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‣ Neutrinos are building blocks of the Standard Model and powerful tools to explore the Universe.

‣ Many years after their discovery in 1956, neutrinos are still mysterious particles:
- we know neutrinos oscillate but we don’t know exactly how 

- are they Dirac or Majorana?

- what are their masses and how are they ordered?

- are there more than three families of neutrinos (sterile )?ν

Motivation: Neutrino Physics

PMNS matrix U encodes 
oscillation parametersPνα→νβ

= ⟨να |νβ(t)⟩
2

= ∑i U*αiUβieim2
i L/2Eν

2

‣ Differences between  and  interactions would signal violation of CP symmetry in the leptonic 
sector which would explain part of the matter/antimatter asymmetry in the Universe.

ν ν

Stephen Dolan INSS, Fermilab, August 2023

The precision era of ! oscillations?

• Indication of CP violation!

• Currently largely limited by 
statistics … but not for long! 

Latest results

Current systematic uncertainties 

Source (         ) !(#!)
%"# and FSI 7.7%
Total Syst. 9.2%

• Tables show largest and 
total syst. uncertainty on 
samples most sensitive 
to CP-violation

• Current results have 
~100 #! events, expect 
1000-2000 for DUNE/HK

Phys. Rev. D 98, 032012

2

Source (         ) !(#!)
%"# and FSI 3.8%
Total Syst. 5.2% − 1.38 (+0.48, -0.54)        IH

− 1.89 (+0.70,-0.58)        NH
  =δCP

 T2K coll., Nature 580 (2020)  

  Recent constraints from T2K experiment 

first indication of CP violation
in the lepton sector



‣ An intense experimental program aims at answering these 
fundamental questions with high precision measurements. 

‣ In particular, in long-baseline oscillation experiments neutrinos 
with ~ GeV energy travel between two detectors situated at ~100s 
Km distance. The appearance or disappearance of  neutrinos of 
given flavour provides information on oscillation parameters. 

‣ Cross sections are extremely small ~ : intense beams and 
large detectors made of medium/heavy nuclei are needed.            
Experimental analyses need nuclear physics input.

10−38 cm2
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Motivation: Neutrino Physics

Intense ongoing and planned experimental program to answer the above questions              
needs nuclear physics input

Neutrinos are also powerful tools to explore the Universe.

In particular, differences between  and  interactions would signal violation of CP symmetry in 
the leptonic sector 
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W Z

Charged Current 
CC

Neutral Current 
NC

- leptonic CP violation
  matter/antimatter asymmetry
-  masses and hierarchy
- precise oscillation angles
- Dirac or Majorana 
- sterile neutrinos?

ν

ν

Goals

Detectors: Carbon, Oxygen,  Argon

The precision era for neutrino oscillation



Long baseline oscillations experiments

Running

Future

Running

Future
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Source (         ) !(#!)
%"# and FSI 3.8%
Total Syst. 5.2%

Systematic uncertainties

dedicated to  
on different nuclei

σνA

Other experiments 
collecting cross section data 

MINERvA

MicroBooNE

J-PARC

Fermi Lab

T2K

HyperK

NOvA

DUNE

largest LArTPC 
detector

Neutrino interaction uncertainties 
dominate the systematic error 
They must be reduced for DUNE 
and HYPERK to succeed



Nνβ (Eν) ∼ ∫ Φνα (Eν) × Pνα→νβ (Eν, L, {θ}) × σνβ (Eν) × ϵdet. × d (Eν, Eν) dEν

Number of detected events: convolution over the true neutrino energy spectrum

 fluxν  cross 
section
ν − A detector 

efficiency
migration 
matrix

oscillation probability

true 
energy

ν

- the neutrino energy  is unknown: 
broad flux distribution,  beams are non monochromatic

Eν
ν

- the neutrino energy is reconstructed from the detected final 
state using event generators: nuclear model dependence

• Different reaction mechanisms contribute

Some crucial points of the accelerator-based  experiment

• The neutrino energy is reconstructed 
from the final states of the reaction
(often from CCQE events)

16

• Neutrino beams are not monochromatic 
(at difference with respect to electron beams) 

T2K

Formaggio, Zeller, 
Rev. Mod. Phys. (2012)

Katori, Martini, J. Phys. G (2018)

M. Martini,  GIF 2022

What they do measure

Φ
Neutrino flux

The problem of flux-integration

reconstructed 
 energyν

Pνα→νβ
= ⟨να |νβ(t)⟩

2
= ∑i U*αiUβieim2

i L/2Eν
2

What experimentalists would like to measure

Oscillation probability 
from flavour  to α β



Nuclear processes

⟨ dσ
dkμdΩμ ⟩ = ∫ dEν Φ(Eν) [ dσ

dkμdΩμ ]
Eν

Due to the flux integration different processes contribute to the same experimental signal and cannot be separated

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Neutrino-nucleus reactions for ν oscillation experiments

Challenges for theoretical nuclear models

! Modeling of nuclear structure giving the initial kinematics and dynamics of bound nucleons
to provide final leptons and hadrons kinematics (full semi-inclusive models) and accurate FSI.
! Expressing the nuclear model to be succesfully incorporated in neutrino event generators.

No clear ID of all
FS particles

⇒ Relevance of 2p2h,
FSI effects, rescatter-
ing processes and π-
production background.

Event topology:
CCQE

CCQE-like = CCQE+CC2p2h
CC0π = CCQE-like with π

absorption background
CC1π
CCDIS

...

82 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data
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100 5. DEEP INELASTIC SCATTERING FORMALISM

Figure 5.2: DIS process for electromagnetic e-p reactions described in terms of inelastic structure
functions (left panel) and of the quark-parton model (right panel).

5.3.1 Extension to the weak sector

The description of the deep-inelastic regime for weak interactions implies the analysis of an ad-
ditional structure function, F3(W3), related to the parity violating contribution associated to the
V − A interference. An accurate determination of this weak function is hard to achieve from neu-
trino experiments as well as from parity-violating electron scattering [131, 132] due to the large
uncertainties associated to the cross section measurements. Nevertheless, within the quark-parton
model, we can establish a relationship among the electromagnetic and weak structure functions
and between F2 and F3 [74, 133, 134]. This is based on the assumption that the corresponding
structure functions Wi can be written in terms of quark Q and antiquark Q distributions [135, 136]

F2 = νW2 = Q + Q (5.49)
F3 = xνW3 = Q − Q (5.50)

and, hence,
xνW3 = νW2 − 2Q . (5.51)

For electron scattering, the isoscalar F2 structure function of the nucleon, defined as the average
of the proton and neutron structure functions, is given (at leading order in αs and for three flavors)
by

FeN
2 =

1
2

(

F
ep
2 + Fen

2

)

=
5x

18

(

u + u + d + d
)

+
x

9
(s + s) , (5.52)

where u(u),d(d) and s(s) are the distributions for the up, down and strange quarks (antiquarks),
respectively. The quark distributions are defined to be those in the proton and the factors 5/18
and 1/9 arise from the squares of the quark charges. For neutrino scattering, the corresponding F2
structure function is given by

FνN
2 = x(u + u + d + d + s + s) , (5.53)

where quark charges are not considered. In the moderate and large-x region, where strange quarks
are suppressed, the weak and electromagnetic F2 structure functions approximately satisfy,

FeN
2 ≈

5x

18

(

u + u + d + d
)

≈
5

18
FνN

2 . (5.54)

Under this assumption, which has been analyzed in connection with experimental results [135,
137–139], one can readily obtain the weak structure functions from the existing parametrization of
the electromagnetic structure functions and the antiquark distribution.1

1In this work, the inelastic cross sections are only calculated and compared with data for electromagnetic reactions.
Their extension to the weak sector and the construction of the appropriate isoscalar and isovector contributions needed
for CC and NC neutrino reactions will be accounted for in further works.

QE 
elastic interaction with a 

bound nucleon

 RES 
resonance 
production

DIS 
deep inelastic scattering 
interaction with quarks

2p2h 
interaction with a pair of 

correlated nucleons 
Meson Exchange Currents

Nuclear models are implemented in Monte Carlo generators (GENIE, NEUT, NUWRO, GIBUU)

flux-averaged cross section

‣ In principle a generator should 
contain consistent models valid 
across the full spectrum.

‣ In practice tunings to specific data 
are performed, often hiding the 
correct physics.

νμ

μ−

νμ + A → μ− + X



A prominent example: the “MA puzzle”
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The inclusion of 2p2h contributions in 
the nuclear model explains the data 
without need of increasing the axial mass

B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, d!

dQ2
QE
, has also been measured and is shown in

Fig. 14. The quantityQ2
QE is defined in Eq. (2) and depends

only on the (unfolded) quantities T" and cos#". It should
be noted that the efficiency for events with T" < 200 MeV
is not zero because of difference between reconstructed
and unfolded T". The calculation of efficiency for these

(low-Q2
QE) events depends only on the model of the detec-

tor response, not on an interaction model and the associ-
ated uncertainty is propagated to the reported results.

In addition to the experimental result, Fig. 14 also
shows the prediction for the CCQE process from the
NUANCE simulation with three different sets of parameters
in the underlying RFG model. The predictions are abso-
lutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assuming
both the world-averaged CCQE parameters (MA ¼
1:03 GeV, $ ¼ 1:000) [9] and the CCQE parameters ex-
tracted from this analysis (MA ¼ 1:35 GeV, $ ¼ 1:007) in
a shape-only fit. The model using the world-averaged
CCQE parameters underpredicts the measured differential
cross section values by 20%–30%, while the model using
the CCQE parameters extracted from this shape analysis
are within" 8% of the data, consistent within the normal-
ization error ( " 10%). To further illustrate this, the model
calculation with the CCQE parameters from this analysis
scaled by 1.08 is also plotted and shown to be in good
agreement with the data.

C. Flux-unfolded CCQE cross section as a function of
neutrino energy

The flux-unfolded CCQE cross section per neutron

!½EQE;RFG
% $, as a function of the true neutrino energy

EQE;RFG
% , is shown in Fig. 15. These numerical values are

tabulated in Table X in the appendix. The quantity EQE;RFG
%

is a (model-dependent) estimate of the neutrino energy
obtained after correcting for both detector and nuclear
model resolution effects. These results depend on the de-
tails of the nuclear model used for the calculation. The
dependence is only weak in the peak of the flux distribution
but becomes strong for E% < 0:5 GeV and E% > 1:2 GeV,
i.e., in the ‘‘tails’’ of the flux distribution.

In Fig. 15, the data are compared with the NUANCE

implementation of the RFG model with the world average
parameter values, (Meff

A ¼ 1:03 GeV, $ ¼ 1:000) and with
the parameters extracted from this work (Meff

A ¼
1:35 GeV, $ ¼ 1:007). These are absolute predictions
from the model (not scaled or renormalized). At the aver-
age energy of the MiniBooNE flux ( " 800 MeV), the
extracted cross section is " 30% larger than the RFG
model prediction with world average parameter values.
The RFG model, with parameter values extracted from

the shape-only fit to this data better reproduces the data
over the entire measured energy range.
Figure 15(b) shows these CCQE results together with

those from the LSND [56] and NOMAD [10] experiments.
It is interesting to note that the NOMAD results are better
described with the world average Meff

A and $ values. Also
shown for comparison in Fig. 15(b) is the predicted cross
section assuming the CCQE interaction occurs on free
nucleons with the world average MA value. The cross
sections reported here exceed the free nucleon value for
E% above 0.7 GeV.

D. Error summary

As described in Sec. IVE, (correlated) systematic and
statistical errors are propagated to the final results. These
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FIG. 15 (color online). Flux-unfolded MiniBooNE %" CCQE
cross section per neutron as a function of neutrino energy. In (a),
shape errors are shown as shaded boxes along with the total
errors as bars. In (b), a larger energy range is shown along with
results from the LSND [56] and NOMAD [10] experiments.
Also shown are predictions from the NUANCE simulation for an
RFG model with two different parameter variations and for
scattering from free nucleons with the world-average MA value.
Numerical values are provided in Table X in the appendix.

TABLE IV. Contribution to the total normalization uncertainty
from each of the various systematic error categories.

source normalization error (%)

neutrino flux prediction 8.66
background cross sections 4.32
detector model 4.60
kinematic unfolding procedure 0.60
statistics 0.26
total 10.7

A. A. AGUILAR-AREVALO et al. PHYSICAL REVIEW D 81, 092005 (2010)

092005-16

MiniBooNE, PRD 81 (2010)

The MiniBooNE neutrino-carbon data 
analysed using the relativistic Fermi gas 
model asked for an axial mass =1.35 GeV 
larger than the standard value of 1 GeV

MA



Experimental collaborations present results in terms of final state topology
Inclusive    CC0   cross section = no pions in the final state νμ −12C π

A. Branca et al.,  
Symmetry 13 (2021)

‣ A quite large spread between  theory 
predictions is observed

‣ All results agree on the important role of two-
body currents (2p2h excitations)

‣ However, there are discrepancies between 
2p2h models implemented in generators 

‣ The present experimental precision is not 
sufficient to discriminate between models

‣ Further constraints can be obtained from:
1. validation versus other data: electron 

scattering 
2. comparison with more exclusive data, 

involving the final hadronic variables, now 
available from T2K, MINERvA, MicroBooNE

Model comparison in the QE channel
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FIG. 2. 2p2h cross sections (in units of cm2) in bins of energy (q0) and momentum (q3) transfer for muon-neutrino interactions on
carbon for different models. The top left is the GENIE empirical model, the top right is the implemented SuSAv2 2p2h prediction and
the lower plot is the GENIE implementation of the Valencia model (where the 1.2 GeV cutoff in the model discussed in the text is clear).
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FIG. 3. A comparison of 2p2h double-differential cross sections in muon momentum for two different angular slices for muon-
neutrino interactions on carbon for different models, split by the contribution from the different initial state correlated pairs: neutron-
neutron (nn) or neutron-proton (np). The left plots are from the GENIE empirical model, the center are from the implemented SuSAv2
prediction and the right plots are from the GENIE implementation of the Valencia model.
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the lower plot is the GENIE implementation of the Valencia model (where the 1.2 GeV cutoff in the model discussed in the text is clear).
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FIG. 3. A comparison of 2p2h double-differential cross sections in muon momentum for two different angular slices for muon-
neutrino interactions on carbon for different models, split by the contribution from the different initial state correlated pairs: neutron-
neutron (nn) or neutron-proton (np). The left plots are from the GENIE empirical model, the center are from the implemented SuSAv2
prediction and the right plots are from the GENIE implementation of the Valencia model.

