Dynamical Attractors in a Full Transport Approach

Vincenzo Nugara

In collaboration with: S. Plumari L. Oliva V. Greco

XIX Conference on Theoretical Nuclear Physics in Italy

3

October 13rd, 2023

Attractors in uRHICs.

• Relativistic Boltzmann Transport Approach

- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

・ロト ・ 四ト ・ ヨト ・ ヨト

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance

V. Nugara

• Summary and outlook

イロト 不得下 不同下 不同下

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

イロト 不良 トイヨト イロト

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

< □ > < □ > < □ > < □ > < □ > < □ >
 October 13rd, 2023

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance

V. Nugara

• Summary and outlook

ultra-Relativistic Heavy-Ion Collisions (uRHICs)

Dynamical Attractors in Full Transport

October 13rd, 2023

QGP characterisation

Non central collision \implies eccentricity in coordinate phase \implies azimuthal anisotropy in momentum space Elliptic flow $v_2 \simeq \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$

Elliptic flow suggests QGP has small η/s (shear viscosity/entropy density) ratio.

- $\eta/s \rightarrow 0 \longrightarrow$ ideal hydrodynamics
- $\eta/s \rightarrow \infty \longrightarrow$ free streaming (no hydro!)

Hydrodynamics gives a satisfactory picture of nearly-thermalised QGP, with predictions at fixed η/s .

P. Romatschke and U. Romatschke, PRL 99 (2007)

イロト イヨト イヨト

Dynamical Attractors in Full Transport

October 13rd, 2023 4 /

QGP characterisation

Non central collision \implies eccentricity in coordinate phase \implies azimuthal anisotropy in momentum space Elliptic flow $v_2 \simeq \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$

Elliptic flow suggests QGP has small η/s (shear viscosity/entropy density) ratio.

- $\eta/s \rightarrow 0 \longrightarrow$ ideal hydrodynamics
- $\eta/s \rightarrow \infty \longrightarrow$ free streaming (no hydro!)

Hydrodynamics gives a satisfactory picture of nearly-thermalised QGP, with predictions at fixed η/s .

P. Romatschke and U. Romatschke, PRL 99 (2007)

(日) (四) (日) (日) (日)

Dynamical Attractors in Full Transport

October 13rd, 2023 4 / 28

QGP characterisation

Non central collision \implies eccentricity in coordinate phase \implies azimuthal anisotropy in momentum space Elliptic flow $v_2 \simeq \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$

Elliptic flow suggests QGP has small η/s (shear viscosity/entropy density) ratio.

- $\eta/s \rightarrow 0 \longrightarrow$ ideal hydrodynamics
- $\eta/s \rightarrow \infty \longrightarrow$ free streaming (no hydro!)

Hydrodynamics gives a satisfactory picture of nearly-thermalised QGP, with predictions at fixed η/s .

P. Romatschke and U. Romatschke, PRL 99 (2007)

(日) (四) (日) (日) (日)

Dynamical Attractors in Full Transport

October 13rd, 2023 4 / 28

Attractors

What is an attractor?

Subset of the phase space to which all trajectories converge after a certain time.

Why do we look for attractors?

• Uncertainties in initial conditions affect final observables?

Memory of initial conditions?

• Appearance of attractors and **hydrodynamisation**. The issue of small systems, as produced by p-p or p-A collisions.

Jankowski, Spalinski, Hydrodynamic attractors in ultrarelativistic nuclear collisions, 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Attractors

What is an attractor?

Subset of the phase space to which all trajectories converge after a certain time.

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables? Memory of initial conditions?
- Appearance of attractors and hydrodynamisation. The issue of small systems, as produced by p-p or p-A collisions.

Jankowski, Spalinski, Hydrodynamic attractors in ultrarelativistic nuclear collisions, 2023

5 / 28

< □ ▶ < 圕 ▶ < 클 ▶ < 클 ▶ October 13rd 2023

Initial distribution function

f(p) in momentum space

Romatschke-Strickland Distribution Function

$$f_0(\mathsf{p};\gamma_0,\Lambda_0,\xi_0)=\gamma_0\exp\left(-rac{1}{\Lambda_0}\sqrt{p_\perp^2+p_w^2(1+\xi_0)}
ight),$$

where
$$p_{\perp}^2 = p_x^2 + p_y^2$$
 and $p_w = (p \cdot z)$.

