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The need for ab-initio many-body dynamics in NP

@ v scattering for supernovae @ cross sections for dark-matter
explosion and NS cooling discovery and neutrino physics

@ capture reactions for crust @ transport properties of neutron
heating and nucleosynthesis star matter for X-ray emission
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Inclusive cross section and the response function

@ cross section determined by the response function
. 2
Ro(w) = >_[(£101%0)| 8 (w — By + Eo)
f
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g e excitation operator O specifies the vertex
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Inclusive cross section and the response function

@ cross section determined by the response function
. 2
Ro(w) = > [(£101%0)| 6 (w — By + Eo)
f

e excitation operator O specifies the vertex

Extremely challenging classically for strongly correlated quantum systems J
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@ quasi-elastic EM response of 12C
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Prospects for classical simulations of nuclear dynamics
Quantum MC + Laplace/STA

Machine Learning ideas could help
@ useful for quasi-elastic regime

@ not yet accurate enough to go
beyond A = 12 (sign-problem)

= Ahrens efal.
= LIT-CCSD

Coupled Cluster + Lorentz/Gauss

Bacca et al. PRC(2014)
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@ useful for low energy regime

@ accuracy limited by inversion
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Prospects for classical simulations of nuclear dynamics
Quantum MC + Laplace/STA

Machine Learning ideas could help
@ useful for quasi-elastic regime

@ not yet accurate enough to go
beyond A = 12 (sign-problem)

5 “ Ahrens et al.

= LIT-CCSD

Bacca et al. PRC(2014)
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X

@ useful for low energy regime

40
Ca

@ accuracy limited by inversion

o large open-shell nuclei

@ exclusive cross-sections

@ out of equilibrium
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system

Quantum System Quantum System
we have control over we want to simulate

@p
A

figure from E.Zohar
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system

Quantum System Quantum System
we have control over we want to simulate

Electrode

figure from E.Zohar
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system J

Quantum System Quantum System
we have control over we want to simulate
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p
@ projective measurement M

@ quantum operations Gy,

Blume-Kohout et al. (2013)
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Lloyd (1996) We can simulate time evolution of local Hamiltonians

@ discretize the physical problem
[W(0)) —[W(t)) = e~ (0))
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p
@ projective measurement M

@ quantum operations Gy,

Solovay—Kitaev Theorem

We can build a universal black box
with only a finite number of buttons

Blume-Kohout et al. (2013)

Lloyd (1996) We can simulate time evolution of local Hamiltonians

@ discretize the physical problem (W(0)) —=[¥(t)) = eith|‘IJ(0>>

@ map physical states to bb states _ _
| «— time evolution

qubits — ——| U(t) button
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Black box model for a quantum computer

Box contains N qubits (2-level sys.)
together with a set of buttons J

@ initial state preparation p

@ projective measurement M

@ quantum operations Gy,

Solovay—Kitaev Theorem

We can build a universal black box
with only a finite number of buttons

Blume-Kohout et al. (2013)

Lloyd (1996) We can simulate time evolution of local Hamiltonians
@ discretize the physical problem (W(0)) —=[¥(t)) = eilHt|‘IJ(0>>
@ map physical states to bb states

© push correct button sequence
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First programmable quantum devices are here

ASCR Report on a
Quantum Computing
Testbed for Science

Quantum Computer

some figures from M.Savage
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)
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Real time dynamics on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)

e bare results from QPU
= ideal result
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@ decoherence (environment)
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Real time dynamics

Probability of 3 nulceons on same site

on current generation devices
AR, Li, Carlson, Gupta, Perdue PRD(2020)
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figures from Blume-Kohout et al. (2013,2017)
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Real time correlators on current generation devices

@ First steps toward nuclear response: real-time correlators

R(w) = / dte™'O(t) with C(t) = (To|O(t)O(0)|To)

@ Can be done “easily” using one additional qubit (Somma et al. (2001))
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Real time correlators on current generation devices

o First steps toward nuclear response: real-time correlators
R(w) = /dtei“’tC(t) with  C(t) = (Pp|O(t)O(0)|Ty)
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Real time correlators on current generation devices