IMPLEMENTATION OF THE SuSAv2-MESON EXCHANGE … PHYS. REV. D 101, 033003 (2020)

033003-5

 (MeV/c)
3

q
0 200 400 600 800 1000 1200 1400 1600 1800 2000

 (
M

eV
)

0q

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

42−10×

 (MeV/c)
3

q
0 200 400 600 800 1000 1200 1400 1600 1800 2000

 (
M

eV
)

0q

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

42−10×

 (MeV/c)
3

q
0 200 400 600 800 1000 1200 1400 1600 1800 2000

 (
M

eV
)

0q

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

42−10×

FIG. 2. 2p2h cross sections (in units of cm2) in bins of energy (q0) and momentum (q3) transfer for muon-neutrino interactions on
carbon for different models. The top left is the GENIE empirical model, the top right is the implemented SuSAv2 2p2h prediction and
the lower plot is the GENIE implementation of the Valencia model (where the 1.2 GeV cutoff in the model discussed in the text is clear).

 (MeV/c)
µ

p
0 100 200 300 400 500 600 700 800 900 1000

)
-1

 M
eV

-1
 N

uc
l.

2
 (

cm
µθ

dc
os

µ
dp

σ2 d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
42−10×

Total 2p2h
nn
np

) < 0.7µθ0.6 < cos(

 (MeV/c)
µ

p
0 100 200 300 400 500 600 700 800 900 1000

)
-1

 M
eV

-1
 N

uc
l.

2
 (

cm
µθ

dc
os

µ
dp

σ2 d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
42−10×

) < 0.7µθ0.6 < cos(

 (MeV/c)
µ

p
0 100 200 300 400 500 600 700 800 900 1000

)
-1

 M
eV

-1
 N

uc
l.

2
 (

cm
µθ

dc
os

µ
dp

σ2 d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
42−10×

) < 0.7µθ0.6 < cos(

 (MeV/c)
µ

p
0 200 400 600 800 1000 1200 1400

)
-1

 M
eV

-1
 N

uc
l.

2
 (

cm
µθ

dc
os

µ
dp

σ2 d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
42−10×

) < 0.94µθ0.9 < cos(

Total 2p2h
nn
np

 (MeV/c)
µ

p
0 200 400 600 800 1000 1200 1400

)
-1

 M
eV

-1
 N

uc
l.

2
 (

cm
µθ

dc
os

µ
dp

σ2 d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
42−10×

) < 0.94µθ0.9 < cos(

 (MeV/c)
µ

p
0 200 400 600 800 1000 1200 1400

)
-1

 M
eV

-1
 N

uc
l.

2
 (

cm
µθ

dc
os

µ
dp

σ2 d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
42−10×

) < 0.94µθ0.9 < cos(

FIG. 3. A comparison of 2p2h double-differential cross sections in muon momentum for two different angular slices for muon-
neutrino interactions on carbon for different models, split by the contribution from the different initial state correlated pairs: neutron-
neutron (nn) or neutron-proton (np). The left plots are from the GENIE empirical model, the center are from the implemented SuSAv2
prediction and the right plots are from the GENIE implementation of the Valencia model.

IMPLEMENTATION OF THE SuSAv2-MESON EXCHANGE … PHYS. REV. D 101, 033003 (2020)

033003-5

Empirical SuSAv2 Valencia

2p2h models  in GENIE [S. Dolan et al.,  PRD101 (2020)]

CC0  π



  Many high quality inclusive electron scattering data exist (Saclay, Bates, Mainz, Nikhef, JLab) 

‣ Nuclear effects in e-A and  -A  are identical, in both initial and final state. 

‣ necessary test for any model for neutrino-nucleus cross sections used in MC generators
‣ can also be used as input to predict neutrino cross sections

‣ Two sources of difference between electron-nucleus and neutrino-nucleus cross sections
      1. different experimental conditions: monochromatic electron beams versus broadly distributed  beams
 
    2. different couplings and currents: the weak cross section has a more complex structure than the 
electromagnetic one due to the presence of the axial current

ν

ν

2 response functions

[ dσ
dkμdΩμ ]

(νμ,μ)

±

= σ0 (VCCRCC + 2VCLRCL + VLLRLL + VT RT ± VT′ RT′ )

[ dσ
dkedΩe ]

(e,e′ )

= σMott (VLRem
L + VT Rem

T )

5 response functions

Inclusive l-A cross section

What we can learn from electron scattering

dσ
dkldΩl

∼ ημνWμν contraction of leptonic and hadronic tensors



2. Use f to predict the neutrino scattering cross section  as  

         

(ν, l)

[d2σ/dωdΩ](ν,l) =
1
kF

σνN f(ψ)

1. Start from the reduced (e,e’) cross section defined as

and plot it as function of a suitable variable  for different kinematics (q) and nuclei 

f(q, ω; kF) = kF ×
[d2σ/dωdΩ](e,e′ )

exp

σeN

ψ ≡ ψ (q, ω; kF) (kF)

Super Scaling Approach

‣ The scaling function f encodes the nuclear dynamics, in both the initial and final state, for different 
kinematics and nuclei. Superscaling sets stringent constraints to nuclear models, which must reproduce it.

‣ The analysis of separated L and T data has shown that scaling violations mainly occur in the transverse 
channel and arise from non-QE processes:  production and 2p2h excitationsΔ

QEP QEP

f f Ee = 3.6 GeV, θ = 15 deg

C, Al, Fe, Au

ψ ψ

different kinematics

scaling of first kind scaling of second kind

f(q, ω; kF) → f(ψ)
Very well realised by data in 
the region below the QEP

 and 400 MeV ω < Q2/2mN q ≳

SuperScaling: 
the scaling function f depends 
on only one scaling variable ψ

Day et al., ARNPS 40 (1990); 
Donnelly and Sick, PRL82 (1999)



Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Theoretical description: RMF and SuSAv2 models

The SuSAv2 model PRC90, 035501 (2014) PRD94, 013012 (2016)

! SuSAv2 model: lepton-nucleus reactions adressed within the SuperScaling Approach and
the sophisticated Relativistic Mean Field (RMF) theory (FSI) to determine theoretical scaling
functions that reproduce nuclear dynamics. Complete set of scaling functions for all lepton-
nucleus reaction channels (EM, weak, L/T, isovector/isoscalar, V/A).

! RMF: Good description of the QE (e, e′) data and superscaling properties (f ee′

L,exp)
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SuSAv2 model (microscopic)
‣ based on Relativistic Mean Field calculation
‣ a set of scaling functions in L,T and isospin channels 
‣  in agreement with L/T separated (e,e’) data
‣ parameters fitted once and for all to carbon data

fT > fL

Amaro et al.,  PRC71 (2005)

Gonzalez-Jimenez et al., PRC90 (2014)

SuSAv2

SuSA

The superscaling approach describes simultaneously electron and neutrino scattering 

SuSA model (phenomenological)
‣ one scaling function extracted from longitudinal (e,e’) data
‣ great improvement on the Relativistic Fermi Gas result (free 

relativistic nucleon correlated only by the Pauli principle)
‣ it is assumed that  (assumption, true in RFG)fL = fT

SuSA and SuSAv2

The scaling function f can be extracted from longitudinal data or calculated within a model.  



The nucleon wave functions are finite nucleus solutions 
of the Dirac equation with relativistic scalar and vector 
potentials obtained from a Walecka-type Lagrangian 
fitted to properties of nuclear radii and masses: 

                         (iγμ∂μ − M − S + V ) ψ ( ⃗r, t) = 0

The Relativistic Mean Field Approach (RMF)
Large scalar (attractive) and vector (repulsive) potentials that lead to saturation. Nonlocalities
& correlation effects accounted for by the RMF? Important difference with non-relativistic
models
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Seattle, 06/12/2016 – p. 5

Important terminology
RELATIVISTIC DISTORTED WAVE IMPULSE APPROXIMATION (RDWIA)
Relativistic distorted (Dirac) wave functions,ΨB ,ΨF and the relativistic nucleon current operator Jµ

p .

RELATIVISTIC PLANE WAVE IMPULSE APPROXIMATION (RPWIA)

Final State Interactions neglected=⇒ΨF -relativistic plane wave (u-Dirac spinor)

Bound Wave Function: ΨB =





φup

φdown



 =





φup

σ·p

E+M+S−V
φup



 = αu+ βv

i.e. ΨB includes negative energy components=⇒ coupling to Dirac sea

PLANE WAVE IMPULSE APPROXIMATION (PWIA)
Negative Energy Components inΨB are projected out
=⇒ Nuclear dynamics and electron-proton
interaction are decoupled. The cross section factorizes:

dσ

dΩedεfdΩp
= Kf−1

recσ
epN(p)

withN(p)-single-particle momentum distribution and σep-single-proton cross section:

σep ∼ ηµνW
µν = ηµν

{

∑

sisf

[

u(pf , sf )J
µ
p u(pi, si)

]

∗
[

u(pf , sf )J
ν
p u(pi, si)

]

}

γ

Q

e'

e

P
A

P
A-1

P
N

σ
eN

~

S

µ

µ

µ

µ

PWIA

~

Seattle, 06/12/2016 – p. 8

Bound wave function

The ejected nucleon wave function is distorted by FSI with the residual nucleus.
It is a scattering solution of the Dirac equation with the same potentials used to describe the bound state.
Orthogonality is preserved: the initial and final nucleons are eigenstates of the same Hamiltonian.

The model: Relativistic Impulse Approximation (RIA)

Nuclear Current =⇒ One-body operator
Jµ
N(ω, "q) =

∫
d"p ΨF ("p+ "q)Ĵµ

NΨB("p)

Scattering off a nucleus=⇒ incoherent sum of single–nucleon scattering

processes
Seattle, 06/12/2016 – p. 3

FSI

The model: Relativistic Impulse Approximation (RIA)

Nuclear Current =⇒ One-body operator
Jµ
N(ω, "q) =

∫
d"p ΨF ("p+ "q)Ĵµ

NΨB("p)

Scattering off a nucleus=⇒ incoherent sum of single–nucleon scattering

processes
Seattle, 06/12/2016 – p. 3

The RMF model is based on the impulse approximation (IA): 
scattering off a nucleus = incoherent sum of single nucleon scattering processes.

S

V

Scattered wave function

Relativistic Mean Field



“Seagull” or “contact” “Pion in flight”

Two-body currents in free space

“Pion pole” 
(only for neutrinos, 
purely axial)

De Pace et al., Nucl.Phys. A726 (2003)   EM
Ruiz Simo et al., J.Phys. G44 (2017)       WEAK

“  pole” (dominant)Δ

off-shell pion

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

2p-2h MEC for (e, e ′) and CC ν reactions PRD91, 073004 (2015)

! The 2p-2h model is based on the calculation performed by De Pace et al., (2003) for (e, e′)
scattering and extended to the weak sector by Amaro, Ruiz Simo et al. [PRD 90, 033012 (2014);
PRD 90, 053010 (2014); JPG 44, 065105 (2017); PLB 762, 124 (2016)].

! The numerical evaluation of the hadronic tensor W µν
2p2h is performed in the RFG model in a

fully relativistic way without any approximation.

! It is computationally non-trivial and involves 7D integrals of thousands of terms (+1 for

ν-flux) ⇒ High increase of the computing time of R2p2h
K ⇒ Parametrization

! Separation into pp, nn and np pairs in the FS ⇒ also valid for N "= Z (40Ar, 56Fe, 208Pb)

16 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

“Seagull” or “contact” “Pion in flight”

Two-body currents in free space

Meson-exchange currents: the role of 2p2h excitations

Meson-exchange currents: the 2p2h response

In our model the MEC are carried by the pion and � degrees of freedom:
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“Pion pole”

(only for neutrinos, purely axial)

De Pace et al., Nucl.Phys. A726 (2003) 303-326               electromagnetic MEC
Ruiz Simo et al., J.Phys. G44 (2017) no.6, 065105           extension to weak sector

“  pole”Δ
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Meson-exchange currents (MEC)

off-shell pion
off-shell Delta

h1

π

π π
π

π π

 
h2

h1 h1 h2h2

In the medium, huge amount of many-body diagrams, corresponding to the excitation of two-particle-two-hole states. 