- ξ_0 fixes initial pressure anisotropy P_L/P_T .
- Λ_0 and γ_0 fix initial energy density ε and particle density n.
- If $\xi_0 \to 0$ (isotropic distribution), $\Lambda_0 \to T_0$, $\gamma_0 \to \Gamma_0$.

Milne Coordinates (η_s, x, y, τ) : $\eta_s = \operatorname{atanh}(z/t), \ \tau = \sqrt{t^2 - z^2}.$

Initial distribution function

f(p) in momentum space

Romatschke-Strickland Distribution Function

$$f_0(\mathsf{p};\gamma_0,\Lambda_0,\xi_0)=\gamma_0\exp\left(-rac{1}{\Lambda_0}\sqrt{p_\perp^2+p_w^2(1+\xi_0)}
ight),$$

where $p_{\perp}^2 = p_x^2 + p_y^2$ and $p_w = (p \cdot z)$.

- ξ_0 fixes initial pressure anisotropy P_L/P_T .
- Λ_0 and γ_0 fix initial energy density ε and particle density n.
- If $\xi_0 \to 0$ (isotropic distribution), $\Lambda_0 \to T_0$, $\gamma_0 \to \Gamma_0$.

Milne Coordinates (η_s, x, y, τ) : $\eta_s = \operatorname{atanh}(z/t), \ \tau = \sqrt{t^2 - z^2}$.

伺下 イヨト イヨト

Normalized moments

Moments $M^{nm}[f]$ of the distribution function f(p)

$$M^{nm}[f] = \int \frac{d^3 \vec{p}}{(2\pi)^3 p^0} (u \cdot p)^n (z \cdot p)^{2m} f(p)$$

They carry information about the f(p) (M. Strickland JHEP 12, 128, (2010)).

All moments \iff whole f(p)

Attractors spotted in the normalized moments

$$\overline{M}^{nm}[f] = \frac{M^{nm}[f]}{M^{nm}[f_{eq}(T_{eff}, \Gamma_{eff})]}$$

 $f_{eq} = \Gamma_{eff} \exp(-p^0/T_{eff}))$. Matching conditions imply: $M^{10} = n$, $M^{20} = \varepsilon$, $M^{01} = P_L$ System equilibrates at large $\tau \implies \lim_{\tau \to \infty} \overline{M}^{nm}[f] = 1$.

Normalized moments

Moments $M^{nm}[f]$ of the distribution function f(p)

$$M^{nm}[f] = \int \frac{d^3 \vec{p}}{(2\pi)^3 p^0} (u \cdot p)^n (z \cdot p)^{2m} f(p)$$

They carry information about the f(p) (M. Strickland JHEP 12, 128, (2010)).

All moments \iff whole f(p)

Attractors spotted in the normalized moments

$$\overline{M}^{nm}[f] = \frac{M^{nm}[f]}{M^{nm}[f_{eq}(T_{eff}, \Gamma_{eff})]}$$

 $f_{eq} = \Gamma_{eff} \exp(-p^0/T_{eff}))$. Matching conditions imply: $M^{10} = n$, $M^{20} = \varepsilon$, $M^{01} = P_L$. System equilibrates at large $\tau \implies \lim_{\tau \to \infty} \overline{M}^{nm}[f] = 1$.

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

$$p^{\mu}\partial_{\mu}f(x,p) = C\left[f(x,p)\right]_{p}, \qquad (1$$

Only binary elastic $2 \leftrightarrow 2$ collisions:

$$C[f]_{p} = \int \frac{d^{3}p_{2}}{2E_{p_{2}}(2\pi)^{3}} \int \frac{d^{3}p_{1'}}{2E_{p_{1'}}(2\pi)^{3}} \int \frac{d^{3}p_{2'}}{2E_{p_{2'}}(2\pi)^{3}} (f_{1'}f_{2'} - f_{1}f_{2}) \times |\mathcal{M}|^{2} \delta^{(4)} (p_{1} + p_{2} - p_{1'} - p_{2'})$$
(2)

 \mathcal{M} : transition amplitude. $|\mathcal{M}|^2 = 16\pi \, s \, (s - 4m^2) \, d\sigma/dt.$

How to solve the Boltzmann Equation with the full collision integral C[f]? Numerical solution with test particle method: simulation of propagating particles which collide with locally fixed cross-section σ_{22} .

