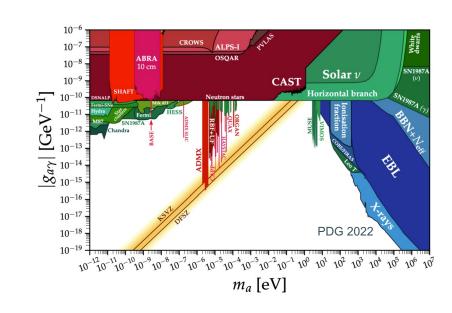


CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Marios Maroudas

Working Group: J. M. Batllori, Y. Gu, D. Horns, M. Maroudas, J. Ulrichs

WISP Searches on a Fiber Interferometer (WISPFI)

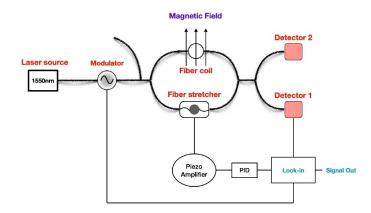


QUANTUM UNIVERSE

Motivation

- Axions solve the strong CP problem and are prominent candidates for CDM [1].
- ➤ Haloscope experiments are very sensitive but depend on the local DM density → poorly constrained → could be substantially smaller [2].
- LSTW experiments are not sensitive to QCD axions (conversion scales with g^4_{avv}).
- ➤ High axion mass range (meV to eV) is unexplored by direct detection experiments (except CAST [3]).
- Null results of direct DM searches → Need for novel approaches!

WISPFI (WISP searches on a Fiber Interferometer)


https://doi.org/10.48550/arXiv.2305.12969

- Novel table-top experiment focusing on **photon**axion conversion in a waveguide by measuring photon disappearance in the presence of a strong external B field [4].
- Axion conversion probability scales with [5]:

For
$$P_{\gamma \to a} \ll 1$$
: $P_{\gamma \to a} \propto g_{a\gamma\gamma}^2 (BL)^2$

- Light guiding over long distances & resonant **detection** at a specially-confined region inside the bore of a strong magnet.
- Mach-Zehnder interferometer with the sensing arm inside the magnetic field.
- Expected signal: amplitude reduction & phase shift.

- No local DM density dependence.
- Operation at room temperature (no cryogenic setup required).

QUANTUM UNIVERSE

Photon-axion conversion

$$P_{\gamma \to a} = \sin^2(2\theta) \sin^2(\pi L/L_{osc})$$
 [6] Mixing angle: $\tan(2\theta) = 2\omega \frac{g_{a\gamma\gamma}B}{k_{\gamma}^2 - k_{\alpha}^2}$ Photon, axion wave momenta Mixing Amplitude Oscillations

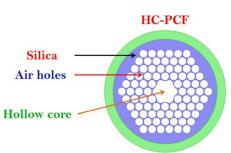
- Maximum conversion occurs for large energy ω or at $k_v = k_a$ (resonant conversion, $\theta = 45^\circ$).
- > Axion mass at resonance in a medium with effective refractive index n_{eff}:

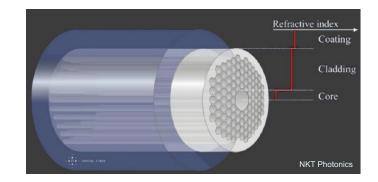
$$m_a = \omega \sqrt{1 - n_{eff}^2}$$
 Required n_{eff} <1!

For $P_{\gamma \to a} \ll 1$ the resulting probability becomes: $P_{\gamma \to a} \approx 10^{-18} \left(\frac{g_{a\gamma\gamma}}{10^{-12} \text{ GeV}^{-1}} \right)^2 \left(\frac{B}{10 \text{ T}} \right)^2 \left(\frac{L}{200 \text{ m}} \right)^2$

Energy (ω) independent!

QUANTUM UNIVERSE


Hollow-Core Photonic Crystal Fibers (HC-PCF)

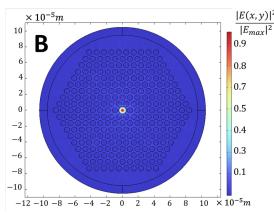

Resonant conditions can not be fulfilled for wave-guides based on dielectric materials.