‣ fully relativistic calculation based on RFG

‣ all many-body diagrams involving 2 pions included

‣ each diagram is a 7D integral+flux integration

‣  np, nn and pp can be separated

Wμν
2p-2h ¼

V
ð2πÞ9

Z
d3p0

1d
3p0

2d
3h1d3h2

m4
N

E1E2E0
1E

0
2

× rμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× Θðp0
1; p

0
2; h1; h2Þδðp0

1 þ p0
2 − h1 − h2 − qÞ;

ð6Þ

where mN is the nucleon mass, V is the volume of the
system, and we have defined the product of step functions

Θðp0
1;p

0
2;h1;h2Þ¼θðp0

2−kFÞθðp0
1−kFÞθðkF−h1ÞθðkF−h2Þ:

ð7Þ

The function rμνðp0
1;p

0
2;h1;h2Þ is the hadronic tensor for

the elementary transition of a nucleon pair with the given
initial and final momenta, summed up over spin and
isospin, given schematically as

rμνðp0
1;p

0
2;h1;h2Þ ¼

1

4

X

s;t

jμð10; 20; 1; 2Þ%Ajνð10; 20; 1; 2ÞA;

ð8Þ

which we write in terms of the antisymmetrized two-body
current matrix element jμð10; 20; 1; 2ÞA, to be specified. The
factor 1=4 accounts for the antisymmetry of the 2p-2h wave
function. Finally, note that the 2p-2h response is propor-
tional to V, which is related to the number of protons or
neutrons Z ¼ N ¼ A=2 by V ¼ 3π2Z=k3F. In this work, we
only consider nuclear targets with pure isospin zero.
In the case of electrons, the cross section can be written

as a linear combination of the longitudinal and transverse
response functions defined by

RL ¼ W00 ð9Þ

RT ¼ W11 þW22; ð10Þ

whereas additional response functions arise for neutrino
scattering, due to the presence of the axial current. The
generic results coming from the phase-space obtained here
are applicable to all of the response functions.
Integrating over p0

2 using the momentum delta function,
Eq. (6) becomes a nine-dimensional integral,

Wμν
2p-2h ¼

V
ð2πÞ9

Z
d3p0

1d
3h1d3h2

m4
N

E1E2E0
1E

0
2

× rμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× Θðp0
1; p

0
2; h1; h2Þ; ð11Þ

where p0
2 ¼ h1 þ h2 þ q − p0

1. After choosing the q direc-
tion along the z axis, there is a global rotation symmetry
over one of the azimuthal angles. We choose ϕ0

1 ¼ 0 and
multiply by a factor 2π. Furthermore, the energy delta

function enables analytical integration over p0
1, and so the

integral is reduced to seven dimensions. In general, the
calculation has to be done numerically. Under some
approximations [25,31,32,36], the number of dimensions
can be further reduced, but this cannot be done in the fully
relativistic calculation.
In this paper, we study different methods to evaluate

the above integral numerically and compare the relativistic
and the nonrelativistic cases. In the nonrelativistic case, we
reduce the hadronic tensor to a two-dimensional integral.
This can be done when the function rμν only depends on the
differences ki ¼ p0

i − hi, i ¼ 1, 2.
As we want to concentrate on the numerical procedure

without further complications derived from the momentum
dependence of the currents, in this paper, we start by setting
the elementary function to a constant rμν ¼ 1. Hence, we
focus on the genuine kinematical effects coming from the
two-particle–two-hole phase space alone. In particular, the
kinematical relativistic effects arising from the energy-
momentum relation are contained in the energy conserva-
tion delta function that determines the analytical behavior
of the hadronic tensor, where the energy-momentum
relation is E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

N

p
, and in the Lorentz contraction

coefficientsmN=Ei. Obviously, the results obtained here for
constant rμν will be modified when including the two-body
physical current. But as the final result is model dependent,
it is not possible to disentangle whether the differences
found are due to the current model employed or to the
approximations (relativistic or not) used to perform
the numerical evaluation of the integral. In fact all of the
models of 2p-2h response functions should agree at the
level of the 2p-2h phase-space integral Fðq;ωÞ defined as

Fðq;ωÞ≡
Z

d3p0
1d

3h1d3h2
m4

N

E1E2E0
1E

0
2

× δðE0
1 þ E0

2 − E1 − E2 − ωÞΘðp0
1; p

0
2; h1; h2Þ;

ð12Þ

with p0
2 ¼ h1 þ h2 þ q − p0

1. Calculation of this function
should be a good starting point to compare and congeni-
alize different nuclear models.

III. NONRELATIVISTIC 2P-2H PHASE SPACE

A. Semianalytical integration

First, we recall the semianalytical method of Ref. [32]
that was used later in Refs. [25,29], for instance, to
compute the nonrelativistic 2p-2h transverse response
function in electron scattering. We shall use this method
to check the numerical 7D quadrature both in the relativistic
and nonrelativistic cases.
We start with the 12-dimensional expression for the

phase-space function, Eq. (6),

RELATIVISTIC EFFECTS IN TWO-PARTICLE EMISSION … PHYSICAL REVIEW D 90, 033012 (2014)
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Inclusive 2p2h hadronic tensor

Beyond the impulse approximation: Meson Exchange Currents



(a) (b) (c) (d)

FIG. 2: The direct pionic contributions to the MEC 2p-2h response function.

(a) (c) (e) (f)(d)(b)

FIG. 3: The direct pionic/∆ interference contributions to the MEC 2p-2h response function.

(a) (c)(b) (d) (e) (f)

FIG. 4: The direct ∆ contributions to the MEC 2p-2h response function.
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(a) (b) (c) (e)(d) (f)

FIG. 5: The exchange pionic/∆ interference contributions to the MEC 2p-2h response function.

(a) (b) (c) (d) (e) (f)

FIG. 6: The exchange ∆ contributions to the MEC 2p-2h response function.

and ∆ (Fig. 5) we have

RE{π∆}
T (k1,k2;k

′
1,k

′
2; q,ω) =

=
V 4

(2M)4

∑

στ

∑

ij

(

δij −
qiqj
q2

)

[

Jπ†
i (k1,k2)J

∆
j (k′

1,k
′
2) + J∆†

i (k1,k2)J
π
j (k

′
1,k

′
2)
]

=
16f 3

πNNfγππfγN∆fπN∆

3µ4
πM

Bq2

{

(k2 × k′
2)

2
L

(k2
2 + µ2

π)(k
′2
2 + µ2

π)

[

1

k2
1 + µ2

π

+
1

k′2
1 + µ2

π

]

+ (1 ↔ 2)

}

+
8f 3

πNNfγπNNfγN∆fπN∆

3µ4
πM

B

{

(q · k2)k′2
2 + (q · k′

2)k
2
2 − (q · k′

2)(k2 · k′
2)− (q · k2)(k2 · k′

2)

(k2
2 + µ2

π)(k
′2
2 + µ2

π)

+
(q ·k1)k′2

2 − (q · k′
2)(k1 · k′

2)

(k2
1 + µ2

π)(k
′2
2 + µ2

π)
+

(q · k′
1)k

2
2 − (q · k2)(k′

1 · k2)

(k′2
1 + µ2

π)(k
2
2 + µ2

π)
+ (1 ↔ 2)

}

. (20)

The contribution of the ∆ alone (Fig. 6) is instead

RE∆
T (k1,k2;k

′
1,k

′
2; q,ω) =

V 4

(2M)4

∑

στ

∑

ij

(

δij −
qiqj
q2

)

Jπ†
i (k1,k2)J

∆
j (k′

1,k
′
2)

=
4f 2

πNNf
2
πN∆f

2
γN∆

9M2µ4
π

q2

{

B2

[

(k1 · k′
1)(k1T · k′

1T )

(k2
1 + µ2

π)(k
′2
1 + µ2

π)
+

(k1 · k′
2)(k1T · k′

2T )

(k2
1 + µ2

π)(k
′2
2 + µ2

π)
+ (1 ↔ 2)

]

+AB

[

2(k1 × k′
1)

2
L − 2k1Lk′

1L(k1 · k′
1) + k′2

1Lk
2
1 + k2

1Lk
′2
1

(k2
1 + µ2

π)(k
′2
1 + µ2

π)

2(k1 × k′
2)

2
L − 2k1Lk′

2L(k1 · k′
2) + k′2

2Lk
2
1 + k2

1Lk
′2
2

(k2
1 + µ2

π)(k
′2
2 + µ2

π)
+ (1 ↔ 2)

]}

. (21)
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Direct diagrams

De Pace et al., NPA726 (2003)

Exchange diagrams

Many-body 2p2h diagrams



The SuSAv2 model has been extended from the QE regime to the full inelastic spectrum by:
  - introducing a generalized scaling variable  for each invariant mass 
 - folding the elementary inelastic structure functions with the SuSA scaling variable 

 are single-nucleon functions containing the transition form factors:

- for electron scattering one can use phenomenological parametrizations of the inelastic structure 
functions  [Bodek and Ritchie PRD 24 (1981), Bosted and Christy PRC76 (2008), PRC81 (2010)]

- the extension to the weak channel is limited by the poor knowledge of the three structure functions 
 in the inelastic region beyond the -resonance production. Parametrizations across the full 

energy spectrum are not available. One has to rely on models.

RK
QE(q, ω) ∝ f(ψ) UK(q, ω) → RK

inel(q, ω) ∝ ∫
Wmax

Wmin

dWX f(ψX) UK
inel(q, ω)

UK
inel

w1, w2

w1, w2, w3 Δ

Extension of SuSAv2 to the inelastic channel

MBB et al., PRC69 (2004), Gonzalez-Rosa et al., PRD105 (2022)
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Data: Dai, PRC98 (2018)
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Results: comparison with electron and neutrino data

T2K CC0fi ‹µ-C in the SuSAv2-MEC model

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

0.5

1

1.5

2

2.5

3

3.5

4

d2 σ
/d

p µ
dc

os
θ µ

 (1
0-3

9 cm
2 /G

eV
/n

uc
le

on
)

-1.00 < cosθ
µ
 < 0.00

0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

6

7

8

0.00 < cosθ
µ
 < 0.60

0 0.2 0.4 0.6 0.80

2

4

6

8

10

0.60 < cosθ
µ
 < 0.70

0 0.2 0.4 0.6 0.80

2

4

6

8

10

12

d2 σ
/d

p µ
dc

os
θ µ

 (1
0-3

9 cm
2 /G

eV
/n

uc
le

on
)

0.70 < cosθ
µ
 < 0.80

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12
0.80 < cosθ

µ
 < 0.85

0 0.5 1 1.50

2

4

6

8

10

12
0.85 < cosθ

µ
 < 0.90

0 0.5 1 1.5 2
p
µ
 (GeV)

0

2

4

6

8

10

d2 σ
/d

p µ
dc

os
θ µ

 (1
0-3

9 cm
2 /G

eV
/n

uc
le

on
)

0.90 < cosθ
µ
 < 0.94

0 0.5 1 1.5 2 2.5 3
p
µ
 (GeV)

0

2

4

6

8

10

T2K
MEC
QE
QE+MEC

0.94 < cosθ
µ
 < 0.98

0 0.5 1 1.5 2 2.5 3
p
µ
 (GeV)

0

1

2

3

4

5

0.98 < cosθ
µ
 < 1.00

Maria Barbaro Cortona, TNPI2017 24 / 38

Results: comparison with electron and neutrino data

T2K CC0fi ‹µ-C in the SuSAv2-MEC model
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data: T2K coll., PRD 97 (2018) 
Megias et al., JPG46 (2019)

SuSAv2 comparison with  CC0  data(νμ, μ) π
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In general good agreement with 
data (but large error bars) 

Megias et al., 
JPG46 (2019)

than the ones obtained when FSI are included. Hence the significant discrepancy introduced
by the SF prediction is mostly due to the plane-wave limit approach. Authors in [58] show
that the description of data improves when the hole spectral function is complemented by the
particle spectral function and Pauli blocking. Importantly, a large amount of the data collected
in the T2K experiment shown here falls into this region. The SuSAv2 approach involves an
assumption which is discussed more fully in previous work where the ideas were developed
about how so-called Pauli Blocking can be generalized from the only model where the
concept is well-founded, namely, the extreme RFG model. The results obtained within the
SuSAv2 approach are not in disagreement with the data, even at forward angles. However,
one should still exercise some caution in drawing any final conclusions about how well one
can claim to understand this region, i.e. in any existing model. This problem deserves to be
given greater attention in the future.

3.3. T2K: oxygen versus carbon

To make clear how nuclear effects enter in the analysis of the T2K experiment, in figure 5 we
show the predictions provided by SuSAv2-MEC for the neutrino-averaged double differential
cross sections per neutron in the cases of 12C (red lines) and 16O (blue). Here we show only
the total results of adding the QE and MEC contributions, since the latter are essentially equal
for carbon and oxygen when scaled by the number of neutrons in the two nuclei; the MEC

Figure 5. Similar to figure 3, but now including also the results corresponding to the
T2K-νμ CCQE process on 12C. The data are from [22, 52].
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FIG. 1. (Color online) The MINERνA “QE-like” and “CCQE” double differential cross sections for ν̄µ scattering on hydrocarbon
versus the muon transverse momentum, in bins of the muon longitudinal momentum (in GeV/c). The curves represent the
prediction of the SuSAv2+2p2h-MEC (blue) as well as the separate quasielastic (red) and 2p2h-MEC (orange) contributions.
The data and the experimental antineutrino flux are from Ref. [1]
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APPENDIX A: COMPARISON TO T2K
CC0π INCLUSIVE ANALYSIS AND
IMPLEMENTATION VALIDATIONS

Figure 8 shows a comparison of the SuSAv2 1p1h and
2p2h calculation (in GENIE and directly from the model)
on top of the GENIE absorption prediction to T2K CC0π
inclusive results [71] (i.e., there is no restriction on the
outgoing protons), which are in good agreement with the
data. As has been shown in Fig. 4, the slight discrepancies
in the very forward going bins at intermediate momenta can
be improved by using the full RMF. It can also be seen that
a contribution beyond the 1p1h seems essential at higher
momentum and forward angles and that the SuSAv2 2p2h
prediction appears to have the required strength. However,
as discussed in Sec. IV, it is clear that it is difficult to draw
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FIG. 8. Comparison of the T2K CC0π measurement of the muon-neutrino cross section on carbon with the SuSAv2 model
(1p1hþ 2p2h) and a pion-absorption contribution as implemented in GENIE. The (unstacked) contribution from each interaction mode
is shown separately, as well the total prediction. Comparison between 1p1h and 2p2h GENIE implementation (histograms) and
the microscopic calculations (smooth curves) is also shown for model implementation validation. The goodness of fit is χ2 ¼ 255.8
(67 bins). The data points are taken from [71].
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However, the model was implemented by using the inclusive hadronic tensor under some 
assumptions, not necessarily consistent with the model, but unavoidable since the SuSA 
model is intrinsically inclusive. 