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

$$D^{\mu}\partial_{\mu}f(x,p) = C\left[f(x,p)\right]_{p},$$
(1)

Only binary elastic $2 \leftrightarrow 2$ collisions:

$$C[f]_{p} = \int \frac{d^{3}p_{2}}{2E_{p_{2}}(2\pi)^{3}} \int \frac{d^{3}p_{1'}}{2E_{p_{1'}}(2\pi)^{3}} \int \frac{d^{3}p_{2'}}{2E_{p_{2'}}(2\pi)^{3}} (f_{1'}f_{2'} - f_{1}f_{2}) \times |\mathcal{M}|^{2} \,\delta^{(4)} \left(p_{1} + p_{2} - p_{1'} - p_{2'}\right)$$
(2)

 ${\cal M}$: transition amplitude. $|{\cal M}|^2=16\pi\,s\,(s-4m^2)\,d\sigma/dt.$

How to solve the Boltzmann Equation with the full collision integral C[f]? Numerical solution with test particle method: simulation of propagating particles which collide with locally fixed cross-section σ_{22} .

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

$$p^{\mu}\partial_{\mu}f(x,p) = C\left[f(x,p)\right]_{p}, \qquad (1$$

Only binary elastic $2 \leftrightarrow 2$ collisions:

$$C[f]_{p} = \int \frac{d^{3}p_{2}}{2E_{p_{2}}(2\pi)^{3}} \int \frac{d^{3}p_{1'}}{2E_{p_{1'}}(2\pi)^{3}} \int \frac{d^{3}p_{2'}}{2E_{p_{2'}}(2\pi)^{3}} (f_{1'}f_{2'} - f_{1}f_{2}) \times |\mathcal{M}|^{2} \delta^{(4)} (p_{1} + p_{2} - p_{1'} - p_{2'})$$
(2)

 ${\cal M}$: transition amplitude. $|{\cal M}|^2=16\pi\,s\,(s-4m^2)\,d\sigma/dt.$

How to solve the Boltzmann Equation with the full collision integral C[f]? Numerical solution with test particle method: simulation of propagating particles which collide with locally fixed cross-section σ_{22} .

Relativistic Boltzmann Transport (RBT) Code

- C language: high performance (up to $3 \cdot 10^8 N_{\text{particles}}$)
- Stochastic Method to implement collisions (Xu, Greiner, PRC 71 (2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))
- Space discretisation: particles in the same cell can collide with probability $P_{22} \propto \sigma_{22}$
- 2 \leftrightarrow 2 collisions \Rightarrow Particle conservation: Fugacity $\Gamma \neq 1$
- Fix η/s by computing σ_{22} locally via the Chapman-Enskog formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012)):

$$\eta = f(m/T) \frac{T}{\sigma_{22}} \stackrel{m=0}{\simeq} 1.2 \frac{T}{\sigma_{22}}$$

Code setup for 1D boost-invariant systems

- Conformal system (m = 0)
- One-dimensional system

Homogeneous distribution and periodic boundary conditions in the transverse plane.

• Boost-invariant system. No dependence on $\eta!$

 $dN/d\eta = \text{const.}$ in $[-\eta_{s_{\text{max}}}, \eta_{s_{\text{max}}}]$, $\eta_{s_{\text{max}}}$ large enough to avoid propagation of information from boundaries.

Dynamical Attractors in Full Transport

October 13rd, 2023 10 / 28

イロト イヨト イヨト

Code setup for 1D boost-invariant systems

- Conformal system (m = 0)
- One-dimensional system

Homogeneous distribution and periodic boundary conditions in the transverse plane.

• Boost-invariant system. No dependence on $\eta!$

 $dN/d\eta = \text{const.}$ in $[-\eta_{s_{\text{max}}}, \eta_{s_{\text{max}}}]$, $\eta_{s_{\text{max}}}$ large enough to avoid propagation of information from boundaries.

