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γ + 9Be → α + α + n

Study of the reaction of astrophysical interest
in the low-energy regime:

9Be 3-body (ααn) binding energy

Cross section
[Arnold et al. (2012)]

Y. Capitani Cluster EFT calculation of EM breakup reactions with LIT method 1



Outline

1 Model
Potentials from Effective Field Theory (EFT)

2 Method
Bound-state problem: variational and Non-Symmetrized Hyperspherical Harmonics (NSHH) method
Continuum problem: Lorentz Integral Transform (LIT) method

3 Application
J1-body-calculation
Siegert-calculation
Results

Y. Capitani Cluster EFT calculation of EM breakup reactions with LIT method 2



Model
Method

Application
Potentials from EFT

Model
Effective particles: nucleons and α-particles
Interaction: potential models from Effective Field Theory (EFT) [Hammer et al. (2017)] P. Mueller/Argonne National Lab

Cluster-EFT approach: why?
9Be binding B3 ≈ 1.573 MeV << α binding (≈ 20 MeV)

↓
shallow binding

⇒ 9Be is a 3-body effective clustering system in the low energy regime

⇒ Separation of scales → EFT approach

momentum scales: Mlow , Mhigh
↓

EFT expansion in
( Mlow

Mhigh

)ν

↓
error estimate
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2-Body Effective Potentials
Effective non-local potential in momentum space and in the partial wave ℓ

Vℓ(p, p′) =
[
λ0 + λ1 (p2 + p′2)

]
pℓp′ℓg(p)g(p′) , g(p) = e−( p

Λ )2m
(m = 1, 2)

We calculate the on-shell T -matrix solving the Lippmann-Schwinger equation (on-shell: p = p′ = k)

We compare term by term the calculated T -matrix with its Effective Range Expansion up to terms O(k2)
⇒ λi = λi (aℓ, rℓ,Λ)

For every fixed value of the cut-off Λ, we determine the LECs using the experimental values aexp
ℓ

and r exp
ℓ

λi = λi (aexp
ℓ
, r exp

ℓ
,Λ)

The effective potentials Vαn
ℓ (p, p′) and Vαα

ℓ (p, p′)
reproduce the correct low-energy phase-shifts
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αn
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LIT method

Method
Bound-state problem:

the variational method with a Non-Symmetrized Hyperspherical Harmonics (NSHH) basis
[Gattobigio et al. (2011), Deflorian et al. (2013)]

Ĥ is represented on a suitable basis in momentum space

Ψ =
∑

ν
cν Ψν ≡

∑
m{K}

cm{K} fm(Q) Y{K}(ΩQ)
↑ ↑

Laguerre polynomials HH functions

Ĥ is diagonalized∑
ν′ ⟨Ψν |Ĥ|Ψν′ ⟩ cν′ = E cν E0, { c0

ν } ⇒ Ψ0

Convergence is reached enlarging the dimension of the basis
(Kmax , Nlag)
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Method
Continuum problem:

the Lorentz Integral Transform (LIT) method [Efros et al. (2007)]

Electromagnetic inclusive reactions

Cross section

σEM ∝ R(ω)

Response function

R(ω) =
∫

df | ⟨Ψf |Ô|Ψ0⟩ |2 δ(Ef − E0 − ω)

R(ω): states in the continuum spectrum are involved (Ĥ |Ψf ⟩ = Ef |Ψf ⟩)
⇒ direct calculation is DIFFICULT

To overcome this problem we use an integral transform approach
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Method
Continuum problem:

the Lorentz Integral Transform (LIT) method [Efros et al. (2007)]

We define an Integral Transform L(σ) of the response function R(ω), with a Lorentzian kernel K(σ, ω)

L(σ) =
∫

dωK(σ, ω)R(ω) , L(σ) INVERSION−−−−−−−−→ R(ω)

It can be demonstrated that L(σ) = ⟨Ψ̃|Ψ̃⟩, where the LIT states |Ψ̃⟩ can be calculated using bound-state
methods

Scattering problem
"continuum problem"

R(ω)