The implementation must be improved starting from the complete semi-inclusive results. 
Very few microscopic calculations of the semi-inclusive neutrino-nucleus cross section 
exist at present.

The SuSAv2 model is now 
implemented in GENIE, in both the 
QE and 2p2h channels

Check: for the cross section versus 
the muon variables, the results of the 
implementation (histograms) are in 
good agreement with the original 
calculation (curves).

Implementation in GENIE



Neutrino-nucleus semi-inclusive scattering

Neutrino oscillation experiments
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Figure 2·5: 3-D plot of the carbon (left) and oxygen (right) spectral functions calculated
using the Rome approach [58, 68], i .e. the single-particle contribution extracted from the
analysis of (e, e0p) experimental data and using the LDA for the correlated part.

mentioned above, the RFG momentum distribution is constant up to kF and then drops

to zero, whereas the other models display a more complex shape characterized by tails

that extend beyond kF . Also it can be seen that the NN correlations included in the

Rome momentum distribution significantly increase the strength of the distribution for large

values of pm. This e↵ect is observed also for the NO model when it is compared to IPSM

distribution, although this additional contribution is smaller than in the Rome case.

2.4 Semi-inclusive neutrino-nucleus cross section in PWIA

In the previous sections the flux-averaged semi-inclusive neutrino-nucleus cross section in

PWIA for di↵erent models of the initial nuclear state was introduced. Since we are trying to

understand the di↵erences between the models, in what follows we show semi-inclusive cross

sections for some specific kinematics where the dependence of the momentum distribution

on the missing momentum is particularly relevant.

We begin considering the CC ⌫µ semi-inclusive cross sections for IPSM and RFG model

 shell contribution from (e,e’p) data, accounting for ~80% of the strength

   high missing energy and momentum tail due to NN correlation extrapolated from nuclear matter                                        
using LDA [Benhar, Fabrocini, Fantoni, Sick et al., NPA 579 (1994)]             

SSP(p, E) = ∑
n

Zn |ϕn(p) F(Em − E) |2

Scorr(p, E)

missing energy

missing momentum

SRome(pm, Em) = SSP(pm, Em) + Scorr(pm, Em)State of the art

Spectral function
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Figure 2·11: IPSM and RFG momentum distributions of 40Ar. The Fermi momentum is
set to kF = 0.241 GeV. The contributions from the di↵erent shells of the IPSM are shown
separately.

set of semi-inclusive variables: (k0, ✓l, pN , ✓LN , �
L

N
). This relation is

E(pm) = k �
q

k02 +m
2
l
� Es � EN +mN , (2.47)

where the neutrino momentum k is the solution of the equation

k
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2
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)� p

2
m
= 0 ,

(2.48)

and it defines trajectories in the (E , pm) plane allowed by energy conservation at each

kinematics. By plotting the trajectories E(pm), likewise Em(pm), for a set of semi-inclusive

variables, one can observe that the RFG (IPSM) CC semi-inclusive cross section is di↵erent

from zero only if the corresponding trajectory crosses the curve ERFG (Enlj), where the RFG

(IPSM) spectral function lives. This is illustrated in Fig. 2·12 where the trajectories Em(pm)
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↵ E (MeV) � (MeV) S

1s1/2 55 ± 6 30 ± 15 0.9 ± 0.15

1p3/2 39 ± 4 12 ± 6 0.9 ± 0.15

1p1/2 34 ± 3 12 ± 6 0.9 ± 0.15

1d5/2 23 ± 2 5 ± 3 0.75 ± 0.15

2s1/2 16.1 ± 1.6 5 ± 3 0.75 ± 0.15

1d3/2 16.0 ± 1.6 5 ± 3 0.75 ± 0.15

1f7/2 9.869 ± 0.005 5 ± 3 0.75 ± 0.15

Table 3.2: Parameterization of the missing energy distribution for the 22 neutrons in 40Ar
adopted in this work. The missing energy distributions are modeled as Maxwell-Boltzmann
distributions (see the text). The spectroscopic factors or occupancies of the shells S give
the relative occupancy of the shell respect to the pure shell model prediction. The position
of the 1f 7

2
shell was set to the experimental neutron separation energy [79], and the others

were set to the RMF values. The widths used in this model were inspired from the proton
results obtained by JLAB (e, e0p) experimental data on 40Ar [78].
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Figure 3·2: Missing energy profile of neutrons in 40Ar described by the parameterization
given in Table 3.2. The red band corresponds to the uncertainties also summarized in
Table 3.2. The vertical blue lines show the positions of the seven RMF shells and the black
dashed line shows the mean value of the distribution.
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FIG. 11. Semi-inclusive cross sections as function of pN (✓L
N
) for the two values considered of

the azimuthal angle �L

N
(see text for details). In each case the cross section is evaluated at the

corresponding values ✓̃L
N

(p̃N ) that give the maximum cross section in Figs. 9 and 10. The values

of p̃N and ✓̃L
N

are summarized in Table I.

global reduction in the cross section, but also how importantly the strength in the cross

section is modified in the (pN , ✓LN)-plane. The peak presented in the top panel located in

the vicinity of pN ' 1.0 GeV and ✓L
N
' 50�, due to the s-shell contributions, has completely

gone in the bottom graph leaving a hole where the cross section is very small (close to zero).

All previous results correspond to the case of 40Ar, the target that will be used in DUNE

detector. In what follows we extend our study to the case of 12C, used in past and on-

going experiments. We present semi-inclusive results for muon neutrinos on 12C with muon

variables fixed to k0 = 0.55 GeV and ✓l = 50� for �L

N
= 180� using the T2K flux. In addition

to the RFG and IPSM nuclear models already used in the case of DUNE (40Ar), here we

also provide predictions for NO. The kinematics is fixed in order to explore the impact of

the neutrino flux on the shape of the semi-inclusive cross section. More specifically, we

analyze how the shape of the semi-inclusive cross sections changes with the experimental

neutrino flux that is given in bins as shown in Fig. 5. Results for the RFG (projected cross

section in the (pN , ✓LN) plane) are presented in Fig. 15 using the experimental flux (top

panel) and making use of a Gaussian fit of the flux (bottom panel). As shown, the use of the

experimental flux (with the bins) leads to the appearance of some discontinuities or jumps

in the cross section that are distributed along the pN axis as the value of ✓L
N

changes. This
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Striking differences in the cross section due to initial state physics described by different spectral functions.  
The precise knowledge of the SF is crucial for a reliable modelling of semi-inclusive reactions.

d6σ six-differential

SRFG(pm, Em) = θ(pF − pm) δ (Em − p2
m + m2

N) SIPSM(p, E ) = ∑
nlj

(2j + 1) nnlj(p) δ(E − Enlj)



FSI

FSI between the knocked-out nucleon and the residual nucleus can be treated using different approaches: 

‣ Optical Potentials, energy-dependent A-(in)dependent EDAD (EDAI) 
   ROP: full complex relativistic OP, the Im part accounts for loss of flux to inelastic channels, used e.g. in 
(e,e’p) studies where the elastic channel is isolated 
   rROP: only real part of the ROP, more appropriate to describe inclusive reactions where all channels 
contribute to the signal. Orthogonality issues for low momentum transfers. 

‣ Relativistic Mean Field (RMF): real energy-independent potentials. Orthogonality is preserved but 
potentials are too strong at high energy, where the RPWIA should be recovered. 

‣ Energy-Dependent Relativistic Mean Field (ED-RMF):  RMF suppressed at high energy by a function 
 fitted to (e,e’) data. This approach is numerically equivalent to SuSAv2 for inclusive reactions but, 

unlike SuSAv2, is applicable also to the semi-inclusive case.
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FIG. 2: Vector (positive) and scalar (negative) potentials as a function of the position in the 12C nucleus. Each
panel corresponds to a different kinetic energy of nucleon. Only the real part is represented for the EDAD1 and
EDAI-C potentials.

and EDAI-C, on the contrary, are considerably
smaller than RMF so one should be cautious with
their predictions for such kinematics. Figs. 2(c),
(d), (e) correspond to 200 < Tp < 1000 MeV.
We observe that the ED-RMF, EDAD1 and
EDAI-C potentials are close to each other and
continuously decrease with energy. In the last
panel, Fig. 2(f), Tp = 1500 MeV is out of the
range where the EDAD1 and EDAI-C potentials
were fitted. Indeed, one sees that the EDAD1 and
EDAI-C potentials are slightly larger than in the
previous kinematics, which should be understood
as a consequence of the extrapolation method.

In the HF-CRPA model [32, 33] the bound state
wave functions are obtained with a self-consistent
Hartree-Fock model using an extended Skyrme
force for the nucleon-nucleon interaction [34].
The same mean-field potential obtained for the
initial state is used to compute the final-state
nucleon wave functions, therefore including the
essential features of orthogonality as discussed
above. Contrary to the relativistic approaches the
nuclear current is obtained from the standard non-
relativistic reduction of the single nucleon current
as explained in [35, 36]. This mean-field picture,
which gives an adequate description of the genuine
quasielastic cross section, is then extended with
collective excitations of the nucleus in the CRPA
approach. Although inherently non-relativistic,
the calculations are effectively relativized accord-
ing to the scheme of [37]. The HF-CRPA provides
reliable results for very low momentum transfers

where long-range correlations, that are not ac-
counted for in a mean-field picture, contribute
significantly to the cross section in the form
of, e.g., giant resonances [38]. This consistent
treatment of the interaction from very low to
moderate momentum transfers is important for
neutrino-oscillation analyses that need to provide
an adequate description of the electroweak interac-
tion with nuclei over a broad region of phase space.

The SuSAv2 model is based on the scaling
properties shown by the (e, e′) data and on RMF
theory. When satisfied, the scaling property
allows for the factorization of the inclusive cross
section in terms of a single-nucleon elementary
cross section and a scaling function, which contains
all the nuclear complexity and depends on only
one variable ψ = ψ(ω, q) [39, 40], ω and q being
the energy and momentum transfer, respectively.
The original SuSA model [17, 41] uses only one
universal scaling function extracted directly from
the analysis of experimental data [42]. Although
quite successful [17, 41, 43], its simplicity does
not allow one to model the complexity of the QE
response with the desired accuracy, lacking for
instance some strength in the transverse channel.
The SuSAv2 model was proposed to overcome this
limitation [18]. It uses different scaling functions,
extracted from RMF and RPWIA results, for
the different responses. Thus, it effectively
incorporates both regimes, RMF (for low and
intermediate q) and RPWIA (for high q). This
is achieved by using a “blending” function that
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smaller than RMF so one should be cautious with
their predictions for such kinematics. Figs. 2(c),
(d), (e) correspond to 200 < Tp < 1000 MeV.
We observe that the ED-RMF, EDAD1 and
EDAI-C potentials are close to each other and
continuously decrease with energy. In the last
panel, Fig. 2(f), Tp = 1500 MeV is out of the
range where the EDAD1 and EDAI-C potentials
were fitted. Indeed, one sees that the EDAD1 and
EDAI-C potentials are slightly larger than in the
previous kinematics, which should be understood
as a consequence of the extrapolation method.

In the HF-CRPA model [32, 33] the bound state
wave functions are obtained with a self-consistent
Hartree-Fock model using an extended Skyrme
force for the nucleon-nucleon interaction [34].
The same mean-field potential obtained for the
initial state is used to compute the final-state
nucleon wave functions, therefore including the
essential features of orthogonality as discussed
above. Contrary to the relativistic approaches the
nuclear current is obtained from the standard non-
relativistic reduction of the single nucleon current
as explained in [35, 36]. This mean-field picture,
which gives an adequate description of the genuine
quasielastic cross section, is then extended with
collective excitations of the nucleus in the CRPA
approach. Although inherently non-relativistic,
the calculations are effectively relativized accord-
ing to the scheme of [37]. The HF-CRPA provides
reliable results for very low momentum transfers

where long-range correlations, that are not ac-
counted for in a mean-field picture, contribute
significantly to the cross section in the form
of, e.g., giant resonances [38]. This consistent
treatment of the interaction from very low to
moderate momentum transfers is important for
neutrino-oscillation analyses that need to provide
an adequate description of the electroweak interac-
tion with nuclei over a broad region of phase space.