Dynamical Attractors in Full Transport

October 13rd, 2023 10 / 28

イロト イヨト イヨト

Code setup for 1D boost-invariant systems

- Conformal system (m = 0)
- One-dimensional system

Homogeneous distribution and periodic boundary conditions in the transverse plane.

• Boost-invariant system. No dependence on $\eta!$

 $dN/d\eta = \text{const.}$ in $[-\eta_{s_{\text{max}}}, \eta_{s_{\text{max}}}]$, $\eta_{s_{\text{max}}}$ large enough to avoid propagation of information from boundaries.

Dynamical Attractors in Full Transport

October 13rd, 2023 10 / 28

< ロ > < 同 > < 回 > < 回 >

Forward Attractor

• Change initial anisotropy ξ_0 (and thus P_L/P_T).

• Fix anything else.

.

Dynamical Attractors in Full Transport

イロト 不得 トイヨト イヨト

October 13rd, 2023

- 32

Forward Attractor

- Change initial anisotropy ξ_0 (and thus P_L/P_T).
- Fix anything else.

.

Dynamical Attractors in Full Transport

・ロト ・ 四ト ・ ヨト ・ ヨト

October 13rd, 2023

3

• At $\tau = \tau_0$, three different distributions in momentum space: oblate ($\xi_0 = 10$), spherical ($\xi_0 = 0$) and prolate ($\xi_0 = -0.5$).

- Already at $\tau \sim 1$ fm, strong initial longitudinal expansion brings the system away from equilibrium
- Distribution functions have similar (but not identical) shape.

- At $\tau \sim 5$ fm, clear universal behaviour also for the distribution functions.
- Two components: strongly peaked p_{W} distribution and a more isotropic one (Strickland, JHEP 12, 128)

V. Nugara

Dynamical Attractors in Full Transport

October 13rd, 2023

• For large au the system is almost completely thermalized and isotropized.

Dynamical Attractors in Full Transport

Forward Attractor vs $\boldsymbol{\tau}$

Different initial anisotropies $\xi_0 = -0.5, 0, 10, \infty$, for $\eta/s = 1/4\pi$ and $\eta/s = 10/4\pi$.

- $\eta/s = 1/4\pi$: attractor at $\tau \sim$ 0.5 fm
- $\eta/s = 10/4\pi$: attractor at $\tau \sim 1.0~{
 m fm}$
- Not 10 times larger!
- Less collisions to reach the attractor?
- Different attractors for different η/s ?

16 / 28

<□ > < ☐ > < ≧ > < ≧ > < ≧ > October 13rd, 2023

Definition of the relaxation time

Hydrodynamics show attractors w.r.t scaled time τ/τ_{eq} . $\tau_{eq}^{\text{RTA}} = 5(\eta/s)/T$ enters in their equations as the relaxation time (Denicol *et al.PRD* 83, 074019). In our approach no need for a τ_{eq} !

Natural time scale: mean collision time per particle

$$\tau_{coll} = \frac{1}{2} \left(\frac{1}{N_{\text{part}}} \frac{\Delta N_{\text{coll}}}{\Delta t} \right)^{-1}$$

t can be shown that

$$\tau_{eq}^{\mathsf{RTA}} = \tau_{tr} = \frac{3}{2} \tau_{coll} \equiv \tau_{eq}^{\mathit{RBT}}$$

Definition of the relaxation time

Hydrodynamics show attractors w.r.t scaled time τ/τ_{eq} . $\tau_{eq}^{\text{RTA}} = 5(\eta/s)/T$ enters in their equations as the relaxation time (Denicol *et al.PRD* 83, 074019). In our approach no need for a τ_{eq} !

Natural time scale: mean collision time per particle

$$\tau_{\textit{coll}} = \frac{1}{2} \left(\frac{1}{\textit{N}_{\textit{part}}} \frac{\Delta\textit{N}_{\textit{coll}}}{\Delta t} \right)^{-1}$$

It can be shown that

$$\tau_{eq}^{\mathsf{RTA}} = \tau_{tr} = \frac{3}{2}\tau_{coll} \equiv \tau_{eq}^{RBT}$$

Forward Attractor vs τ/τ_{eq}

Different initial anisotropies $\xi_0 = -0.5, 0, 10, \infty$ for $\eta/s = 1/4\pi$ and $\eta/s = 10/4\pi$.