@ First steps toward nuclear response: real-time correlators
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Towards exclusive scattering using quantum computing
@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)

Alessandro Roggero Quantum Computing for NP 10/16



Towards exclusive scattering using quantum computing
@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)

@ measurement of first register returns w with probability R(w)!
@ after measurement, the second register contains final states at w!

c
Osmje ray

Run 5390, Event 1100

Blume-Kohout et al. (2013)

AR & Carlson PRC(2019)
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Towards exclusive scattering using quantum computing

@ response R(w) < probability for events at fixed w

@ exclusive x-sec — events with specific final states

IDEA: prepare the following state on QC
@) = >0 VRW) |w) @ |¢h)

e measurement of first register returns w with probability R(w)!
@ after measurement, the second register contains final states at w!

Difficult to prepare |®) but we can
prepare instead the following state

12a) = Y VRAW) w) ® |)

with Ra is an integral transform of the
response with energy resolution A

— Gaussian
— Fejer

AR & Carlson PRC(2019), AR PRA(2020)
Y



Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times

Alessandro Roggero Quantum Computing for NP 11/16



Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times

image adapted from Google Al

101
@
2
©
ko
> FE o= e e mm mm mm Em Em mm m e mm = o o
§ 10 Error correction threshold
o
2
F= 103 .
£ Patp
= Classically Near-term Usefulte;rcgc
104 simulatable applications CONECE

| | | | | | | | |
100 10° 102 103 104 108 106 107 108
Number of Qubits

Alessandro Roggero Quantum Computing for NP 11/16



Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times

image adapted from Google Al

10
[)
o
©
ko
2 = LAV e e e e e e e e e e e e = = = = -
§ 10 Error correction threshold
@
g
F= 103
£ Useful error
T Classically Near-term e
104 simulatable applications corrected Q

| | | | | | | | |
100 10° 102 103 104 108 106 107 108
Number of Qubits

Alessandro Roggero Quantum Computing for NP 11/16



Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times

image adapted from Google Al

101
@
2
©
ko
o - LV . . . - - - - — — - — = = = = —
§ 10 Error correction threshold
o
2
F= 103 .
£ Patp
= Classically Near-term Useful‘e;rcgc
104 simulatable applications CONECE

| | | | | | | | |
100 10° 102 103 104 108 106 107 108
Number of Qubits

Alessandro Roggero Quantum Computing for NP 11 /16



Prospects of impact of QC on Nuclear Physics

AR, Li, Carlson, Gupta, Perdue PRD(2020)

Cost estimates for realistic response in medium mass nuclei

We need ~ 4000 qubits and push the gate buttons ~ 106 — 10 times

image adapted from Google Al
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o Still possible to optimize further (other encodings need ~ 500 qubits)
@ Insights for classical methods could come before we have a large QC!
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Nuclear reactions in a semiclassical approach

Turro, Chistolini, Hashim, King, Livingston, Wendt, Dubois, Pederiva, Quaglioni, Santiago, Siddiqi (2023)
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Neutrino oscillations in astrophysical environments

Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, ...
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Nuclear dynamics with quantum (inspired) computing?

We can prepare the following state

1Ba) =) VERAW) |w) @ [th)

with R is an integral transform of the
response with energy resolution A

— Gaussian
— Fejer

AR & Carlson PRC(2019), AR PRA(2020)

@ Gaussian approach uses the fact that Chebyshev polynomials can be
evaluated efficiently on quantum computers (Berry, Childs, Low, Chuang, ... )
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Entanglement structure in nuclei

Robin, Savage, Pillet PRC(2021)
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Summary & Conclusions

@ Advances in theory and computing are opening the way to ab-initio
calculation of equilibrium properties in the medium-mass region

@ New ideas are needed to study nuclear dynamics in large open-shell
nuclei, out-of-equilibrium processes and QCD at finite

@ Quantum Computing has the potential to bridge this gap and
increasingly better experimental test-beds are being built

@ Error mitigation techniques will be critical to make the best use of
these noisy near-term devices

o Early impact of QC on nuclear physics might come as insights into
classical many-body methods and the role of entanglement

Alessandro Roggero Quantum Computing for NP 16 /16