The SuSAv2 model is based on the scaling
properties shown by the (e, e′) data and on RMF
theory. When satisfied, the scaling property
allows for the factorization of the inclusive cross
section in terms of a single-nucleon elementary
cross section and a scaling function, which contains
all the nuclear complexity and depends on only
one variable ψ = ψ(ω, q) [39, 40], ω and q being
the energy and momentum transfer, respectively.
The original SuSA model [17, 41] uses only one
universal scaling function extracted directly from
the analysis of experimental data [42]. Although
quite successful [17, 41, 43], its simplicity does
not allow one to model the complexity of the QE
response with the desired accuracy, lacking for
instance some strength in the transverse channel.
The SuSAv2 model was proposed to overcome this
limitation [18]. It uses different scaling functions,
extracted from RMF and RPWIA results, for
the different responses. Thus, it effectively
incorporates both regimes, RMF (for low and
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is achieved by using a “blending” function that
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Figure 5·2: T2K 1µCC0⇡Np semi-inclusive ⌫µ�12C cross section with at least one proton
in the final state with momentum above 0.5 GeV as function of the leading proton and muon
kinematics. All curves include the 2p2h and pion absorption (denoted “other”) contributions
evaluated using GENIE (shown separately). Cross-section measurements taken from [115].
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Figure 5·2: T2K 1µCC0⇡Np semi-inclusive ⌫µ�12C cross section with at least one proton
in the final state with momentum above 0.5 GeV as function of the leading proton and muon
kinematics. All curves include the 2p2h and pion absorption (denoted “other”) contributions
evaluated using GENIE (shown separately). Cross-section measurements taken from [115].
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Figure 5·3: T2K 1µCC0⇡Np semi-inclusive ⌫µ�12C cross section with at least one proton
in the final state with momentum above 0.5 GeV as function of the muon scattering angle.
All curves include the 2p2h and pion absorption (denoted “other”) contributions evaluated
using GENIE (shown separately). Cross-section measurements taken from [115].

variables compared with T2K measurements [115] that applied certain kinematic restrictions

to the proton momentum and angle, namely pN > 0.45 GeV and cos ✓L
N

> 0.4. Based on

the results of the GENIE-SuSAv2 2p2h model and GENIE’s pion absorption predictions

there are angular bins with areas heavily dominated by non-QE channels, especially for

the cross sections as function of �p and |�p| in bins with small scattering angle and low

momentum of the muon. For the |�p| distribution there is a clear preference to require

significant non-QE contributions in the high momentum imbalance tail for the higher muon

momentum, intermediate muon scattering angle slices, where the microscopic calculation

shows small FSI e↵ects by comparing the RPWIA results with the ED-RMF and rROP

predictions. Regarding the comparison of the di↵erent QE predictions, the biggest di↵erences

between the GENIE-SuSAv2, the ED-RMF and rROP microscopic results can be found at

forward angles and low muon momentum, especially in the �p and |�p| cross sections,

where the GENIE-SuSAv2 estimation can be up to 50% higher than the ED-RMF result.

2p2h and “Other” (pion emission followed 
by re-absorption) from GENIE simulation 
Microscopic calculations for these 
processes ares till missing

No clear trend emerges from the model/
data comparison at different lepton and 
proton kinematics



Lu et al.,  PRC94, 015503 (2016)

Data are often represented in terms of new variables devised to enhance sensitivity to nuclear effects

On a free nucleon at rest   

  —> peaked distribution
  undefined  —> flat distribution

k′ T = − pN,T

δpT = δϕT = 0
δαT

Deviations from these behaviours “measure” nuclear effects with 
minimum dependence upon the neutrino energy:

  distribution is related to the nucleon momentum distribution 

 sensitive to non-QE effects (2p2h) and FSI

δpT

δαT
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5.1.4 1µCC0⇡Np: Transverse kinematic imbalances

Another type of variables that can be used to analyze correlations between the particles

detected in the final in semi-inclusive reactions are the so-called transverse kinematic imbalances

(TKI) [120]. TKI are designed to enhance experimental sensitivity to nuclear e↵ects, and

therefore discriminate between di↵erent models, with minimal dependence on the neutrino

energy. In particular, the use of TKI can help in disentangling e↵ects linked to FSI, initial

state correlations and/or multi-nucleon excitations (2p2h). They are defined by projecting

the final lepton and the ejected nucleon momenta on the plane perpendicular to the neutrino

direction (transverse plane) as can be seen in Fig. 5·7. More specifically, the vector magnitude

Transverse
plane

z

x

y

k

pN

pN
T

k0

k0
T

qT

��T

�pT

�↵T

Figure 5·7: Scheme showing transverse kinematic imbalances (TKI): �pT , �↵T and ��T . The
final lepton and nucleon momenta are projected on the plane perpendicular to the neutrino
direction (xy-plane or transverse plane). The transverse component of the transferred
momentum (qT ) equals �k

0
T
and defines the x-axis.
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of the momentum imbalance (�pT ) and the two angles (�↵T and ��T ) are:

�pT = |�pT| = |k0
T + pN,T| , (5.3)

�↵T = arccos

✓
� k

0
T · �pT

|k0
T| |�pT|

◆
, (5.4)

��T = arccos

✓
� k

0
T · pN,T

|k0
T| |pN,T|

◆
, (5.5)

where k0
T
and pN,T are, respectively, the projections of the final lepton and nucleon momentum

on the transverse plane (if the neutrino direction is taken as the z-axis, then the projections

only have components in the xy-plane as it is shown in Fig. 5·7). In the absence of FSI

and assuming a pure QE event, the momentum imbalance is generated entirely by the

description of the initial nuclear state dynamics [120, 121]. In this approximation �pT

is a direct measurement of the transverse component of the bound nucleon momentum

distribution, therefore the RFG model, widely used in neutrino event generators, would be

at a disadvantage compared to more realistic nuclear models like the independent-particle

shell model or the spectral function model [115, 121]. This was explicitly shown in Ref. [51],

where the RFG was found to give a much poorer description of the �pT distribution than

the IPSM in PWIA. Also in the PWIA limit, the �↵T distribution is expected to be flat due

to the isotropy property shown by the nucleon momentum distribution, although presence

of FSI and other e↵ects beyond the impulse approximation break this behavior.

The comparison of the cross sections as function of the transverse kinematic imbalances

for the di↵erent models with T2K measurements is presented in Fig. 5·8. For these data, the

following phase-space restrictions are applied: k0
> 0.25 GeV, cos ✓l > �0.6, 0.45 < pN < 1.0

GeV and cos ✓L
N

> 0.4. The �pT distribution shown in Fig. 5·8 favours the ED-RMF and

rROP calculations over the GENIE-SuSAv2 predictions in the low �pT region, which is

mainly dominated by initial-state e↵ects with negligible contribution from the 2p2h and

pion absorption channels. This could be caused by the inconsistencies of the implementation

Transverse Kinematic Imbalance (TKI)
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Figure 5·8: T2K 1µCC0⇡Np semi-inclusive ⌫µ�12C cross sections as function of the
transverse kinematic imbalances �pT , �↵T and |��T |. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115].

MINER⌫A k
0 (GeV) cos ✓l pN (GeV) cos ✓L

N
�
L

N
(�)

1.5-10 > 0.939 0.45-1.2 > 0.342 -

Table 5.1: Phase-space restrictions applied to the semi-inclusive CC0⇡ cross-section
measurements with one muon and at least one proton in the final state shown by MINER⌫A
collaboration in [116, 117].

5.2.1 1µCC0⇡Np: Muon and proton kinematics

Despite a larger contribution from non-quasielastic channels, due to the higher energy

neutrino beam compared with T2K (see Fig. 2·4), the semi-inclusive cross sections predicted

by ROP, shown in Fig. 5·9 as function of the muon and proton kinematics together with the

95

0.0 0.2 0.4 0.6 0.8
0

5×10-39

1×10-38

δpT (GeV)

dσ
/d
δp
T
(c
m
2 G
eV

-1
nu
cl
eo
n-
1 )

ED-RMF
RPWIA

ROP

GENIE-SuSAv2

2p2h
Other

RFG

rROP

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2×10-40

4×10-40

6×10-40

8×10-40

1×10-39

δαT (rad)

dσ
/d
δα

T
(c

m
2 ra

d-1
nu

cl
eo

n-1
)

0.0 0.5 1.0
0

1×10-39

2×10-39

3×10-39

4×10-39

5×10-39

|δϕT| (rad)

dσ
/d
|δ
ϕ T

|(
cm

2 ra
d-1

nu
cl

eo
n-1

)

Figure 5·8: T2K 1µCC0⇡Np semi-inclusive ⌫µ�12C cross sections as function of the
transverse kinematic imbalances �pT , �↵T and |��T |. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115].

MINER⌫A k
0 (GeV) cos ✓l pN (GeV) cos ✓L

N
�
L

N
(�)

1.5-10 > 0.939 0.45-1.2 > 0.342 -

Table 5.1: Phase-space restrictions applied to the semi-inclusive CC0⇡ cross-section
measurements with one muon and at least one proton in the final state shown by MINER⌫A
collaboration in [116, 117].

5.2.1 1µCC0⇡Np: Muon and proton kinematics

Despite a larger contribution from non-quasielastic channels, due to the higher energy

neutrino beam compared with T2K (see Fig. 2·4), the semi-inclusive cross sections predicted

by ROP, shown in Fig. 5·9 as function of the muon and proton kinematics together with the

TKI distributions 500 MeVpN >

‣ In the absence of FSI, the   distribution is 
related to the nucleon momentum distribution: 
the RFG is clearly ruled out 

‣ The role of FSI is sizeable, especially in the 
ROP approach

‣ 2p2h mainly affect the high momentum tail

δpT ‣ ROP describes better the data versus 
‣ The departure from flat distribution is 

determined by the 2p2h contribution
‣ No model is able to reproduce the oscillatory 

behaviour of data

δαT
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Figure 5·9: MINER⌫A 1µCC0⇡Np semi-inclusive ⌫µ�12C cross section as function of
the final muon momentum and scattering angle (top) and as function of the final proton
momentum and polar angle (bottom). All curves include the 2p2h and pion absorption
(denoted “other”) contributions evaluated using GENIE (shown separately). The original
paper from MINER⌫A was [117] but the cross-section measurements shown here were taken
from [116] which corrected a mismodelling in GENIE’s elastic FSI that a↵ected the cross-
section measurements presented in the first paper. The �

2
/d.o.f. ratio is given in brackets

in the legend of each distribution.

GeV removes most of the interactions in which FSI plays an important role eliminating

the peak at large �↵T . The GENIE-SuSAv2 prediction and all the RDWIA results except

the ROP overestimate the cross-section data, although the shape of the rise in �↵T seems

to be well described by the combination of FSI and non-QE contributions except the last

bin. Additional projections on the plane perpendicular to the neutrino direction of the

momentum imbalance �pT are also presented in Fig. 5·10. If the interaction occurred on a

free nucleon at rest, then we would expect a delta-function at �pT = 0 because the muon

Natural lepton and proton variables
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Figure 5·8: T2K 1µCC0⇡Np semi-inclusive ⌫µ�12C cross sections as function of the
transverse kinematic imbalances �pT , �↵T and |��T |. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115].

MINER⌫A k
0 (GeV) cos ✓l pN (GeV) cos ✓L

N
�
L

N
(�)

1.5-10 > 0.939 0.45-1.2 > 0.342 -

Table 5.1: Phase-space restrictions applied to the semi-inclusive CC0⇡ cross-section
measurements with one muon and at least one proton in the final state shown by MINER⌫A
collaboration in [116, 117].

5.2.1 1µCC0⇡Np: Muon and proton kinematics

Despite a larger contribution from non-quasielastic channels, due to the higher energy

neutrino beam compared with T2K (see Fig. 2·4), the semi-inclusive cross sections predicted

by ROP, shown in Fig. 5·9 as function of the muon and proton kinematics together with the

kinematic restrictions

‣ ROP is favoured by data
‣ 2p2h provide ~30% of the strength at MINERvA kinematics (E ~ 3 GeV)
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Figure 5·10: MINER⌫A 1µCC0⇡Np semi-inclusive ⌫µ�12C cross sections as function of
the transverse kinematic imbalances �pT , �pTx, �pTy, �↵T and |��T |. All curves include
the 2p2h and pion absorption (denoted “other”) contributions evaluated using GENIE
(shown separately). The original paper from MINER⌫A was [117] but the cross-section
measurements shown here were taken from [116] which corrected a mismodeling in GENIE’s
elastic FSI that a↵ected the cross-section measurements presented in the first paper. Notice
that the convention used in [116] to define the x and y axis to project �pT on is the opposite
to the convention used in this thesis. The �

2
/d.o.f. ratio is given in brackets in the legend

of each distribution.
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Figure 5·10: MINER⌫A 1µCC0⇡Np semi-inclusive ⌫µ�12C cross sections as function of
the transverse kinematic imbalances �pT , �pTx, �pTy, �↵T and |��T |. All curves include
the 2p2h and pion absorption (denoted “other”) contributions evaluated using GENIE
(shown separately). The original paper from MINER⌫A was [117] but the cross-section
measurements shown here were taken from [116] which corrected a mismodeling in GENIE’s
elastic FSI that a↵ected the cross-section measurements presented in the first paper. Notice
that the convention used in [116] to define the x and y axis to project �pT on is the opposite
to the convention used in this thesis. The �

2
/d.o.f. ratio is given in brackets in the legend

of each distribution.
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Figure 5·8: T2K 1µCC0⇡Np semi-inclusive ⌫µ�12C cross sections as function of the
transverse kinematic imbalances �pT , �↵T and |��T |. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115].

MINER⌫A k
0 (GeV) cos ✓l pN (GeV) cos ✓L

N
�
L

N
(�)

1.5-10 > 0.939 0.45-1.2 > 0.342 -

Table 5.1: Phase-space restrictions applied to the semi-inclusive CC0⇡ cross-section
measurements with one muon and at least one proton in the final state shown by MINER⌫A
collaboration in [116, 117].