- $\eta/s=$ 1: attractor at $au \sim 1.5 \, au_{eq}$
- $\eta/s =$ 10: attractor at $au \sim$ 0.2 au_{eq}
- Less collisions per particle to reach the attractor?
- Unique attractor!

18 / 28

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □
 October 13rd, 2023

V. Nugara

Pull-back Attractor

.

- Fix the initial anisotropy ξ_0 .
- Change initial scaled time $\tau_0 T_0/(\eta/s)$. (If ratio fixed, same curve!).

Dynamical Attractors in Full Transport

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 October 13rd, 2023

Pull-back Attractor

.

- Fix the initial anisotropy ξ_0 .
- Change initial scaled time $\tau_0 T_0/(\eta/s)$. (If ratio fixed, same curve!).

Dynamical Attractors in Full Transport

< □ > < □ > < □ > < □ > < □ > < □ >
 October 13rd, 2023

Pull-back Attractor

Fix ξ_0 , change η/s and τ_0 : three values for the ratio $\tau_0/(4\pi\eta/s)$: 0.1, 0.01, 0.05 fm.

- Curves depend only on $au_0/(\eta/s)$ ratio
- Equilibration achieved at same τ/τ_{eq}
- Attractor reached at different τ/τ_{eq}

October 13rd, 2023

ullet Initial \sim free streaming

20 / 28

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland *et al.PRD*, 97, 036020 (2018));
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke *PRL* 120, 012301 (2018)) : $\tau_0 \ll 1$ and $\xi_0 \to \infty$ (in accordance with aHydro).

Infinitely oblate distribution $\xi_0 \to \infty$, initial scaled time $\tau_0 T_0/(\eta/s) \to 0$.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.

Dynamical Attractors in Full Transport

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 October 13rd 2023

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland *et al.PRD*, 97, 036020 (2018));
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke *PRL* 120, 012301 (2018)) : $\tau_0 \ll 1$ and $\xi_0 \to \infty$ (in accordance with aHydro).

Infinitely oblate distribution $\xi_0 \to \infty$, initial scaled time $\tau_0 T_0/(\eta/s) \to 0$.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.

Dynamical Attractors in Full Transport

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland *et al.PRD*, 97, 036020 (2018));
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke *PRL* 120, 012301 (2018)) : $\tau_0 \ll 1$ and $\xi_0 \to \infty$ (in accordance with aHydro).

Infinitely oblate distribution $\xi_0 \to \infty$, initial scaled time $\tau_0 T_0/(\eta/s) \to 0$.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.

Dynamical Attractors in Full Transport

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland *et al.PRD*, 97, 036020 (2018));
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke *PRL* 120, 012301 (2018)) : $\tau_0 \ll 1$ and $\xi_0 \to \infty$ (in accordance with aHydro).

Infinitely oblate distribution $\xi_0 \to \infty$, initial scaled time $\tau_0 T_0/(\eta/s) \to 0$.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.

Dynamical Attractors in Full Transport

< □ > < 酉 > < 酉 > < 亘 > < 亘 > October 13rd 2023

Attractors in different models

- \overline{M}^{nm} , m > 0: very good agreement
- Higher order moments \rightarrow stronger departure between models
- **RBT** thermalizes earlier

October 13rd, 2023

• No agreement for M^{n0}

22 / 28

Are attractors due to boost-invariance?

Finite distribution in η

- Tails of the distribution function at $|\eta_{s}| > 1$
- Discontinuity in initial distribution \rightarrow non-analyticity points in moments' evolution

4000 2000 -3 -2 -1 0 1 2 3 4 -5 -4 η_s October 13rd, 2023 24 / 28 Dynamical Attractors in Full Transport

5

Attractors at finite rapidity

Forward attractor. Fixed $\eta/s = 1/4\pi$.

Pull-back attractor. Fixed $\xi_0 = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

25 / 28

Universal behaviour even at $\eta_s = 3$, outside the initial distribution range!

Are attractors due to boost-invariance?

No.

