Dynamical Attractors in a Full Transport Approach

Vincenzo Nugara

In collaboration with:
S. Plumari
L. Oliva
V. Greco

XIX Conference on Theoretical Nuclear Physics in Italy

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

Outline

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

Outline

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

Outline

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

Outline

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

Outline

- Attractors in uRHICs
- Relativistic Boltzmann Transport Approach
- Boost-invariant systems
- Breaking boost-invariance
- Summary and outlook

ultra-Relativistic Heavy-Ion Collisions (uRHICs)

QGP characterisation

Non central collision \Longrightarrow eccentricity in coordinate phase \Longrightarrow azimuthal anisotropy in momentum space

$$
\text { Elliptic flow } v_{2} \simeq\left\langle\frac{p_{x}^{2}-p_{y}^{2}}{p_{x}^{2}+p_{y}^{2}}\right\rangle
$$

Elliptic flow suggests QGP has small η / s (shear viscosity/entropy density) ratio.

- $\eta / s \rightarrow 0 \longrightarrow$ ideal hydrodynamics
- $\eta / s \rightarrow \infty \longrightarrow$ free streaming (no hydro!)

QGP characterisation

Non central collision \Longrightarrow eccentricity in coordinate phase \Longrightarrow azimuthal anisotropy in momentum space

$$
\text { Elliptic flow } v_{2} \simeq\left\langle\frac{p_{x}^{2}-p_{y}^{2}}{p_{x}^{2}+p_{y}^{2}}\right\rangle
$$

Elliptic flow suggests QGP has small η / s (shear viscosity/entropy density) ratio.

- $\eta / s \rightarrow 0 \longrightarrow$ ideal hydrodynamics
- $\eta / s \rightarrow \infty \longrightarrow$ free streaming (no hydro!)

P. Romatschke and U. Romatschke, PRL 99 (2007)

QGP characterisation

Non central collision \Longrightarrow eccentricity in coordinate phase \Longrightarrow azimuthal anisotropy in momentum space

$$
\text { Elliptic flow } v_{2} \simeq\left\langle\frac{p_{x}^{2}-p_{y}^{2}}{p_{x}^{2}+p_{y}^{2}}\right\rangle
$$

Elliptic flow suggests QGP has small η / s (shear viscosity/entropy density) ratio.

- $\eta / s \rightarrow 0 \longrightarrow$ ideal hydrodynamics
- $\eta / s \rightarrow \infty \longrightarrow$ free streaming (no hydro!)

P. Romatschke and U. Romatschke, PRL 99 (2007)

Attractors

What is an attractor?
Subset of the phase space to which all trajectories converge after a certain time.

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables? Memory of initial conditions?
- Appearance of attractors and hydrodynamisation. The issue of small systems, as produced by $\mathrm{p}-\mathrm{p}$ or $\mathrm{p}-\mathrm{A}$ collisions.

Jankowski, Spalinski, Hydrodynamic attractors in ultrarelativistic nuclear collisions, 2023

Attractors

What is an attractor?
Subset of the phase space to which all trajectories converge after a certain time.

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables?
Memory of initial conditions?
- Appearance of attractors and hydrodynamisation. The issue of small systems, as produced by p-p or p-A collisions.

Jankowski, Spalinski, Hydrodynamic attractors in ultrarelativistic nuclear collisions, 2023

Initial distribution function

$$
f(p) \text { in momentum space }
$$

Romatschke-Strickland Distribution Function

$$
f_{0}\left(\mathrm{p} ; \gamma_{0}, \Lambda_{0}, \xi_{0}\right)=\gamma_{0} \exp \left(-\frac{1}{\Lambda_{0}} \sqrt{p_{\perp}^{2}+p_{w}^{2}\left(1+\xi_{0}\right)}\right)
$$

where $p_{\perp}^{2}=p_{x}^{2}+p_{y}^{2}$ and $p_{w}=(p \cdot z)$.

- ξ_{0} fixes initial pressure anisotropy P_{L} / P_{T}.
- Λ_{0} and γ_{0} fix initial energy density ε and particle density n.
- If $\xi_{0} \rightarrow 0$ (isotropic distribution), $\Lambda_{0} \rightarrow T_{0}, \gamma_{0} \rightarrow \Gamma_{0}$.