5.2.1 1µCC0⇡Np: Muon and proton kinematics

Despite a larger contribution from non-quasielastic channels, due to the higher energy

neutrino beam compared with T2K (see Fig. 2·4), the semi-inclusive cross sections predicted

by ROP, shown in Fig. 5·9 as function of the muon and proton kinematics together with the

kinematic restrictions
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were taken from [119]. The bands drawn for the ED-RMF and ROP models are related with
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5.3.4 1µCC0⇡1p: Reconstructed E⌫ and Q
2

In Fig. 5·15, we also present the 1µCC0⇡1p predictions as function of the reconstructed

neutrino energy and Q
2
CCQE, which are defined as follows [119]

E
cal
⌫

= El + TN + 40 MeV ,

Q
2
CCQE =

�
E

cal
⌫

� El

�2 � (k� k
0)2 , (5.6)

where the argon binding energy is assumed to be 40 MeV. Both RDWIA calculations tend to

underestimate (ROP) or overestimate (ED-RMF) the measurements as function of Q2
CCQE,

being the ED-RMF prediction closer to data in the bin that excludes forward muon angles,

i.e. �0.65 < cos ✓l < 0.8. In the case of the cross section as function of Ecal
⌫
, all the models

overpredict the data in the tail of the distribution (large E
cal
⌫
-values). Given that a good

 “at least one proton”1μCC0πNp  “one and only one proton”1μCC0π1p

‣ ROP model is the closest to data 
‣ 2p2h give sizeable contribution and are 

evaluated using GENIE simulation, based on 
inclusive SuSAv2-MEC model 

‣ Microscopic calculations for exclusive 2p2h 
are much needed!

‣ ROP model is the closest to data  
‣ 2p2h are negligible in the “only 

one proton” data
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To describe the inelastic  scattering in the RES region we use the Dynamical Coupled Channel 
model [S. Nakamura et al., PRD 92 (2015)]

- Widely tested for electron and neutrino scattering off a single nucleon

- Describes the resonant and non-resonant regimes, including the interaction between the different 
resonance channels (πN, ππN, ηN, KΛ, KΣ), the interference between resonant and non-resonant 
amplitudes and the neutrino induced two-pion production. 

- Validity range  

ν − N

mN + mπ < W < 2.1 GeV

Resonance region: SuSAv2-DCC model

from the naive isospin analysis are due to the non-
resonant and higher-resonances contributions mostly in the
neutron-target processes, as we have seen in Fig. 14. The
two data sets from BNL and ANL for νμp → μ−πþp shown
in the left panel of Fig. 16 are not consistent as has been
well known, and our result is closer to the BNL data [12].
For the other channels, our result is fairly consistent
with both of the BNL and ANL data. It seems that the
bare axial N-Δð1232Þ coupling constants determined by
the PCAC relation are too large to reproduce the ANL data.
Because axial N-N$ coupling constants should be better
determined by analyzing neutrino-reaction data, it is
tempting to multiply the bare axial N-Δð1232Þ coupling
constants, gPCACANΔð1232Þ, defined in Eq. (B19) by 0.8, so that
the DCC model better fits the ANL data. The resulting
cross sections are shown by the dashed curves in Fig. 16.
We find that σðνμp → μ−πþpÞ is reduced due to the
dominance of the Δð1232Þ resonance in this channel,
while σðνμn → μ−πNÞ is only slightly reduced. As men-
tioned in the introduction, the original data of these two
experimental data have been reanalyzed recently [14], and
it is pointed out that the discrepancy between the two data
sets is resolved. The resulting cross sections are closer to
the previous ANL data. However, the number of data is still
very limited, and a new measurement of neutrino cross
sections on the hydrogen and deuterium is highly desirable.
We also note that the data shown in Fig. 16 were taken from

experiments using the deuterium target. Thus one should
analyze the data considering the nuclear effects such as the
initial two-nucleon correlation and the final state inter-
actions. Recently, the authors of Ref. [16] have taken a first
step toward such an analysis. They developed a model that
consists of elementary amplitudes for neutrino-induced
single pion production off the nucleon [25], pion-nucleon
rescattering amplitudes, and the deuteron and final NN
scattering wave functions. Although they did not analyze
the ANL and BNL data with their model, they examined
how much the cross sections at certain kinematics can be
changed by considering the nuclear effects. They found that
the cross sections can be reduced as much as 30% for
νμd → μ−πþpn due to the NN rescattering. Meanwhile,
the cross sections for νμd → μ−π0pp are hardly changed by
the final state interaction. It will be important to analyze the
ANL and BNL data with this kind of model to determine
the axial nucleon current, particularly the axial N-Δð1232Þ
transition strength.
Regarding the NC single pion production, we show

results in Fig. 17. In the left panel, we show the cross
sections for all final charge states. The ratios σðνp→
νpπ0Þ=σðνp→ νnπþÞ∼ σðνn→ νnπ0Þ=σðνn→ νpπ−Þ∼ 2
can be mostly understood from the isospin Clebsch-Gordan
coefficient accompanied by the Δ → πN vertex. A slight
difference between σðνp → νpπ0Þ and σðνn → νnπ0Þ [also
between σðνp → νnπþÞ and σðνn → νpπ−Þ] is mostly
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from the naive isospin analysis are due to the non-
resonant and higher-resonances contributions mostly in the
neutron-target processes, as we have seen in Fig. 14. The
two data sets from BNL and ANL for νμp → μ−πþp shown
in the left panel of Fig. 16 are not consistent as has been
well known, and our result is closer to the BNL data [12].
For the other channels, our result is fairly consistent
with both of the BNL and ANL data. It seems that the
bare axial N-Δð1232Þ coupling constants determined by
the PCAC relation are too large to reproduce the ANL data.
Because axial N-N$ coupling constants should be better
determined by analyzing neutrino-reaction data, it is
tempting to multiply the bare axial N-Δð1232Þ coupling
constants, gPCACANΔð1232Þ, defined in Eq. (B19) by 0.8, so that
the DCC model better fits the ANL data. The resulting
cross sections are shown by the dashed curves in Fig. 16.
We find that σðνμp → μ−πþpÞ is reduced due to the
dominance of the Δð1232Þ resonance in this channel,
while σðνμn → μ−πNÞ is only slightly reduced. As men-
tioned in the introduction, the original data of these two
experimental data have been reanalyzed recently [14], and
it is pointed out that the discrepancy between the two data
sets is resolved. The resulting cross sections are closer to
the previous ANL data. However, the number of data is still
very limited, and a new measurement of neutrino cross
sections on the hydrogen and deuterium is highly desirable.
We also note that the data shown in Fig. 16 were taken from

experiments using the deuterium target. Thus one should
analyze the data considering the nuclear effects such as the
initial two-nucleon correlation and the final state inter-
actions. Recently, the authors of Ref. [16] have taken a first
step toward such an analysis. They developed a model that
consists of elementary amplitudes for neutrino-induced
single pion production off the nucleon [25], pion-nucleon
rescattering amplitudes, and the deuteron and final NN
scattering wave functions. Although they did not analyze
the ANL and BNL data with their model, they examined
how much the cross sections at certain kinematics can be
changed by considering the nuclear effects. They found that
the cross sections can be reduced as much as 30% for
νμd → μ−πþpn due to the NN rescattering. Meanwhile,
the cross sections for νμd → μ−π0pp are hardly changed by
the final state interaction. It will be important to analyze the
ANL and BNL data with this kind of model to determine
the axial nucleon current, particularly the axial N-Δð1232Þ
transition strength.
Regarding the NC single pion production, we show

results in Fig. 17. In the left panel, we show the cross
sections for all final charge states. The ratios σðνp→
νpπ0Þ=σðνp→ νnπþÞ∼ σðνn→ νnπ0Þ=σðνn→ νpπ−Þ∼ 2
can be mostly understood from the isospin Clebsch-Gordan
coefficient accompanied by the Δ → πN vertex. A slight
difference between σðνp → νpπ0Þ and σðνn → νnπ0Þ [also
between σðνp → νnπþÞ and σðνn → νpπ−Þ] is mostly
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it here. In the finite Q2 region, we use empirical inclusive
structure functions from Ref. [84] as data to determine the
transition vector form factors FV

nN!ðQ2Þ. Bosted et al. [85]
fitted inclusive electron-deuteron reaction data to obtain
their model for the inclusive deuteron structure functions,
and the inclusive “neutron” structure functions are
obtained from that by subtracting the proton structure
function of Ref. [52]. We use an improved version [84]
of this “neutron” structure functions. After determining
FV
nN! ðQ2

i Þ at Q2
i ¼ 0; 0.20;…; 3.00 ðGeV=cÞ2 at every

0.20 ðGeV=cÞ2, we parametrize them using Eq. (43), as
we did for the p-N! vector form factors. We present
numerical values for cnn (258 parameters) and those for
the cutoffs Λe:m:

N! (16 parameters) in Tables III and IV of
Appendix D. The following results are obtained with this
approximate polynomial parametrization.
We show unpolarized differential cross sections for γn →

πN calculated with the DCC model in comparison with
data in Figs. 8 and 9, and find a reasonable agreement. We
also show a comparison of the DCC-based calculation with
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FIG. 2. Double-di↵erential inclusive cross section for e-12C scattering at given energies and scat-

tering angles (labeled in the panels). It is displayed in function of the transferred energy. Legend

explained in Table I. Data taken from [70].

resonance. In this region the contribution provided by SuSAv2-DCC and SoftDIS is in good

agreement with data. In the two bottom panels (E = 4045 MeV, ✓ = 45, 55 Deg.), the

largest contribution corresponds to SoftDIS that is evaluated by including a combination of

SuSAv2-inelastic and SuSAv2-DCC. As shown, TrueDIS is negligible in all cases with the

exception of a minor increase observed at ! > 3 GeV in the right-bottom panel. This is

consistent with the quite low values of the transfer energy considered. Notice that TrueDIS

is only relevant at very high ! values.

Summarizing, we have shown that the di↵erent models considered in this work are capable

to provide a precise description of electron scattering data, and therefore, we extend their

use to neutrino scattering processes.
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Validation: electron scattering
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FIG. 3. T2K CC inclusive flux-averaged double-di↵erential cross section per target nucleon in bins

of the muon scattering angle (labeled in panels) as function of the muon momentum. The di↵erent

contributions are shown individually. Also, we show the sum of all of them (see Table I). Data

taken from [6]. The �2- value shown in each panel is a partial calculation associated to each bin.

We are using Eq. 5 to calculate the result portrait in legend.
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12- Fair agreement with data
- QE dominates
- RES essential to reproduce the data
- DIS small contribution
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Legend as in previous figures (see Table ??). Data taken from [? ].

by the models used in MINERvA simulations and the ones shown for the low energy flux.

In Fig. ??, the single-di↵erential cross section folded by the medium energy flux. QE and

MEC contributions are around 25 %. being the inelastic channels which dominates at these

kinematics. In this case, TrueDIS and SoftDIS contributions are around half of the strength

of the cross section according to our model. In general, we underestimate the experimental

data. Further studies are necessary to try to explain these disparities. He hablado esta

maana con Stephen Dolan sobre el modelo de las resonancias en Genie y est es

la informacin general: The model is the Rein-Sehgal pion production model with

lepton mass corrections for neutrino-nucleon interactions. My understanding

is that its put inside the nucleus only by: Picking a Fermi motion from (usually)

an RFG, boosting into the rest frame, calculating as if its a free nucleon interaction,

boosting back into the lab frame Adding an ad-hoc binding energy which I think

just puts the struck nucleon slightly off-shell by a fixed amount They also

have a very sharp cut off in W where they say RES stops and SIS/DIS starts.
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- Data are underestimated
- All channels are comparable in size 
- The discrepancy is likely due to poor 

description of the “SoftDIS” region



Summary

‣ The consistent microscopic description of neutrino scattering in different energy regimes, going from QE 
to DIS, is crucial for future oscillation experiments but quite hard to achieve. The present situation does 
not match the desired precision.

‣ The SuSAv2 model with the addition of 2p2h has been successfully tested against inclusive (e,e’) data 
and used to evaluate CC0  neutrino cross sections as functions of the lepton variables, yielding results 
compatible with errorbars.

‣ Experimental studies (T2K, MINERvA, MicroBooNE) are moving in the direction of semi-inclusive 
measurements, where both leptons and hadrons are detected in the final state. These data are far more 
sensitive to nuclear effects and theoretical studies are very rare. We have studied this process in the 
framework of RMF and compared results with available data.

‣ In particular the sensitivity to different treatments of FSI has been explored and the ROP seems to be 
favoured by data. However, the results strongly depend on the contribution of two-body currents to the 
semi-inclusive process, which at present are simulated by Monte Carlo generators under strong 
assumptions since a microscopic calculation is still missing.

WORK IN PROGRESS

1. calculation of the 2p2h contribution to exclusive observables
2. comparisons and improvement of models for the low energy part of the spectrum, where the IA  fails

     (see Valerio Belocchi’s talk)

3.  improvement of the model for the high energy spectrum, from the resonance region to DIS; this region 
will be essential for DUNE.