Dynamical Attractors in Full Transport

Are attractors due to boost-invariance? No.

Summary

- Attractors appear in the conformal boost-invariant case in the normalized moments of the distribution function and in the distribution function itself.
- RTA and aHydro attractors converge to the full Boltzmann ones: the larger the moments' order, the later the convergence.
- Non boost-invariant systems still show universal behaviour, also at quite large η_s .

Outlook

- Non-conformal simulation in progress
- Full 3+1D simulation in progress
- Realistic initial conditions
- Attractors in collective flows

Dynamical Attractors in Full Transport

October 13rd . 2023

Thank you for your attention.

LRF and matching conditions

Define the Landau Local Rest Frame (LRF) via the fluid four-velocity:

$$T^{\mu
u}u_
u = arepsilon u^\mu, \ n = n^\mu u_\mu$$

 ε and *n* are the energy and particles density in the LRF. Fluid is not in equilibrium \implies define locally effective T and Γ via Landau matching conditions:

$$T = rac{\varepsilon}{3 n}, \qquad \Gamma = rac{n}{d T^3/\pi^2},$$

d is the # of dofs, fixed d = 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transport code: consistency checks

Collision Rate

Expected and computed collision rate in unit of n^2 as a function of z = m/T. Theoretical value $R = \frac{1}{2}n^2 \langle \sigma v \rangle.$

Thermalisation

Particles initialised with momentum modulus p = 1.2 GeV. Within $t \sim 0.6$ fm the system thermalises; equilibrium temperature T = 0.4 GeV \sim October 13rd, 2023 30 / 28

Code setup

- Cell: $\Delta x = \Delta y = 0.4$ fm, $\Delta \eta_s = 0.08$. Results taken in one-cell-thick slices in η_s .
- Test particles: from 10^7 up to $3 \cdot 10^8$.
- Time discretization: to avoid causality violation ($\sim 10^3$ time steps).
- Performance: 1 core-hour per 10^6 total particles in $2 \cdot 10^3$ time steps.
- Initial conditions: $T_0=0.5$ GeV, $\Gamma_0=1,~\xi_0=-0.5,~0,~10,~+\infty$

31 / 28

(日) (四) (日) (日) (日)

Testing boost-invariance

Compute normalized moments at different η_s 's within an interval $\Delta \eta_s = 0.04$.

No dependence on η ! We look for them at midrapidity: $\eta \in [-0.02, 0.02]$

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)

$$p^{\mu}\partial_{\mu}f_{p}=-rac{p\cdot u}{ au_{eq}}(f_{eq}-f_{p}).$$

Exactly solvable, by fixing number and energy conservation. Two coupled integral equations for $\Gamma_{eff} \equiv \Gamma$ and $T_{eff} \equiv T$: $\Gamma(\tau)T^4(\tau) = D(\tau,\tau_0)\Gamma_0 T_0^4 \frac{\mathcal{H}(\alpha_0\tau_0/\tau)}{\mathcal{H}(\alpha_0)} + \int_{\tau_0}^{\tau} \frac{d\tau'}{2\tau_{eq}(\tau')}D(\tau,\tau')\Gamma(\tau')T^4(\tau')\mathcal{H}\left(\frac{\tau'}{\tau}\right),$ $\Gamma(\tau)T^3(\tau) = \frac{1}{\tau} \left[D(\tau,\tau_0)\Gamma_0 T_0^3\tau_0 + \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')}D(\tau,\tau')\Gamma(\tau')T^3(\tau')\tau' \right].$

Here $\alpha = (1 + \xi)^{-1/2}$. System solvable by iteration.

