1st **Astrophysics** in the New Era of MM Astronomy International Conference

Poços de Caldas, Brazil - December 4-8th 2023

Andre Contu Domenico D'Urso Davide Rozza University of Cagliari, Sassari & INFN

Virgo detector

GW: a long history...

GW spectrum

The effect of GW on free-falling masses

The distance between two free-falling masses separated by a km will change by $\delta L \approx 10^{-18} m$

Gravitational wave interferometers

Virgo Collaboration

- ~770 members, ~450 authors, 131 institutions from 15 countries
- 34 Groups:
 - 32 full members
 - 2 in the first year (L2I Toulouse, KU Leuven)
- 9 countries represented in the VSC

GW DATA ANALYSIS

We need to enhance the signal and reduce the noise

Fabry-Perot cavity for "longer arms": the presence of the optical cavities increases the number of round trip of the light, therefore enhancing the gain of the instrument

Fabry-Perot cavity for "longer arms": the presence of the optical cavities increases the number of round trip of the light, therefore enhancing the gain of the instrument

Input and output mode cleaner to reject the laser highorder modes

Advanced Virgo noise budget for the O5 science run

Advanced Virgo noise budget for the O5 science run

Reducing seismic noise:

- Choose a good location
- Superattenuator to reduce seismic vibration: reduces mirrors seismic vibration by a factor 10¹²

Reducing seismic noise:

 Ultra high vacuum: 7000 m³ @ pressure of 10⁻⁹ mbar The biggest ultra-high-vacuum system in Europe

18

A-Constant of the second

......

A state

TIL

11

.

Advanced Virgo noise budget for the O5 science run

Reducing thermal noise:

- Beam size as large as possible
- Coating techniques to reduce the losses
- SiO₂ monolithic suspensions 400 μ m
- Mirrors of 42 kg in weight to reduce the effect of the radiation pressure
- SiO₂ mirrors with a residual roughness < 0.5 nm

Test mass mirrors

Beam splitter mirror

Advanced Virgo noise budget for the O5 science run

Reducing quantum noise:

- Increased finesse of arm cavity
- High power laser
- Squeezing technique

Shot noise: photon counting noise

Radiation pressure noise: Photons fluctuations translate in radiation pressure fluctuations, giving rise to random motion of the mirrors

Gravitational wave events

- Advanced LIGO and Advanced Virgo have completed the third observing run and are being upgraded toward LIGO A+ and AdV+ operations (O4: 2023-2024 – O5: 2026-2028)
- Further upgrades are being planned for post-O5

90 GW detections reported

Coalescence of black holes and neutron stars

1 multimessenger event (GW + EM observation)

Mass range 1.2 → 107 M_☉ (stellar)

Distance range 40 Mpc \rightarrow 8 Gpc (z \rightarrow 1.14)

How we detect transient signals: modelled search

Matched-filter

Credits to E. Cuoco et al.

Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars

Sudarshan Ghonge | Karan Jani

VANDERBILT UNIVERSITY®

Georgia Tech 🛛

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

Credits to E. Cuoco et al.

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

CONCLUSIONS:

Virgo is working to improve its sensitivity and continue making important contributions to the field of gravitational wave astronomy

Synergies with Einstein Telescope (see Andrea Contu talk) on many crucial aspects