Quantum Computing for Nuclear Physics Alessandro Roggero

TNPI2023 - Cortona 12 Oct, 2023

The need for ab-initio many-body dynamics in NP

- ν scattering for supernovae explosion and NS cooling
- capture reactions for crust heating and nucleosynthesis

- cross sections for dark-matter discovery and neutrino physics
- transport properties of neutron star matter for X-ray emission

Quantum Computing for NP

Inclusive cross section and the response function

• cross section determined by the response function

$$R_O(\omega) = \sum_f \left| \langle f | \hat{O} | \Psi_0 \rangle \right|^2 \delta \left(\omega - E_f + E_0 \right)$$

 $\bullet\,$ excitation operator \hat{O} specifies the vertex

q,ω

Inclusive cross section and the response function

• cross section determined by the response function

$$R_O(\omega) = \sum_f \left| \langle f | \hat{O} | \Psi_0 \rangle \right|^2 \delta \left(\omega - E_f + E_0 \right)$$

• excitation operator \hat{O} specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

Prospects for classical simulations of nuclear dynamics

Quantum MC + Laplace/STA

- useful for quasi-elastic regime
- not yet accurate enough to go beyond A = 12 (sign-problem)

Machine Learning ideas could help

Coupled Cluster + Lorentz/Gauss

- useful for low energy regime
- accuracy limited by inversion

Prospects for classical simulations of nuclear dynamics

Quantum MC + Laplace/STA

- useful for quasi-elastic regime
- not yet accurate enough to go beyond A = 12 (sign-problem)

Machine Learning ideas could help

Coupled Cluster + Lorentz/Gauss

- useful for low energy regime
- accuracy limited by inversion

Some problems will still remain out of reach

- large open-shell nuclei
- exclusive cross-sections
- out of equilibrium

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Box contains N qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement ${\cal M}$
- quantum operations G_k

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

discretize the physical problem

$$|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$$

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- ullet projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

- discretize the physical problem
- 2 map physical states to bb states

$$|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt}|\Psi(0)\rangle$$

Box contains N qubits (2-level sys.) together with a set of buttons

- $\bullet\,$ initial state preparation $\rho\,$
- ullet projective measurement ${\cal M}$
- quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

- discretize the physical problem
- 2 map physical states to bb states
- opush correct button sequence

 $|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$

First programmable quantum devices are here

Real time dynamics on current generation devices

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Real time dynamics on current generation devices

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Alessandro Roggero

Real time dynamics on current generation devices

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Alessandro Roggero

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

• First steps toward nuclear response: real-time correlators

$$R(\omega) = \int dt e^{i\omega t} C(t) \quad \text{with} \quad C(t) = \langle \Psi_0 | O(t) O(0) | \Psi_0 \rangle$$

• Can be done "easily" using one additional qubit (Somma et al. (2001))

Baroni, Carlson, Gupta, Li, Perdue, AR PRD(2022)

Towards exclusive scattering using quantum computing

- $\bullet\,$ response $R(\omega) \Leftrightarrow$ probability for events at fixed ω
- $\bullet\,$ exclusive x-sec $\rightarrow\,$ events with specific final states

IDEA: prepare the following state on QC $|\Phi\rangle = \sum_{\omega} \sqrt{R(\omega)} |\omega\rangle \otimes |\psi_{\omega}\rangle$

Towards exclusive scattering using quantum computing

 $\bullet~\mbox{exclusive x-sec} \rightarrow \mbox{events}$ with specific final states

- measurement of first register returns ω with probability $R(\omega)!$
- after measurement, the second register contains final states at $\omega!$

AR & Carlson PRC(2019)

q.ω

Towards exclusive scattering using quantum computing

- $\bullet\,$ response $R(\omega) \Leftrightarrow$ probability for events at fixed ω
- exclusive x-sec \rightarrow events with specific final states

IDEA: prepare the following state on QC $|\Phi\rangle = \sum_{\omega} \sqrt{R(\omega)} |\omega\rangle \otimes |\psi_{\omega}\rangle$

- measurement of first register returns ω with probability $R(\omega)!$
- after measurement, the second register contains final states at $\omega!$

Difficult to prepare $|\Phi\rangle$ but we can prepare instead the following state

$$\left|\Phi_{\Delta}\right\rangle = \sum_{\omega} \sqrt{R_{\Delta}(\omega)} \left|\omega\right\rangle \otimes \left|\psi_{\omega}\right\rangle$$

with R_{Δ} is an integral transform of the response with energy resolution Δ

AR & Carlson PRC(2019), AR PRA(2020)

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ≈ 4000 qubits and push the gate buttons $\approx 10^6 - 10^8$ times

• Still possible to optimize further (other encodings need ≈ 500 qubits)

• Insights for classical methods could come before we have a large QC!

Alessandro Roggero

Nuclear reactions in a semiclassical approach

Turro, Chistolini, Hashim, King, Livingston, Wendt, Dubois, Pederiva, Quaglioni, Santiago, Siddiqi (2023)

Neutrino oscillations in astrophysical environments

Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, ...

Nuclear dynamics with quantum (inspired) computing?

We can prepare the following state

$$|\Phi_{\Delta}
angle = \sum_{\omega} \sqrt{R_{\Delta}(\omega)} |\omega
angle \otimes |\psi_{\omega}
angle$$

with R_{Δ} is an integral transform of the response with energy resolution Δ

 Gaussian approach uses the fact that Chebyshev polynomials can be evaluated efficiently on quantum computers (Berry, Childs, Low, Chuang, ...)

Alessandro Roggero

Entanglement structure in nuclei

Summary & Conclusions

- Advances in theory and computing are opening the way to ab-initio calculation of equilibrium properties in the medium-mass region
- New ideas are needed to study nuclear dynamics in large open-shell nuclei, out-of-equilibrium processes and QCD at finite μ
- Quantum Computing has the potential to bridge this gap and increasingly better experimental test-beds are being built
- Error mitigation techniques will be critical to make the best use of these noisy near-term devices
- Early impact of QC on nuclear physics might come as insights into classical many-body methods and the role of entanglement