Dynamical Attractors in Full Transport

October 13rd, 2023 33 / 28

イロト 不得 トイヨト イヨト 二日

vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation, starting from kinetic theory (G. S. Denicol *et al.*, *PRL*105, 162501 (2010)) :

$$\partial_{ au}arepsilon = -rac{1}{ au}(arepsilon + P - \pi), \ \partial_{ au}\pi = -rac{\pi}{ au_{\pi}} + rac{4}{3}rac{\eta}{ au_{\pi au}} - eta_{\pi}rac{\pi}{ au},$$

where $\tau_{\pi} = 5(\eta/s)/T$ and $\beta_{\pi} = 124/63$. Solved with a Runge-Kutta-4 algorithm.

aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Almaalol, Algahtani, Strickland, PRC 99, 2019). System of three coupled ODEs:

$$\partial_{ au}\log\gamma + 3\partial_{ au}\log\Lambda - rac{1}{2}rac{\partial_{ au}\xi}{1+\xi} + rac{1}{ au} = 0;$$

 $\partial_{ au}\log\gamma + 4\partial_{ au}\log\Lambda + rac{\mathcal{R}'(\xi)}{\mathcal{R}(\xi)}\partial_{ au}\xi = rac{1}{ au}\left[rac{1}{\xi(1+\xi)\mathcal{R}(\xi)} - rac{1}{\xi} - 1
ight];$
 $\partial_{ au}\xi - rac{2(1+\xi)}{ au} + rac{\xi(1+\xi)^2\mathcal{R}^2(\xi)}{ au_{eq}} = 0.$

Solved with a Runge-Kutta-4 algorithm.

October 13rd, 2023

35 / 28

イロト イヨト イヨト

Auxiliary functions

$$D(\tau_2, \tau_1) = \exp\left[-\int_{\tau_1}^{\tau_2} \frac{d\tau}{\tau_{eq}\tau}\right];$$
$$\mathcal{H}^{nm}(y) = \frac{2y^{2m+1}}{2m+1} F_1\left(\frac{1}{2} + m, \frac{1-n}{2}; \frac{3}{2} + m; 1-y^2\right).$$

1

Dynamical Attractors in Full Transport

October 13rd, 2023

・ロン ・四と ・ヨン ・ヨ

Computation of moments in other models

• RTA:

$$\begin{split} \mathcal{M}^{nm}(\tau) &= \frac{(n+2m+1)!}{(2\pi)^2} \Big[D(\tau,\tau_0) \alpha_0^{n+2m-2} T_0^{n+2m+2} \Gamma_0 \frac{\mathcal{H}^{nm}(\alpha\tau_0/\tau)}{[\mathcal{H}^{20}(\alpha_0)/2]^{n+2m-1}} + \\ &+ \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')} D(\tau',\tau') \Gamma(\tau') T^{n+2m+2}(\tau') \mathcal{H}^{nm}\left(\frac{\tau'}{\tau}\right) \Big]; \end{split}$$

• DNMR:

$$\overline{M}^{nm}_{\mathsf{DNMR}} = 1 - rac{3m(n+2m+2)(n+2m+3)}{4(2m+3)} rac{\pi}{arepsilon};$$

• a Hydro:

$$\overline{M}_{\mathsf{aHydro}}^{nm}(\tau) = (2m+1)(2\alpha)^{n+2m-2} \frac{\mathcal{H}^{nm}(\alpha)}{[\mathcal{H}^{20}(\alpha)]^{n+2m-1}};$$

Comparison with other models

Compute normalized moments with DNMR, anisotropic hydrodynamics (aHydro) and Relaxation Time Approximation (RTA) Boltzmann Equation.

- Better agreement with RTA and aHydro for lower order moments
- Better agreement with DNMR for lower η/s (V. Ambrus *et al.*, PRD 104.9 (2021))

Dynamical Attractors in Full Transport

October 13rd, 2023

Pressure anisotropy in different frameworks

For $\eta/s = 1/4\pi$ and $\eta/s = 10/4\pi$, compute P_L/P_T from three different initial anisotropies: $\xi_0 = -0.5, 0, 10.$

- RTA (not showed) really similar to aHydro
- \bullet aHydro attractor reached \sim time than RBT
- vHydro attractor reached at later time, especially for larger η/s

イロト イボト イヨト イヨト

39 / 28

```
V. Nugara
```

October 13rd, 2023

Midrapidity

At midrapidity no difference w.r.t. the boost invariant case.

V. Nugara

Dynamical Attractors in Full Transport

T-dependent η/s : Plot with respect to τ

T-dependent η/s : Plot with respect to τ/τ_{ea}

Non-monotonic τ/τ_{eq} for Case 1

Dynamical Attractors in Full Transport

October 13rd, 2023 43 / 28

イロト 不得下 イヨト イヨト