Cluster Effective Field Theory calculation of electromagnetic breakup reactions with Lorentz Integral Transform method

Ylenia Capitani¹

Elena Filandri² Chen Ji³ Giuseppina Orlandini¹ Winfried Leidemann¹

¹Università di Trento and INEN-TIEPA. Trento. Italy ²Università di Pisa and INEN. Pisa. Italy ³Central China Normal University, Wuhan, China

rento Institute for Fundamental Physics and Applications

TNPI2023 - XIX Conference on Theoretical Nuclear Physics in Italy Cortona, 11 October 2023

$$\gamma + {}^{9}\text{Be} \rightarrow \alpha + \alpha + n$$

Study of the reaction of *astrophysical interest* in the **low-energy regime**:

- ⁹Be 3-body (lpha lpha n) binding energy
- Cross section

[Arnold et al. (2012)]

Outline

1 Model

• Potentials from Effective Field Theory (EFT)

2 Method

- Bound-state problem: variational and Non-Symmetrized Hyperspherical Harmonics (NSHH) method
- Continuum problem: Lorentz Integral Transform (LIT) method

3 Application

- J_{1-body} -calculation
- Siegert-calculation
- Results

Model

- Effective particles: nucleons and α -particles
- Interaction: potential models from Effective Field Theory (EFT) [Hammer et al. (2017)]

```
Cluster-EFT approach: why?

<sup>9</sup>Be binding B_3 \approx 1.573 MeV << \alpha binding (\approx 20 MeV)

\downarrow^{\downarrow} shallow binding
```

 \Rightarrow ^9Be is a 3-body effective clustering system in the low energy regime

 $\Rightarrow \ \ \mathsf{Separation} \ \mathsf{of} \ \mathsf{scales} \rightarrow \mathsf{EFT} \ \mathsf{approach}$

```
momentum scales: M_{low}, M_{high}

\downarrow

EFT expansion in \left(\frac{M_{low}}{M_{high}}\right)^{\nu}

\downarrow

error estimate
```


P. Mueller/Argonne National Lab

2-Body Effective Potentials

Potentials from EFT

Effective *non-local* potential in momentum space and in the partial wave ℓ

$$\mathcal{V}_{\ell}(p,p') = \left[\begin{array}{cc} \lambda_{0} & + & \lambda_{1} & (p^{2}+p'^{2}) \end{array}
ight] p^{\ell} p'^{\ell} g(p) g(p') \,, \qquad g(p) = e^{-(rac{p}{\Lambda})^{2m}} \qquad (m=1,2)$$

- We calculate the on-shell \mathcal{T} -matrix solving the Lippmann-Schwinger equation (on-shell: p = p' = k)
- We compare term by term the calculated \mathcal{T} -matrix with its Effective Range Expansion up to terms $\mathcal{O}(k^2)$ $\Rightarrow \lambda_i = \lambda_i(a_\ell, r_\ell, \Lambda)$
- For every fixed value of the cut-off Λ , we determine the LECs using the experimental values a_{ℓ}^{exp} and r_{ℓ}^{exp}

$$\lambda_i = \lambda_i(a_\ell^{exp}, r_\ell^{exp}, \Lambda)$$

The effective potentials $\mathcal{V}_{\ell}^{\alpha n}(p, p')$ and $\mathcal{V}_{\ell}^{\alpha \alpha}(p, p')$ reproduce the correct low-energy phase-shifts

Model Method

Potentials from EFT

Application

αn

Calculations: LO, LO + $\mathcal{V}_{S_{1/2}}^{\alpha n}$

Variational and NSHH method LIT method

Method

Bound-state problem:

the variational method with a Non-Symmetrized Hyperspherical Harmonics (NSHH) basis

[Gattobigio et al. (2011), Deflorian et al. (2013)]

• $\hat{\mathcal{H}}$ is represented on a suitable basis in momentum space

$$\Psi = \sum_{\nu} c_{\nu} \Psi_{\nu} \equiv \sum_{m\{K\}} c_{m\{K\}} f_{m}(Q) \qquad \begin{array}{c} \Psi_{\{K\}}(\Omega_{Q}) \\ \uparrow \\ Laguerre polynomials \end{array} \qquad \begin{array}{c} \uparrow \\ HH \text{ functions} \end{array}$$

• $\hat{\mathcal{H}}$ is diagonalized

$$\sum_{
u'} \langle \Psi_{
u} | \hat{\mathcal{H}} | \Psi_{
u'}
angle c_{
u'} = E c_{
u} \qquad E_0, \{ c_{
u}^0 \} \Rightarrow \Psi_0$$

 $\bullet~$ Convergence is reached enlarging the dimension of the basis (${\cal K}_{\rm max}$, ${\cal N}_{\rm lag})$