HC-PCF guide light through a low-refractive index hollow core which is surrounded by a periodic arrangement of air-holes in the cladding this generating a photonic-bandgap structure [7].

➤ Through the bandgap structure, the propagating mode can acquire **n**_{eff}<1 leading to real

axion masses and resonant mixing.

QUANTUM UNIVERSE

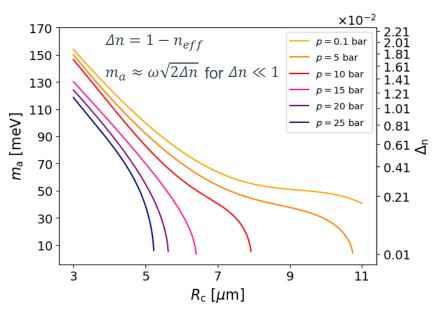

Effective mode index in HC-PCF (I)

 \triangleright n_{eff} depends on the core radius (R_c), the bending radius (R_b), and the refractive index of the effective gas (n_{gas}) which in turn depends on pressure (p), wavelength (λ), and

temperature (T) [8, 9].

> Analytical approximation [8]: $n_{eff} = \frac{k_{\gamma}}{k_o} = \sqrt{n_{gas}^2(\lambda, p, T) - \left(\frac{u_{nm}}{k_{\gamma}R_c}\right)^2}$

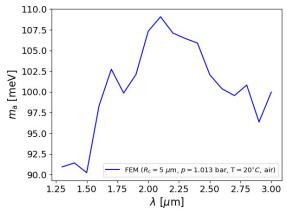
> FEM simulations studying the actual fiber geometry.

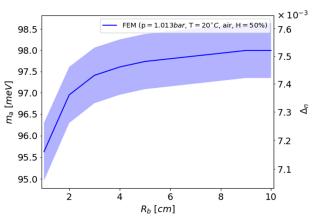

Mode field distribution of HC-PCF $(R_c=5\mu m,p=0.1bar,T=20^{\circ}\mathrm{C},n_{eff}=0.992,n_{clad}=1.45)$

QUANTUM UNIVERSE

Effective mode index in HC-PCF (II)

- Probed axion masses for resonant conversion based on different core radii (R_c) and pressures (p) of the air that fill the hollow core vary between ~ 10 meV to 160 meV.
- Observed increase of n_{eff} with increasing R_c and p matches the analytical approximation.


27.06.2023

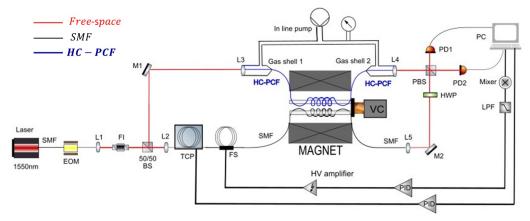

QUANTUM UNIVERSE

Effective mode index in HC-PCF (III)

 Wavelength of the propagating light and bending radius of the fiber also have an effect on the effective mode index.

$$\Delta n = 1 - n_{eff}$$
 $m_a \approx \omega \sqrt{2\Delta n}$

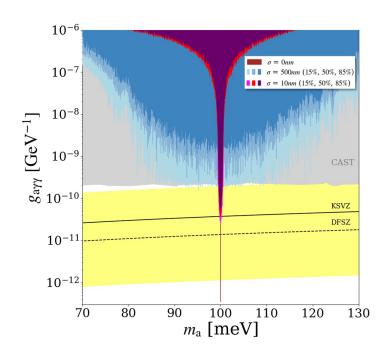
$$n'_{gas}(\lambda, p, T) = n_{gas}(\lambda, p, T) * n_{bend} = n_{gas}(\lambda, p, T) * \left(1 + \frac{R_c}{R_b}\right)$$



QUANTUM UNIVERSE

Experimental setup

- Partial free space partial fiber Mach-Zehnder-type interferometer.
- Sensing arm by HC-PCF placed in the magnetic bore and pressurized for tuning the probed axion mass.
- Both arms mounted on a voice coil (VC) for modulating the axion signal by shifting the position of the fiber coils and thus changing the effective B field.
- Fiber stretcher (FS) and temperature control pad (TCP) used for locking the interferometer via a PID.