π
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ψ (q, ω) ≃
mN

qkF (ω −
|Q2 |
2mN )

Scaling variable

fRFG(ψ) =
3
4 (1 − ψ2) θ (1 − ψ2)

ψ (q, ω) ≡ ± T0

TF
T0 =

q
2

1 + 1/τ −
ω
2

− mN

 is the minimum kinetic energy of the hit nucleus 
at given momentum and energy transfer
T0

In the relativistic Fermi gas model

The scaling variable  is defined in the framework of QE scattering the relativistic Fermi gas model ψ

 is analogous to the Bjorken variable  in DISψ x

ψ (q, ω) ≡ ±
T*0
TF

T*0 =
q
2

1 + 1/τ −
ω
2

− W

Extension to the inelastic regime

 is the invariant mass of the final hadronic stateW

 at the QEPψ = 0



Connection between ‹-A and e-A scattering: SuperScaling

Superscaling in the Longitudinal and Transverse channels

Define fL = kF RL/GL and fT = kF RT /GT and look at separated L/T data

fT > fL
Violations reside mainly in the transverse channel (2p2h MEC, � resonance excitation,
DIS, ...)

The RFG model predicts fL(Â) = fT (Â) = 3
4 (1 ≠ Â2)◊(1 ≠ Â2), in disagreement with the

experimental data

Maria Barbaro Uppsala, NUFACT2017 7 / 37
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L data T data

The analysis of the separate longitudinal and transverse responses shows that

- the longitudinal response scales

- scaling violations are mainly transverse  (2p2h,  resonance and other inelastic processes)Δ

Super Scaling in the Longitudinal and Transverse channels

Donnelly and Sick, PRL82; PRC60 (1999)
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FIG. 2: Diagrams for the 1p1h MEC matrix elements

Various alternative approximations to the propagator
have been proposed [63]. However, in the case of the
quasielastic peak, the typical kinematics are of the order
of 1 GeV, and these issues are not expected to be rele-
vant. They are overshadowed by other more significant
nuclear e↵ects that dominate in this energy regime. Here
we use the � propagator commonly used for the spin-3/2
field

G↵�(P ) =
P↵�(P )

P 2 �M2
� + iM��(P 2) + �(P 2)2

4

(57)

where M� and � are the � mass and width respectively.
The projector P↵�(P ) over spin-3/2 on-shell particles is
given by

P↵�(P ) = �(/P +M�)

⇥

g↵� � �↵��

3
� 2P↵P�

3M2
�

+
P↵�� � P��↵

3M�

�
.(58)

Finally, the � width �(P 2) is given by

�(P 2) = �0
m�p
P 2

✓
p⇡
pres⇡

◆3

. (59)

In the above equation, p⇡ is the momentum of the final
pion resulting from the � decay an pres⇡ is its value at
resonance (P 2 = m2

�), and �0 = 120 MeV is the width
at rest. The width (59) corresponds to the � in vacuum,
and it is expected to be slightly di↵erent in the medium
depending on the kinematics. One could investigate the
dependence of the results on the choice of the width.
However, in this work, we do not delve into this issue
because, as we will see, the e↵ect of the MEC on the
1p1h response is generally small, and corrections due to
fine-tuning of the model are unlikely to substantially alter
the results.

In the relativistic mean field description used in this
work, we consider that the � is also interacting with
scalar and vector fields, acquiring an e↵ective mass and
vector energy. To treat this case, we make the following
substitutions in the � propagator for the � mass and
momentum [25, 64]:

M� ! M⇤
�, P ⇤µ = Pµ � �µ0E

�
v . (60)

We use the value M⇤
� = 1042 MeV, taken from [45], and

the universal vector coupling E�
v = Ev.

With the MEC current defined in Eqs. (24-27), the
e↵ective one-body current j2(p,h) is generated by sum-
ming over the spin, isospin and momentum of the spec-
tator nucleon, as in Eq. (15). First, it can be observed
that due to the sum over isospin tk, the direct term is zero
(see Ref. [33] for details). Therefore, the many-body dia-
grams that contribute to the 1p1h MEC are those shown
in Figure 2. Furthermore, it can be verified that dia-
grams e and f are also zero. Therefore, only diagrams
a, b, c, and d survive and contribute to the 1p1h MEC
matrix elements.

III. RESULTS

In this section, we present results for the e↵ects of
MEC on the 1p1h response functions using several mod-
els: the relativistic Fermi gas, the relativistic mean field,
and the generalized SuSAM* model. By employing these
di↵erent models, we take into account relativistic kine-
matics and we can analyze the impact of including the
relativistic e↵ective mass of the nucleon and the � res-
onance appearing in the MEC. The scaling analysis de-
scribed in the previous Section will allow us to study the
influence of MEC on the generalized scaling function also
in the region | ⇤| > 1 where the RFG and RMF responses
are zero. Moreover, we can investigate how the inclusion
of MEC a↵ects the scaling function and compare it with
the predictions of the RFG and RMF models.
Unless stated otherwise, we present the results for 12C

with a Fermi momentum of kF = 225 MeV/c. We use
an e↵ective mass of M⇤ = 0.8, following the same choice
of parameters as in reference [44, 45]. The calculation
of 1p1h responses involves evaluating the 1p1h matrix
element of the MEC, as given by Eq (15). This requires
performing a numerical three-dimensional integration to
account for the momentum dependence. Subsequently,
a one-dimensional integration is carried out to calculate
the averaged single-nucleon responses, as described in Eq
(31).
First, since this work is an extension of the MEC model

from Ref. [33] to the superscaling formalism, we will com-
pare with the OB-MEC interference responses presented
in [33] within the framework of the RFG. It should be
noted that in [33] a di↵erent version of the � current
was used. The � current was obtained from the �N�
Lagrangian proposed by Pascalutsa [58]

L�N� = ie
G1

2mN
 
↵
⇥↵µ�⌫�5T

†
3NF ⌫µ + h.c., (61)

plus O(1/m2
N ) terms that give negligible contribution in

the quasielastic energy region. The tensor ⇥↵µ may con-
tain an o↵-shell parameter and another arbitrary param-
eter related to the contact invariance of the Lagrangian.

MEC in the 1p1h channel

Two-body currents can also excite 1p1h states

Wμν
1p1h ∼ ∑

ph

< ph | ̂Jμ |A >* < ph | ̂Jν |A >

̂Jμ = ̂Jμ
1b + ̂Jμ

2b → Wμν
1p1h = Wμν

OB + Wμν
MEC + Wμν

OB−MEC

pure 
MEC
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FIG. 11: Comparison of OB-MEC interference in the trans-
verse response (black lines) with the pure MEC transverse
response (red lines) for several values of q in the RMF model.

fers, ranging from q = 300 MeV/c to q = 1500 MeV/c.
Both calculations include the e↵ects of MEC. One no-
table di↵erence between the two approaches is the pres-
ence of a pronounced tail at high energy transfer rates
in the SuSAM* results. This tail extends well beyond
the upper limit of the RFG responses, reflecting the ef-
fect of the phenomenological scaling function used in
the SuSAM* approach. Similar e↵ects are found in the
longitudinal response. Additionally, it is worth noting
that the peak height of the transverse response in the
SuSAM* approach is generally higher compared to the
RMF model. Overall, the comparison in Fig. 15 high-
lights the improvements and additional physics captured
by the SuSAM* approach, by extending the scaling func-
tion of the RFG to describe the transverse response in a
wider energy transfer range.

Finally, in Fig. 16, we present the results for the (e,e’)
double di↵erential cross section of 12C calculated with
the generalized SuSAM* model including MEC, com-
pared to experimental data for selected kinematics. We
also compare with the same model but assuming that
only the single-nucleon contribution is present, i.e., set-
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FIG. 12: The same as Fig. 11 in the SuSAM* model.

ting the MEC to zero. We observe that the inclusion of
MEC in this model leads to a small reduction in the cross
section compared to the case without MEC. This reduc-
tion is a consequence of the decrease in the transverse
response due to the presence of MEC. The generalized
scaling approach, including the inclusion of MEC, pro-
vides a global description of the cross section that is com-
parable to other previous analyses, such as the SuSAM*
model with the one-body current only, or the SuSAv2
model, which factorize di↵erent definitions of the single
nucleon (without e↵ective mass and with extrapolation of
the Fermi gas single nucleon in the case of SuSAv2). All
of these approaches reasonably describe the quasielastic
cross section because the scaling function has been prop-
erly adjusted to reproduce the global scaling data. The
generalized scaling approach, like any parametrization, is
a phenomenological framework that aims to capture the
essential physics of the reaction. It provides a functional
form for the cross section that incorporates the known in-
gredients and leaves the unknowns to be determined by
the scaling function. The scaling function encapsulates
the e↵ects of various dynamical and correlation e↵ects,
allowing for a global description of the data.
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The negative interference dominates

P. Casale, J.E. Amaro, MBB, arXiv:2307.15783 [nucl-th]
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1p1h MEC can be incorporated in the SuSA formalism

w/o MEC
w MEC
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mental data are from Refs. [68, 69].
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APPENDIX: SINGLE-NUCLEON CROSS SECTION

In this appendix we provide the elementary cross section
for the reaction

ν(ν̄)N → ν(ν̄)N. (A1)

The single-nucleon cross section σ ∼ lµνw
µν is given in term

of the leptonic tensor (assuming m = m′ = 0)

lµν = KµK ′
ν + K ′

µKν − (KK ′)gµν + iχεµναβKαK ′β (A2)

with χ = +1 for neutrinos and −1 for antineutrinos, and of
the hadronic tensor

wµν = w
µν
S + w

µν
A . (A3)

This can be decomposed into a symmetric

w
µν
S = w

µν
V V + w

µν
AA (A4)

w
µν
V V = −w1V (τ )

(
gµν + κµκν

τ

)
+ w2V (τ )XµXν (A5)

w
µν
AA = −w1A(τ )

(
gµν + κµκν

τ

)
+ w2A(τ )XµXν

−u1A(τ )
κµκν

τ
+ u2A(τ ) (κµην + ηµκν) (A6)

and an antisymmetric

w
µν
A = w

µν
V A = 2iw3(τ )εµναβηακβ + w4(τ ) (κµην − ηµκν)

(A7)

tensor, where

Xµ ≡ ηµ + η · κ

τ
κµ on−shell= ηµ + κµ (A8)

having introduced the dimensionless variables κµ ≡ (λ, κ) =
Qµ/2mN, ηµ = P µ/mN, τ = κ2 − λ2. Note that u1A (the
pseudoscalar term), u2A, and w4 do not contribute to lµνw

µν ,
because

lµνκ
µ = (KµK ′

ν + K ′
µKν − gµνKK ′)(Kµ − K ′µ) = 0

(A9)
and

lµνκ
ν = (KµK ′

ν + K ′
µKν − gµνKK ′)(Kν − K ′ν) = 0

(A10)
if the leptons are massless. By contracting the above tensors
we get

lµνw
µν = x0 {vLRL + vT RT + vT T RT T + vT LRT L

+χ (2vT ′RT ′ + 2vT L′RT L′)} (A11)

where x0 ≡ 2εε′ cos2 θl/2, θl is the lepton scattering angle,
ρ ≡ τ/κ2 and

vL = ρ2 vT = 1
2
ρ + tan2 θl

2
, vT T = −1

2
ρ (A12)

vT L = − 1√
2
ρ

√
ρ + tan2 θl

2
(A13)

vT ′ = tan
θl

2

√
ρ + tan2 θl

2
, vT L′ = − 1√

2
ρ tan

θl

2
. (A14)

The response functions are

RL = w00, RT = w11 + w22, RT T = w22 − w11 (A15)

RT L =
√

2(w01 + w10) (A16)

RT ′ = iw21, RT L′ = i
√

2w20. (A17)

In terms of the structure functions w1, w2, w3 the above
response functions read (for on-shell nucleons, η · κ = τ ):

RL = −w1(τ )
κ2

τ
+ w2(τ )(ε + λ)2 (A18)

RT = 2w1(τ ) + w2(τ )η2 sin2 θ (A19)

RT T = −w2(τ )η2 sin2 θ cos(2φ) (A20)

RT L = 2
√

2w2(τ )(ε + λ)η sin θ cos φ (A21)

RT ′ = 2w3(τ )
τ

κ
(ε + λ) (A22)

RT L′ = 2
√

2w3(τ )κη sin θ cos φ (A23)

where the angles θ and φ define the bound-nucleon direction
with respect to the reference system used in the t-channel
(q along the z axis), its energy being ε ≡ E/mN . Note that
in this system φ = φN (the outgoing nucleon’s azimuthal
angle).

In the usual t-channel inclusive scattering the T T , T L, and
T L′ responses vanish, because they are integrated over the
azimuthal angle φ throughout the full range (0, 2π ); however,
this does not occur in u-channel inclusive processes, where
the integration over the outgoing lepton implies an integration
over the full range of φ′, but not of φ. From Eqs. (A17)–(A22)
we see that two of the responses are proportional to the small
bound-nucleon momentum parameter η ∼= 1/4; namely RT L

and RT L′ are both O(η) and therefore vanish in the limit η → 0.
Accordingly, the TL and T L′ responses are expected to be
smaller than the L, T , and T ′ responses that survive in the
limit η → 0. However, because RT T is O(η2), one expects
that the TT contributions should be the smallest, as is verified
by examining the results in Sec. III.