Variational and NSHH metho LIT method

Method

Continuum problem:

the Lorentz Integral Transform (LIT) method [Efros et al. (2007)]

Electromagnetic inclusive reactions

Cross section

 $\sigma_{\mathsf{EM}} \propto \mathcal{R}(\omega)$

Response function

$$\mathcal{R}(\omega) = \int df \, | \langle \Psi_f | \hat{\mathcal{O}} | \Psi_0
angle \, |^2 \, \delta(E_f - E_0 - \omega)$$

 $\mathcal{R}(\omega)$: states in the continuum spectrum are involved $(\hat{\mathcal{H}} \ket{\Psi_f} = E_f \ket{\Psi_f})$

 \Rightarrow direct calculation is DIFFICULT To overcome this problem we use an integral transform approach

Variational and NSHH metho LIT method

Method

Continuum problem:

the Lorentz Integral Transform (LIT) method [Efros et al. (2007)]

• We define an Integral Transform $\mathcal{L}(\sigma)$ of the response function $\mathfrak{R}(\omega)$, with a Lorentzian kernel $\mathfrak{K}(\sigma,\omega)$

$$\mathcal{L}(\sigma) = \int d\omega \, \mathcal{K}(\sigma,\omega) \, \mathcal{R}(\omega) \,, \qquad \qquad \mathcal{L}(\sigma) \xrightarrow{\mathsf{INVERSION}} \mathcal{R}(\omega)$$

• It can be demonstrated that $\mathcal{L}(\sigma) = \langle \tilde{\Psi} | \tilde{\Psi} \rangle$, where the LIT states $| \tilde{\Psi} \rangle$ can be calculated using bound-state methods

J1-calculation Siegert-calculation Results

Application:
$$\gamma + {}^{9}\text{Be} \rightarrow \alpha + \alpha + n$$

Y. Capitani Cluster EFT calculation of EM breakup reactions with LIT method

Model	J1-calculation
Method	
Application	

$$\mathcal{R}_{\gamma}(\omega) \sim \langle \Psi_f | \hat{m{\epsilon}}_{m{q},\lambda} \cdot m{J}(m{q}) | \Psi_0
angle$$

Multipole decomposition: $\hat{\boldsymbol{\epsilon}}_{\boldsymbol{q},\lambda} \cdot \boldsymbol{J}(\boldsymbol{q}) \equiv J_{\lambda}(\boldsymbol{q}) = -\sum_{J} \sqrt{2\pi(2J+1)} \left[\mathcal{T}^{\mathsf{E}}_{J\lambda}(\boldsymbol{q}) + \lambda \mathcal{T}^{\mathsf{M}}_{J\lambda}(\boldsymbol{q}) \right]$

$$\mathcal{T}_{J\lambda}^{\mathsf{E}}(\boldsymbol{q}) \propto \int d\hat{\boldsymbol{q}'} \left(\hat{\boldsymbol{q}'} \times \boldsymbol{Y}_{JJ1}^{\lambda}(\hat{\boldsymbol{q}'}) \right) \cdot \boldsymbol{J}(\boldsymbol{q'})$$
 Dominant: $EJ = E1$

1. " J_{1-body} "-calculation

• The Nuclear Current operator is a sum of terms

$$J = J_{1-body} + J_{2-body} + \dots$$

We use only the one-body term J_{1-body} i.e. the Nuclear Convection current [Filandri (2022)].

• Specifically with our EFT, the continuity equation is not fully satisfied.

 Model
 J1-calculation

 Method
 Siegert-calculation

 Application
 Results

$$\mathcal{R}_{\gamma}(\omega) \sim \langle \Psi_f | \hat{m{\epsilon}}_{m{q},\lambda} \cdot m{J}(m{q}) | \Psi_0
angle$$

Multipole decomposition: $\hat{\boldsymbol{\epsilon}}_{\boldsymbol{q},\lambda} \cdot \boldsymbol{J}(\boldsymbol{q}) \equiv J_{\lambda}(\boldsymbol{q}) = -\sum_{J} \sqrt{2\pi(2J+1)} \left[\mathcal{T}^{\mathsf{E}}_{J\lambda}(\boldsymbol{q}) + \lambda \mathcal{T}^{\mathsf{M}}_{J\lambda}(\boldsymbol{q}) \right]$

$$\mathcal{T}_{J\lambda}^{\mathsf{E}}(\boldsymbol{q}) \propto \int d\hat{\boldsymbol{q}'} \left(\hat{\boldsymbol{q}'} \times \boldsymbol{Y}_{JJ1}^{\lambda}(\hat{\boldsymbol{q}'}) \right) \cdot \boldsymbol{J}(\boldsymbol{q'})$$
 Dominant: $EJ = E1$

