imaging spectrometer (XGIS)

collimator

Very wide spectral coverage

Large Grasp

Energy (keV)

Samuele Ronchini, PennState University

Key advantages:

- 1. Wide coverage of the sky
- 2. Very extended energy range, from 0.3 keV to 10 MeV
- Arcmin localisation 3.

	FOV	Position acc
SXI	0.5 sr	< 2 arcm
XGIS	2 sr (2 - 150 keV) 4 sr (>150 keV)	< 15 arcm
IRT	15' x 15'	< 1 arcse

GW sky localisation

ET

	ET	ET+CE	ET+20
N _{det}	143970	458801	59256
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{ m deg}^2)$	10	6797	15416
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	49381
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	58531

Samuele Ronchini, PennState University

ET+CE

ET+2CE

GW sky localisation

ET

	ET	ET+CE	ET+2CE
N _{det}	143970	458801	592565
$N_{\rm det}(\Delta\Omega < 1~{ m deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{ m deg}^2)$	10	6797	154167
$N_{\rm det}(\Delta\Omega < 100~{ m deg}^2)$	370	192468	493819
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	585317

ET+CE

ET+2CE

localisation capabilities

Detectability of the afterglow emission: survey vs pointing

How to detect X-ray emission:

1. In survey mode: probability ~FOV/4 π of detecting

by chance the source

2. In **pointing mode**: selection of the sources with $\Delta \Omega$ $< 100 \text{ deg}^2$

	THESEUS-SXI	ТАР	Einstein Probe	Gamo
Energy band	0.3-5 keV	0.3-5 keV	0.5-4 keV	0.3-5 k
Field of view	0.5 sr	0.4 sr	1.1 sr	0.4 s

Number of BNS mergers / yr detected in GWs and X-rays

Survey mode

Pointing mode

	ET	ET+2CE
EP	50^{+15}_{-16}	64^{+12}_{-20}
Gamow	9^{+2}_{-2}	10^{+3}_{-3}
THESEUS-SXI	11^{+3}_{-3}	13^{+4}_{-3}
THESEUS-(SXI+XGIS)	23^{+6}_{-5}	27^{+7}_{-5}
TAP-WFI	16^{+3}_{-4}	17^{+6}_{-3}

ET+CI ET 294^{+80}_{-59} 9^{+5}_{-3} EP ⊦43 -14

THESEUS-SXI/ Gamow	7^{+5}_{-3}	95_
TAP-WFI	8 ⁺⁵ ₋₃	182

Samuele Ronchini, PennState University

-CE	ET+2CE
+80 -59	359^{+168}_{-110}
⊦43 -14	122^{+41}_{-23}
+43 -31	225^{+76}_{-72}

For 2-3 GW detectors active, pointing better than survey, but...

	E	Г	ET+CE	ET+2CE		
EP	9_	5 3	294^{+80}_{-59}	359 ⁺¹⁶⁸ -110		
THESEUS-S	XI/ 7+	5	95 +43	122+41		
Gamow	· -	⁷ -3 ⁹⁵ -14	-23			
TAP-WFI	8_	5 3	182^{+43}_{-31}	225^{+76}_{-72}		
_						
				100 s	1 hr	4 hr
	Einstein Probe THESEUS-SXI/ <i>Gamow</i>		359^{+168}_{-110}	48^{+24}_{-15}	17^{+15}_{-10}	
			122+41	12 + 7	< 9	
			-23	12 - I		
	TA	P-	WFI	225^{+76}_{-72}	50^{+20}_{-10}	17^{+10}_{-5}

A rapid response is necessary to catch the brighter phase of the afterglow

Samuele Ronchini, PennState University

Following-up all the sources with $\Delta \Omega <$ 100 deg² is **unfeasible**

Other GW parameters should be exploited to restrict the selection:

- SNR
- Viewing angle and relative error
- Luminosity distance and relative error

h(t)

For some golden cases, enough SNR can be accumulated already **before** the merger

Samuele Ronchini, PennState University

Pre-merger sky localisation

Future Cherenkov telescopes, like CTA, will be able to point in the direction of the GRB at the moment of the merger, allowing to detect possible very-high energy emission during the prompt phase

The importance of WFX-ray telescopes

Joint γ -ray+GW detection efficiency (ET+Fermi-GBM)

Too off-axis to have a detectable γ -ray emission

Redshift distribution of joint X-ray+GW detections, in pointing mode

Pre-merger localization with Swift-like telescopes in the ET era

Continuous commanding already tested: few seconds between command sent from ground and start of spacecraft slew

Further feasibility tests will be performed in O4

To be ready to routinely ingest pre-merger alerts in the ET era

Thank you!