Milne Coordinates $\left(\eta_{s}, x, y, \tau\right): \eta_{s}=\operatorname{atanh}(z / t), \tau=\sqrt{t^{2}-z^{2}}$.

Initial distribution function

$$
f(p) \text { in momentum space }
$$

Romatschke-Strickland Distribution Function

$$
f_{0}\left(\mathrm{p} ; \gamma_{0}, \Lambda_{0}, \xi_{0}\right)=\gamma_{0} \exp \left(-\frac{1}{\Lambda_{0}} \sqrt{p_{\perp}^{2}+p_{w}^{2}\left(1+\xi_{0}\right)}\right)
$$

where $p_{\perp}^{2}=p_{x}^{2}+p_{y}^{2}$ and $p_{w}=(p \cdot z)$.

- ξ_{0} fixes initial pressure anisotropy P_{L} / P_{T}.
- Λ_{0} and γ_{0} fix initial energy density ε and particle density n.
- If $\xi_{0} \rightarrow 0$ (isotropic distribution), $\Lambda_{0} \rightarrow T_{0}, \gamma_{0} \rightarrow \Gamma_{0}$.

Milne Coordinates $\left(\eta_{s}, x, y, \tau\right): \eta_{s}=\operatorname{atanh}(z / t), \tau=\sqrt{t^{2}-z^{2}}$.

Normalized moments

Moments $M^{n m}[f]$ of the distribution function $f(p)$

$$
M^{n m}[f]=\int \frac{d^{3} \vec{p}}{(2 \pi)^{3} p^{0}}(u \cdot p)^{n}(z \cdot p)^{2 m} f(p)
$$

They carry information about the $f(p)$ (M. Strickland JHEP 12, 128, (2010)) . All moments \Longleftrightarrow whole $f(p)$

Attractors spotted in the normalized moments

$$
\bar{M}^{n m}[f]=\frac{M^{n m}[f]}{M^{n m}\left[f_{e q}\left(T_{\text {eff }}, \Gamma_{\text {eff }}\right)\right]}
$$

$\left.f_{\text {eq }}=\Gamma_{\text {eff }} \exp \left(-p^{0} / T_{\text {eff }}\right)\right)$. Matching conditions imply: $M^{10}=n, M^{20}=\varepsilon, M^{01}=P_{L}$ System equilibrates at large τ

Normalized moments

Moments $M^{n m}[f]$ of the distribution function $f(p)$

$$
M^{n m}[f]=\int \frac{d^{3} \vec{p}}{(2 \pi)^{3} p^{0}}(u \cdot p)^{n}(z \cdot p)^{2 m} f(p)
$$

They carry information about the $f(p)$ (M. Strickland JHEP 12, 128, (2010)) .

$$
\text { All moments } \Longleftrightarrow \text { whole } f(p)
$$

Attractors spotted in the normalized moments

$$
\bar{M}^{n m}[f]=\frac{M^{n m}[f]}{M^{n m}\left[f_{e q}\left(T_{\text {eff }}, \Gamma_{\text {eff }}\right)\right]}
$$

$\left.f_{e q}=\Gamma_{\text {eff }} \exp \left(-p^{0} / T_{\text {eff }}\right)\right)$. Matching conditions imply: $M^{10}=n, M^{20}=\varepsilon, M^{01}=P_{L}$. System equilibrates at large $\tau \Longrightarrow \lim _{\tau \rightarrow \infty} \bar{M}^{n m}[f]=1$.

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

$$
\begin{equation*}
p^{\mu} \partial_{\mu} f(x, p)=C[f(x, p)]_{p} \tag{1}
\end{equation*}
$$

Only binary elastic $2 \leftrightarrow 2$ collisions:

How to solve the Boltzmann Equation with the full collision integral C[f]?
Numerical solution with test particle method: simulation of propagating particles which collide with locally fixed cross-section σ_{22}.