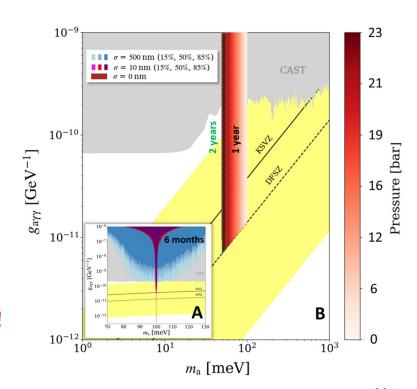

QUANTUM UNIVERSE

Sensitivity (I)

- MZI operated at dark fringe.
- Instrumental noise dominated by the dark current of the photodetector.
- No additional losses.

$$g_{a\gamma\gamma} \approx 4 \times 10^{-13} GeV^{-1} \left(\frac{SNR}{3}\right)^{1/2} \left(\frac{B}{14T}\right)^{-1} \left(\frac{L}{500m}\right)^{-1} \left(\frac{P_{tot}}{4W}\right)^{-1/2} \left(\frac{\beta_{sig}}{1}\right)^{-1/2} \left(\frac{t}{180d}\right)^{-1/4} \left(\frac{NEP_{PD}}{0.5 fW/\sqrt{Hz}}\right)^{1/2}$$

- Axion mass mainly depends on core radius (R_c)
- HC-PCF production process leads to random variations of the R_c which widen the probed axion mass range but reduce the sensitivity.

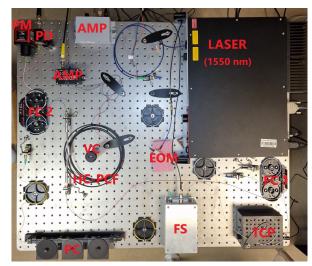

QUANTUM UNIVERSE

Sensitivity (II)

A. Baseline setup: 4 W laser @ 1550 nm, B = 14 T, 500 m HC-PCF at standard conditions.

B. Long term projection: 40 W laser @ 1550 nm, B = 14 T, 1 km PM HC-PCF with σ =10 nm.

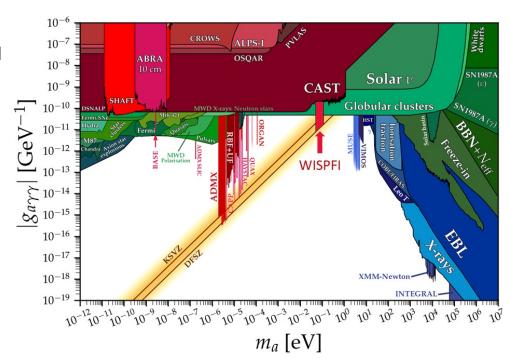
- ➤ Tuning from 0.1 23 bar in 116 steps of 0.6 meV between 50 100 meV
 - → DFSZ sensitivity in a wide axion mass range!



QUANTUM UNIVERSE

Future steps

- Test HC-PCF fiber in the 14 T warmbore solenoid magnet.
- Signal modulation with VC / wavelength modulation.
- Interferometer locking in amplitude/phase and temperature for larger fiber lengths (~100m).
- Integration to free-space.
- Noise optimization.
- Final commissioning and data acquisition.



QUANTUM UNIVERSE

Summary

- Light guiding through waveguide embedded in a strong B field.
- Partial free-space, partial fiber Mach-Zehnder-type interferometer.
- Amplitude/phase reduction/shift in the presence of y→a conversion.
- HC-PCF meets the conditions for resonant mixing.
- Tuning in a wide axion mass range by regulating the gas pressure in the fiber.