2. "Siegert"-calculation

• Continuity equation:
$$\omega \rho(\boldsymbol{q}) - \boldsymbol{q} \boldsymbol{J}(\boldsymbol{q}) = 0$$

$$\mathcal{T}_{J\lambda}^{\mathsf{E}}(q) \propto \int d\hat{q'} Y_{\lambda}^{J}(\hat{q'}) \rho(q') + ext{correction} \equiv \text{"Siegert operator"} + ext{correction}$$

• In the cluster framework: Charge op. $\rho(\mathbf{x}) = \sum_{i} 2e \, \delta^3(\mathbf{x} - \mathbf{r}_{\alpha_i})$, Dipole op. $\mathbf{D} \equiv 2e \sum_{i} \mathbf{r}_{\alpha_i}$ $(i = 1, \dots, N_{\alpha})$

$$\mathcal{R}_{\gamma}(\omega) \sim \langle \Psi_f | oldsymbol{D} | \Psi_0
angle$$

 Model
 J1-calculation

 Method
 Siegert-calculation

 Application
 Results

$$\mathcal{R}_{\gamma}(\omega) \sim \langle \Psi_{f} | \hat{m{\epsilon}}_{m{q},\lambda} \cdot m{J}(m{q}) | \Psi_{0}
angle$$

$$J = J_{1-body} + J_{2-body} + \dots$$

1. " J_{1-body} "-calculation $J = J_{1-body}$ 2. "Siegert"-calculation $\langle \Psi_f | D | \Psi_0 \rangle$ (p-space calculation)(r-space calculation)

Which is the main difference?

Having used the continuity equation explicitly, "Siegert"-calculation ensures that, at low energy, the **matrix element of the Dipole operator** contains the contribution also of the currents beyond J_{1-body} (J_{2-body} and J_{3-body}).

The "Siegert"-calculation in connection with the " J_{1-body} "-calculation provides a way to study the contributions to the cross section due to the currents beyond J_{1-body} .

Model J1-calculation Method Siegert-calculation Application Results

$$\gamma + {}^{9}\text{Be} \rightarrow \alpha + \alpha + n$$
 $|0\rangle : J^{\pi} = 3/2^{-} \rightarrow |f\rangle : J^{\pi} = 1/2^{+}$

LIT: convergence studies

 $\mathsf{Basis} \sim f_m(\mathcal{Q}) \ \forall_{\{K\}}(\Omega_{\mathcal{Q}}) \quad (m = 1, \ldots, \ \mathsf{N}_{\mathsf{lag}} \ , \ K = 1, \ldots, \ \mathsf{K}_{\mathsf{max}} \)$

Model J1-calculation Method Siegert-calcula Application Results

LO: J_{1-body} -calculation

Method Application Results

LO: Siegert-calculation

J1-calculation Siegert-calculation Results

LO + $S_{1/2}$: Siegert-calculation

 $\mathcal{V}^{\alpha \, n}_{\mathcal{S}_{1/2}}$: we use cut-offs $\Lambda > 100 \text{ MeV}$

We add a projection potential in order to "project out" the αn deep bound state

$$\mathcal{V}_{\Gamma}(\pmb{p},\pmb{p}') = \psi_{\mathcal{S}_{1/2}}(\pmb{p}) \, rac{\Gamma}{2(4\pi)} \, \psi_{\mathcal{S}_{1/2}}(\pmb{p}')$$

Theoretically: $\Gamma \to \infty$ In practice: Γ -independence of the results Model J1-calculation Method Siegert-calculation Application Results

LO + $S_{1/2}$: Siegert-calculation (preliminary)

 Model
 J1-calculation

 Method
 Siegert-calculation

 Application
 Results

LO + $S_{1/2}$: J_{1-body} -calculation (preliminary)

Summary

- Potentials from Effective Field Theory
- Bound states calculations
- Lorentz Integral Transform calculations

What's next?

• $\gamma + {}^{9}\text{Be} \rightarrow \alpha + \alpha + n$ $J^{\pi} = 5/2^{+}, 3/2^{+}$ contributions to σ_{γ} • $\gamma + {}^{12}\text{C} \rightarrow \alpha + \alpha + \alpha$ (E2 transition: 2^{+} bound $\rightarrow 0^{+}$ resonant-state)

Summary

- Potentials from Effective Field Theory
- Bound states calculations
- Lorentz Integral Transform calculations

What's next?

• $\gamma + {}^{9}\text{Be} \rightarrow \alpha + \alpha + n$ $J^{\pi} = 5/2^{+}, 3/2^{+}$ contributions to σ_{γ} • $\gamma + {}^{12}\text{C} \rightarrow \alpha + \alpha + \alpha$ (E2 transition: 2⁺ bound $\rightarrow 0^{+}$ resonant-state)

Thank You!