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

$$
\begin{equation*}
p^{\mu} \partial_{\mu} f(x, p)=C[f(x, p)]_{p} \tag{1}
\end{equation*}
$$

Only binary elastic $2 \leftrightarrow 2$ collisions:

$$
\begin{align*}
C[f]_{\mathrm{p}} & =\int \frac{\mathrm{d}^{3} p_{2}}{2 E_{\mathrm{p}_{2}}(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p_{1^{\prime}}}{2 E_{\mathrm{p}_{1^{\prime}}}(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p_{2^{\prime}}}{2 E_{\mathrm{p}_{2^{\prime}}}(2 \pi)^{3}}\left(f_{1^{\prime}} f_{2^{\prime}}-f_{1} f_{2}\right) \\
& \times|\mathcal{M}|^{2} \delta^{(4)}\left(p_{1}+p_{2}-p_{1^{\prime}}-p_{2^{\prime}}\right) \tag{2}
\end{align*}
$$

\mathcal{M} : transition amplitude. $|\mathcal{M}|^{2}=16 \pi s\left(s-4 m^{2}\right) d \sigma / d t$.

[^0]
Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

$$
\begin{equation*}
p^{\mu} \partial_{\mu} f(x, p)=C[f(x, p)]_{p} \tag{1}
\end{equation*}
$$

Only binary elastic $2 \leftrightarrow 2$ collisions:

$$
\begin{align*}
C[f]_{\mathrm{p}} & =\int \frac{\mathrm{d}^{3} p_{2}}{2 E_{\mathrm{p}_{2}}(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p_{1^{\prime}}}{2 E_{\mathrm{p}_{1^{\prime}}}(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} p_{2^{\prime}}}{2 E_{\mathrm{p}_{2^{\prime}}}(2 \pi)^{3}}\left(f_{1^{\prime}} f_{2^{\prime}}-f_{1} f_{2}\right) \\
& \times|\mathcal{M}|^{2} \delta^{(4)}\left(p_{1}+p_{2}-p_{1^{\prime}}-p_{2^{\prime}}\right) \tag{2}
\end{align*}
$$

\mathcal{M} : transition amplitude. $|\mathcal{M}|^{2}=16 \pi s\left(s-4 m^{2}\right) d \sigma / d t$.
How to solve the Boltzmann Equation with the full collision integral $C[f]$?
Numerical solution with test particle method: simulation of propagating particles which collide with locally fixed cross-section σ_{22}.

Relativistic Boltzmann Transport (RBT) Code

- C language: high performance (up to $3 \cdot 10^{8} N_{\text {particles }}$)
- Stochastic Method to implement collisions (Xu, Greiner, PRC 71 (2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))
- Space discretisation: particles in the same cell can collide with probability $P_{22} \propto \sigma_{22}$
- $2 \leftrightarrow 2$ collisions \Rightarrow Particle conservation: Fugacity $\Gamma \neq 1$
- Fix η / s by computing σ_{22} locally via the Chapman-Enskog formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012)):

$$
\eta=f(m / T) \frac{T}{\sigma_{22}} \stackrel{m=0}{\simeq} 1.2 \frac{T}{\sigma_{22}}
$$

Code setup for 1D boost-invariant systems

- Conformal system ($m=0$)
- One-dimensional system

Homogeneous distribution and periodic boundary conditions in the transverse plane.

- Boost-invariant system. No dependence on η !
$d N / d \eta=$ const. in $\left[-\eta_{s_{\text {max }}}, \eta_{s_{\max }}\right], \eta_{s_{\text {max }}}$ large enough to avoid propagation of information from boundaries.

Code setup for 1D boost-invariant systems

- Conformal system $(m=0)$
- One-dimensional system

Homogeneous distribution and periodic boundary conditions in the transverse plane.

- Boost-invariant system. No dependence on η ! $d N / d \eta=$ const. in $\left[-\eta_{s_{\text {max }}}, \eta_{s_{\text {max }}}\right], \eta_{s_{\text {max }}}$ large enough to avoid propagation of information from boundaries.

Code setup for 1D boost-invariant systems

- Conformal system $(m=0)$
- One-dimensional system

Homogeneous distribution and periodic boundary conditions in the transverse plane.

- Boost-invariant system. No dependence on η !
$d N / d \eta=$ const. in $\left[-\eta_{s_{\text {max }}}, \eta_{s_{\text {max }}}\right], \eta_{s_{\text {max }}}$ large enough to avoid propagation of information from boundaries.