https://doi.org/10.48550/arXiv.2305.12969

27.06.2023

CLUSTER OF EXCELLENCE OUANTUM UNIVERSE

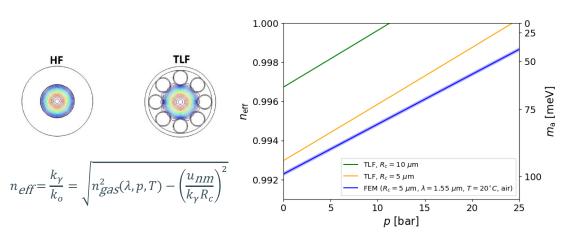
QUANTUM UNIVERSE

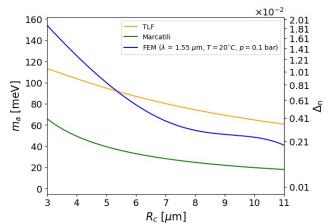
References

- (1) R. D. Peccei, H. R. Quinn, CP Conservation in the Presence of Pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977), https://doi.org/10.1103/PhysRevLett.38.1440
- (2) B. Eggemeier et al., Axion minivoids and implications for direct detection, Phys. Rev. D 107, 083510 (2023), https://doi.org/10.1103/PhysRevD.107.083510
- (3) V. Anastssopoulos et al., New CAST limit on the axion-photon interaction, Nature Phys.13, 584-590 (**2017**), https://doi.org/10.1038/nphys4109
- (4) J. M. Batllori, et al, WISP Searches on a Fiber Interferometer under a Strong Magnetic Field, arXiv (2023), https://doi.org/10.48550/arXiv.2305.12969
- (5) H. Tam, Q. Yang, Production and detection of axion-like particles by interferometry, Phys. Lett. B, 716, 435-440 (2012), https://doi.org/10.1016/j.physletb.2012.08.050
- (6) G. Raffelt, L. Stodolsky, Mixing of the photon with low-mass particles, Phys. Rev. D 37, 1237 (1988), https://doi.org/10.1103/PhysRevD.37.1237
- (7) P. Russell, Photonic Crystal Fibers, Science 299, 5605 (2003), https://doi.org/10.1126/science.1079280
- (8) E. A. J. Marcatili, R. A. Schmeltzer, Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers, Bell System Technical Journal 43, 4, (1964), https://doi.org/10.1002/j.1538-7305.1964.tb04108.x
- (9) L. Rosa et al., Analytical Formulas for Dispersion and Effective Area in Hollow-Core Tube Lattice Fibers, Fibers 9, 10, (2021), https://doi.org/10.3390/fib9100058

27.06.2023

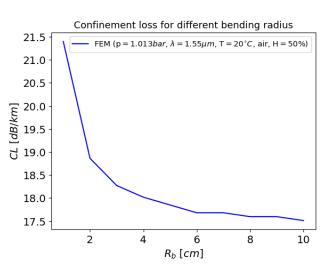
CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

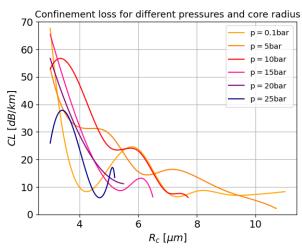


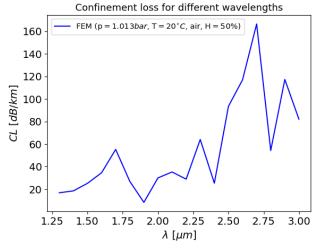

Backup Slides

QUANTUM UNIVERSE

Effective mode index in HC-PCF



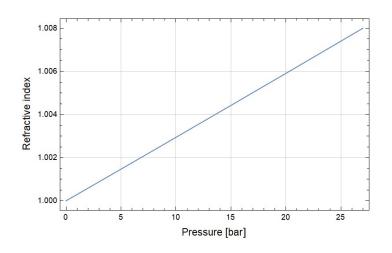


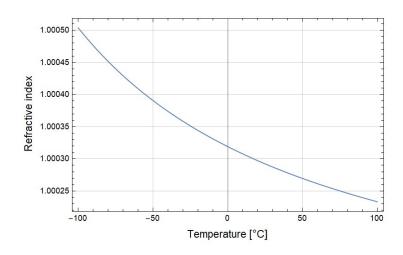


QUANTUM UNIVERSE

Confinement losses

$$CL[dB/km] = -\frac{20}{\ln 10} \cdot \frac{2\pi}{\lambda} \cdot Im(n_{eff})$$




QUANTUM UNIVERSE

Refractive index of air

Refractive index of air as a function of pressure and temperature for T=20°C and P=1.013 bar accordingly.