REFORMULATION−−−−−−−−−−−→

Bound-state-like
problem

L(σ) = ⟨Ψ̃|Ψ̃⟩
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Application: γ + 9Be → α + α + n

Photon γ:

A(x), ϵ̂q,λ

ω = |q| |Ψ0⟩ → |Ψf ⟩
transition

Nucleus:

J(x) [FT: J(q)]

Nuclear Current
operator

σγ ∝ Rγ(ω) ∼ ⟨Ψf |ϵ̂q,λ · J(q)|Ψ0⟩

↑
Nuclear Current matrix element

[Bacca and Pastore (2014)]
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Rγ(ω) ∼ ⟨Ψf |ϵ̂q,λ · J(q)|Ψ0⟩

Multipole decomposition: ϵ̂q,λ · J(q) ≡ Jλ(q) = −
∑

J

√
2π(2J + 1)

[
T E

Jλ(q) + λT M
Jλ(q)

]
T E

Jλ(q) ∝

∫
d q̂′

(
q̂′ × Y λ

JJ1(q̂′)
)

· J(q′) Dominant: EJ = E1

1. "J1-body"-calculation
The Nuclear Current operator is a sum of terms

J = J1-body + J2-body + . . .

We use only the one-body term J1-body i.e. the Nuclear Convection current [Filandri (2022)].

Specifically with our EFT, the continuity equation is not fully satisfied.
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Rγ(ω) ∼ ⟨Ψf |ϵ̂q,λ · J(q)|Ψ0⟩

Multipole decomposition: ϵ̂q,λ · J(q) ≡ Jλ(q) = −
∑

J

√
2π(2J + 1)

[
T E

Jλ(q) + λT M
Jλ(q)

]
T E

Jλ(q) ∝

∫
d q̂′

(
q̂′ × Y λ

JJ1(q̂′)
)

· J(q′) Dominant: EJ = E1

2. "Siegert"-calculation
Continuity equation: ωρ(q) − qJ(q) = 0

T E
Jλ(q) ∝

∫
d q̂′ Y J

λ(q̂′) ρ(q′) + correction ≡ "Siegert operator" + correction

In the cluster framework: Charge op. ρ(x) =
∑

i
2e δ3(x − rαi ) , Dipole op. D ≡ 2e

∑
i
rαi (i = 1, . . . , Nα)

Rγ(ω) ∼ ⟨Ψf |D|Ψ0⟩
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Rγ(ω) ∼ ⟨Ψf |ϵ̂q,λ · J(q)|Ψ0⟩

J = J1-body + J2-body + . . .

1. "J1-body"-calculation J = J1-body 2. "Siegert"-calculation ⟨Ψf |D|Ψ0⟩

(p-space calculation) (r-space calculation)

Which is the main difference?

Having used the continuity equation explicitly, "Siegert"-calculation ensures that, at low
energy, the matrix element of the Dipole operator contains the contribution also of the
currents beyond J1-body (J2-body and J3-body).
The "Siegert"-calculation in connection with the "J1-body"-calculation provides a way to
study the contributions to the cross section due to the currents beyond J1-body.
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γ + 9Be → α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

LIT: convergence studies Basis ∼ fm(Q) Y{K}(ΩQ ) (m = 1, . . . , Nlag , K = 1, . . . , Kmax )

Nlag = 30 (σI = 0.2 MeV)
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LO: J1-body-calculation
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LO: Siegert-calculation
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LO + S1/2: Siegert-calculation
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: we use cut-offs Λ > 100 MeV

We add a projection potential in order to "project out"
the αn deep bound state

VΓ(p, p′) = ψS1/2 (p)
Γ

2(4π)
ψS1/2 (p′)

Theoretically: Γ → ∞
In practice: Γ-independence of the results
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LO + S1/2: Siegert-calculation (preliminary)
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LO + S1/2: J1-body-calculation (preliminary)
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Summary

Potentials from Effective Field Theory
Bound states calculations
Lorentz Integral Transform calculations

What’s next?

γ + 9Be → α+ α+ n Jπ = 5/2+ , 3/2+ contributions to σγ

γ + 12C → α+ α+ α (E2 transition: 2+ bound → 0+ resonant-state)
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