Forward Attractor

- Change initial anisotropy ξ_{0} (and thus P_{L} / P_{T}).
- Fix anything else.

Forward Attractor

- Change initial anisotropy ξ_{0} (and thus P_{L} / P_{T}).
- Fix anything else.

Distribution function evolution: Forward attractor vs $\tau, \eta / s=10 / 4 \pi$.

- At $\tau=\tau_{0}$, three different distributions in momentum space:
oblate ($\xi_{0}=10$),
spherical $\left(\xi_{0}=0\right)$ and prolate $\left(\xi_{0}=-0.5\right)$.

Dynamical Attractors in Full Transport

Distribution function evolution: Forward attractor vs $\tau, \eta / s=10 / 4 \pi$.

- Already at $\tau \sim 1 \mathrm{fm}$, strong initial longitudinal expansion brings the system away from equilibrium
- Distribution functions have similar (but not identical) shape.

Dynamical Attractors in Full Transport

Distribution function evolution: Forward attractor vs $\tau, \eta / s=10 / 4 \pi$.

- At $\tau \sim 5 \mathrm{fm}$, clear universal behaviour also for the distribution functions.
- Two components: strongly peaked p_{w} distribution and a more isotropic one (Strickland, JHEP 12, 128)

Distribution function evolution: Forward attractor vs $\tau, \eta / s=10 / 4 \pi$.

- For large τ the system is almost completely thermalized and isotropized.

Dynamical Attractors in Full Transport

Forward Attractor vs τ

Different initial anisotropies $\xi_{0}=-0.5,0,10, \infty$, for $\eta / s=1 / 4 \pi$ and $\eta / s=10 / 4 \pi$.

- $\eta / s=1 / 4 \pi$: attractor at $\tau \sim 0.5 \mathrm{fm}$
- $\eta / s=10 / 4 \pi$: attractor at $\tau \sim 1.0 \mathrm{fm}$
- Not 10 times larger!
- Less collisions to reach the attractor?
- Different attractors for different η / s ?

Definition of the relaxation time

Hydrodynamics show attractors w.r.t scaled time
$\tau / \tau_{\text {eq }} . \tau_{\text {eq }}^{\text {RTA }}=5(\eta / s) / T$ enters in their equations as the relaxation time (Denicol et al.PRD 83, 074019).
In our approach no need for a $\tau_{e q}$!

Definition of the relaxation time

Hydrodynamics show attractors w.r.t scaled time $\tau / \tau_{\text {eq }} . \tau_{\text {eq }}^{\text {RTA }}=5(\eta / s) / T$ enters in their equations as the relaxation time (Denicol et al.PRD 83, 074019) .
In our approach no need for a $\tau_{e q}$!
Natural time scale: mean collision time per particle

$$
\tau_{\text {coll }}=\frac{1}{2}\left(\frac{1}{N_{\text {part }}} \frac{\Delta N_{\text {coll }}}{\Delta t}\right)^{-1}
$$

It can be shown that

$$
\tau_{e q}^{\mathrm{RTA}}=\tau_{t r}=\frac{3}{2} \tau_{c o l l} \equiv \tau_{e q}^{R B T}
$$

Forward Attractor vs $\tau / \tau_{e q}$

Different initial anisotropies $\xi_{0}=-0.5,0,10, \infty$ for $\eta / s=1 / 4 \pi$ and $\eta / s=10 / 4 \pi$.

10^{0}
$\tau / \tau_{e q}$

- $\eta / s=1$: attractor at $\tau \sim 1.5 \tau_{\text {eq }}$

- $\eta / s=10$: attractor at $\tau \sim 0.2 \tau_{\text {eq }}$
- Less collisions per particle to reach the attractor?
- Unique attractor!

Dynamical Attractors in Full Transport

Pull-back Attractor

- Fix the initial anisotropy ξ_{0}.
- Change initial scaled time $\tau_{0} T_{0} /(\eta / s)$. (If ratio fixed, same curve!).

Pull-back Attractor

- Fix the initial anisotropy ξ_{0}.
- Change initial scaled time $\tau_{0} T_{0} /(\eta / s)$. (If ratio fixed, same curve!).