In terms of single-nucleon form factors the structure
functions are (a = p, n):

w1a(τ ) = τG̃2
Ma(τ ) + (1 + τ )G̃2

Aa(τ ) (A24)

w2a(τ ) = G̃2
Ea(τ ) + τG̃2

Ma(τ )
1 + τ

+ G̃2
Aa(τ ) (A25)

w3a(τ ) = G̃Ma(τ )G̃Aa(τ ) (A26)

where [24]

G̃Ep(τ ) = (2 − 4 sin2 θW )GT =1
E (τ )

− 4 sin2 θWGT =0
E (τ ) − G

(s)
E (τ ) (A27)

G̃En(τ ) = −(2 − 4 sin2 θW )GT =1
E (τ )

− 4 sin2 θWGT =0
E (τ ) − G

(s)
E (τ ) (A28)

G̃Mp(τ ) = (2 − 4 sin2 θW )GT =1
M (τ )

− 4 sin2 θWGT =0
M (τ ) − G

(s)
M (τ ) (A29)

G̃Mn(τ ) = −(2 − 4 sin2 θW )GT =1
M (τ )

− 4 sin2 θWGT =0
M (τ ) − G

(s)
M (τ ) (A30)
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we get
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2
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2
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where the angles θ and φ define the bound-nucleon direction
with respect to the reference system used in the t-channel
(q along the z axis), its energy being ε ≡ E/mN . Note that
in this system φ = φN (the outgoing nucleon’s azimuthal
angle).

In the usual t-channel inclusive scattering the T T , T L, and
T L′ responses vanish, because they are integrated over the
azimuthal angle φ throughout the full range (0, 2π ); however,
this does not occur in u-channel inclusive processes, where
the integration over the outgoing lepton implies an integration
over the full range of φ′, but not of φ. From Eqs. (A17)–(A22)
we see that two of the responses are proportional to the small
bound-nucleon momentum parameter η ∼= 1/4; namely RT L

and RT L′ are both O(η) and therefore vanish in the limit η → 0.
Accordingly, the TL and T L′ responses are expected to be
smaller than the L, T , and T ′ responses that survive in the
limit η → 0. However, because RT T is O(η2), one expects
that the TT contributions should be the smallest, as is verified
by examining the results in Sec. III.

In terms of single-nucleon form factors the structure
functions are (a = p, n):

w1a(τ ) = τG̃2
Ma(τ ) + (1 + τ )G̃2

Aa(τ ) (A24)
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E (τ ) (A27)
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E (τ ) − G

(s)
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G̃Ap(τ ) = −2G
(3)
A (τ ) + G

(s)
A (τ ) (A31)

G̃An(τ ) = 2G
(3)
A (τ ) + G

(s)
A (τ ). (A32)

In the above

GT =0
E (τ ) = 1

2 [GEp(τ ) + GEn(τ )] (A33)

GT =1
E (τ ) = 1

2 [GEp(τ ) − GEn(τ )] (A34)

GT =0
M (τ ) = 1

2 [GMp(τ ) + GMn(τ )] (A35)

GT =1
M (τ ) = 1

2 [GMp(τ ) − GMn(τ )] (A36)

are the electromagnetic isoscalar and isovector Sachs form
factors, whereas the isovector axial-vector form factor is

given by

G
(3)
A (τ ) = 1

2 (D + F )GD
A (τ ) (A37)

with D = 1.262/1.64, F = 0.64D, and GD
A (τ ) = (1 +

3.32τ )−2.
The strangeness form factors are parametrized as follows:

G
(s)
E (τ ) = ρsτGD

V (τ ) (A38)

G
(s)
M (τ ) = µsG

D
V (τ ) (A39)

G
(s)
S (τ ) = gs

AGD
A (τ ), (A40)

with GD
V (τ ) = (1 + 4.97τ )−2.
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dσ
dENdΩN

∼ lμνWμν = x0 [vLRL + vT RT + vTT RTT + vTLRTL ± (2vT′ RT′ + 2vTL′ RTL′ )]

Neutral current (anti)neutrino-nucleus cross section gives 
access to the strange form factors of the nucleon

ν ν′ 

N N′ 

Z0

Complementary information on strange FFs from PVES with polarised electrons ,  and ⃗ep ⃗ed ⃗e 4He

Neutral Current  neutrino scattering and the nucleon’s strangeness

Collaboration with Carlotta Giusti, Martin Ivanov and Stephen Pate



✦  Previous simultaneous determination of ,  and  from PVES and  NCE -N dataGs
E(Q2) Gs

M(Q2) Gs
A(Q2) ν(ν̄)

)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5
E734

G0

SAMPLE

HAPPEx

PVA4

pν

pν

epForward 

He4 e Forward 

epBackward 

edBackward 

Overview of the 49 Cross Section and 
Parity Violating Asymmetry Data Points

3/1/22 3

49 points

3/1/22 7

HAPPEx (forward ep) + G0 (forward and backward ep)
Ahmed et al. PRL 108 (2012) 102001

Uncertainty Limits 
(modified-dipole model)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1−

0.5−

0

0.5

1−

0.5−

0

0.5

s
AG

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0.2−

0

0.2

0.4

0.2−

0

0.2

0.4

s
MG

)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0.2−

0

0.2

0.2−

0

0.2

s
EG

Note 
change in 
vertical 
scale!

⇒

3/1/22 7

HAPPEx (forward ep) + G0 (forward and backward ep)
Ahmed et al. PRL 108 (2012) 102001

Uncertainty Limits 
(modified-dipole model)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1−

0.5−

0

0.5

1−

0.5−

0

0.5

s
AG

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0.2−

0

0.2

0.4

0.2−

0

0.2

0.4

s
MG

)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0.2−

0

0.2

0.2−

0

0.2

s
EG

Note 
change in 
vertical 
scale!

➡ Good determination of the s-quark contribution to the vector 
form factors (consistent with zero)

➡ Poor determination of the axial form factor due to lack of 
NCE data at low 

➡ Including MiniBooNE and (future) MicroBooNE data in 
the fit will improve the knowledge of 

➡ Nuclear models are needed for  (MB) and Ar ( B)
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Figure 28. NCE neutrino [panel (a), nN ! nN] and antineutrino [panel (b), nN ! nN]
flux-averaged differential cross section computed using the RFG, HO+FSI, NO+FSI, SuSA
scaling functions, RGF and RMF models and compared with the MiniBooNE data [207, 213].
The results have been obtained using the world-average axial mass MA = 1.032 GeV and
strangeness Ds = 0. The error bars do not account for the normalization uncertainty of 18.1%
(19.5%) in the n(n) case. Taken from Ref. [81].

Figure 29. RFG, HO+FSI, NO+FSI, SUSA, RGF, and RMF predictions, after the folding
procedure, compared with the histograms of the numerator (top-left panel) and denominator
(bottom-left panel) entering the ratio between n scattering from proton and nucleon (proton
plus neutron). The error bars in the left panel represent only the statistical uncertainty,
computed as the square root of the event number. The corresponding ratio is shown in the
right panel of the figure. The standard values of the axial mass and zero strangeness have been
assumed in all the calculations. Data are taken from [207, 220, 221]. Taken from Ref. [81].

spectral-function-based calculations leads to a slight depletion of the cross section being in
close agreement with the RFG prediction. The inclusion of FSI effects in the RGF model leads
to larger cross sections, in good agreement with the data. On the contrary, the SuSA and, in
particular, the RMF approaches lead to significantly smaller differential cross sections at low

➡HO and NO are two versions of the Spectral Function SF model

 

➡ Differences between models are non-negligible in cross 

sections but very small in the p/N ratio 

➡ The Relativistic Green Function model RGF-DEM and the RMF                    
are too time-consuming for this kind of analysis   we limited the 
study to SuSA and SF models 

→

Comparison with MiniBooNE data  Neutral Current Neutrino-Nucleus Scattering. Theory 48

Figure 28. NCE neutrino [panel (a), nN ! nN] and antineutrino [panel (b), nN ! nN]
flux-averaged differential cross section computed using the RFG, HO+FSI, NO+FSI, SuSA
scaling functions, RGF and RMF models and compared with the MiniBooNE data [207, 213].
The results have been obtained using the world-average axial mass MA = 1.032 GeV and
strangeness Ds = 0. The error bars do not account for the normalization uncertainty of 18.1%
(19.5%) in the n(n) case. Taken from Ref. [81].

Figure 29. RFG, HO+FSI, NO+FSI, SUSA, RGF, and RMF predictions, after the folding
procedure, compared with the histograms of the numerator (top-left panel) and denominator
(bottom-left panel) entering the ratio between n scattering from proton and nucleon (proton
plus neutron). The error bars in the left panel represent only the statistical uncertainty,
computed as the square root of the event number. The corresponding ratio is shown in the
right panel of the figure. The standard values of the axial mass and zero strangeness have been
assumed in all the calculations. Data are taken from [207, 220, 221]. Taken from Ref. [81].

spectral-function-based calculations leads to a slight depletion of the cross section being in
close agreement with the RFG prediction. The inclusion of FSI effects in the RGF model leads
to larger cross sections, in good agreement with the data. On the contrary, the SuSA and, in
particular, the RMF approaches lead to significantly smaller differential cross sections at low

Neutral Current Neutrino-Nucleus Scattering. Theory 48

Figure 28. NCE neutrino [panel (a), nN ! nN] and antineutrino [panel (b), nN ! nN]
flux-averaged differential cross section computed using the RFG, HO+FSI, NO+FSI, SuSA
scaling functions, RGF and RMF models and compared with the MiniBooNE data [207, 213].
The results have been obtained using the world-average axial mass MA = 1.032 GeV and
strangeness Ds = 0. The error bars do not account for the normalization uncertainty of 18.1%
(19.5%) in the n(n) case. Taken from Ref. [81].

Figure 29. RFG, HO+FSI, NO+FSI, SUSA, RGF, and RMF predictions, after the folding
procedure, compared with the histograms of the numerator (top-left panel) and denominator
(bottom-left panel) entering the ratio between n scattering from proton and nucleon (proton
plus neutron). The error bars in the left panel represent only the statistical uncertainty,
computed as the square root of the event number. The corresponding ratio is shown in the
right panel of the figure. The standard values of the axial mass and zero strangeness have been
assumed in all the calculations. Data are taken from [207, 220, 221]. Taken from Ref. [81].

spectral-function-based calculations leads to a slight depletion of the cross section being in
close agreement with the RFG prediction. The inclusion of FSI effects in the RGF model leads
to larger cross sections, in good agreement with the data. On the contrary, the SuSA and, in
particular, the RMF approaches lead to significantly smaller differential cross sections at low

HO and NO are two versions of the Spectral Function model 


The Relativistic Green Function model RGF-DEM would be too 

time-consuming for this kind of analysis


Differences between models are non-negligible in cross sections 

but very small in the p/N ratio

Comparison with MiniBooNE data  Neutral Current Neutrino-Nucleus Scattering. Theory 48

Figure 28. NCE neutrino [panel (a), nN ! nN] and antineutrino [panel (b), nN ! nN]
flux-averaged differential cross section computed using the RFG, HO+FSI, NO+FSI, SuSA
scaling functions, RGF and RMF models and compared with the MiniBooNE data [207, 213].
The results have been obtained using the world-average axial mass MA = 1.032 GeV and
strangeness Ds = 0. The error bars do not account for the normalization uncertainty of 18.1%
(19.5%) in the n(n) case. Taken from Ref. [81].

Figure 29. RFG, HO+FSI, NO+FSI, SUSA, RGF, and RMF predictions, after the folding
procedure, compared with the histograms of the numerator (top-left panel) and denominator
(bottom-left panel) entering the ratio between n scattering from proton and nucleon (proton
plus neutron). The error bars in the left panel represent only the statistical uncertainty,
computed as the square root of the event number. The corresponding ratio is shown in the
right panel of the figure. The standard values of the axial mass and zero strangeness have been
assumed in all the calculations. Data are taken from [207, 220, 221]. Taken from Ref. [81].

spectral-function-based calculations leads to a slight depletion of the cross section being in
close agreement with the RFG prediction. The inclusion of FSI effects in the RGF model leads
to larger cross sections, in good agreement with the data. On the contrary, the SuSA and, in
particular, the RMF approaches lead to significantly smaller differential cross sections at low

Neutral Current Neutrino-Nucleus Scattering. Theory 48

Figure 28. NCE neutrino [panel (a), nN ! nN] and antineutrino [panel (b), nN ! nN]
flux-averaged differential cross section computed using the RFG, HO+FSI, NO+FSI, SuSA
scaling functions, RGF and RMF models and compared with the MiniBooNE data [207, 213].
The results have been obtained using the world-average axial mass MA = 1.032 GeV and
strangeness Ds = 0. The error bars do not account for the normalization uncertainty of 18.1%
(19.5%) in the n(n) case. Taken from Ref. [81].

Figure 29. RFG, HO+FSI, NO+FSI, SUSA, RGF, and RMF predictions, after the folding
procedure, compared with the histograms of the numerator (top-left panel) and denominator
(bottom-left panel) entering the ratio between n scattering from proton and nucleon (proton
plus neutron). The error bars in the left panel represent only the statistical uncertainty,
computed as the square root of the event number. The corresponding ratio is shown in the
right panel of the figure. The standard values of the axial mass and zero strangeness have been
assumed in all the calculations. Data are taken from [207, 220, 221]. Taken from Ref. [81].

spectral-function-based calculations leads to a slight depletion of the cross section being in
close agreement with the RFG prediction. The inclusion of FSI effects in the RGF model leads
to larger cross sections, in good agreement with the data. On the contrary, the SuSA and, in
particular, the RMF approaches lead to significantly smaller differential cross sections at low
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Differences between models are non-negligible in cross sections 

but very small in the p/N ratio

M. Ivanov et al., Phys.Rev.C 91 (2015) 

Model comparison with MiniBooNE data
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✓ Great improvement of limits on 

 The low  region will be filled by future MicroBooNE data (more statistics,   down to 0.1 GeV  )
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