Pull-back Attractor

Fix ξ_{0}, change η / s and τ_{0} : three values for the ratio $\tau_{0} /(4 \pi \eta / s): 0.1,0.01,0.05 \mathrm{fm}$.

	$\mathbf{4} \pi \eta / \mathbf{s}$	$\tau_{\mathbf{0}}[\mathrm{fm}]$	ratio
-	1	0.1	0.1
---	2	0.2	0.1
-	10	0.1	0.01
.--	5	0.05	0.01
-	4	0.2	0.05
.---	2	0.1	0.05
.--	attractor		

- Curves depend only on $\tau_{0} /(\eta / s)$ ratio
- Equilibration achieved at same $\tau / \tau_{\text {eq }}$
- Attractor reached at different $\tau / \tau_{\text {eq }}$
- Initial ~ free streaming

Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland et al.PRD, 97, 036020 (2018)) ;
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301 (2018)) : $\tau_{0} \ll 1$ and $\xi_{0} \rightarrow \infty$ (in accordance with aHydro).

Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland et al.PRD, 97, 036020 (2018)) ;
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301 (2018)): $\tau_{0} \ll 1$ and $\xi_{0} \rightarrow \infty$ (in accordance with aHydro).

Infinitely oblate distribution $\xi_{0} \rightarrow \infty$, initial scaled time $\tau_{0} T_{0} /(\eta / s) \rightarrow 0$.

Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland et al.PRD, 97, 036020 (2018)) ;
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301 (2018)) : $\tau_{0} \ll 1$ and $\xi_{0} \rightarrow \infty$ (in accordance with aHydro).

Infinitely oblate distribution $\xi_{0} \rightarrow \infty$, initial scaled time $\tau_{0} T_{0} /(\eta / s) \rightarrow 0$.

Is it the RBT attractor, too?

The system initially is dominated by strong longitudinal expansion.

Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

- Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution (M. Strickland et al.PRD, 97, 036020 (2018)) ;
- Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301 (2018)): $\tau_{0} \ll 1$ and $\xi_{0} \rightarrow \infty$ (in accordance with aHydro).

Infinitely oblate distribution $\xi_{0} \rightarrow \infty$, initial scaled time $\tau_{0} T_{0} /(\eta / s) \rightarrow 0$.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.

Attractors in different models

--- vHydro
$\ldots-. .$. aHydro
-- RTA
- RBT

- $\bar{M}^{n m}, m>0$: very good agreement
- Higher order moments \rightarrow stronger departure between models
- RBT thermalizes earlier
- No agreement for $M^{n 0}$

Are attractors due to boost-invariance?

Finite distribution in η

Breaking boost-invariance: $\frac{d N}{d \eta_{s}}\left(\eta_{s} ; \tau_{0}\right)= \begin{cases}\text { const. } & \left|\eta_{s}\right|<2.5 \\ 0 & \text { elsewhere }\end{cases}$

- Tails of the distribution function at $\left|\eta_{s}\right|>1$
- Discontinuity in initial distribution \rightarrow non-analyticity points in moments' evolution

Attractors at finite rapidity

Forward attractor. Fixed $\eta / s=1 / 4 \pi$.

$$
\begin{aligned}
-\eta_{s} & =0.0 \\
---\eta_{s} & =2.0 \quad \xi_{0}=-0.5 \\
\cdots-\eta_{s} & =2.5-\xi_{0}=0 \\
\hdashline-\cdots \quad \eta_{s} & =3.0
\end{aligned}
$$

Pull-back attractor. Fixed $\xi_{0}=0$.

Universal behaviour even at $\eta_{s}=3$, outside the initial distribution range!

Are attractors due to boost-invariance?

Are attractors due to boost-invariance?

 No.
Summary

- Attractors appear in the conformal boost-invariant case in the normalized moments of the distribution function and in the distribution function itself.
- RTA and aHydro attractors converge to the full Boltzmann ones: the larger the moments' order, the later the convergence.
- Non boost-invariant systems still show universal behaviour, also at quite large η_{s}.

Outlook

- Non-conformal simulation in progress
- Full 3+1D simulation in progress
- Realistic initial conditions
- Attractors in collective flows

Thank you for your attention.

LRF and matching conditions

Define the Landau Local Rest Frame (LRF) via the fluid four-velocity:

$$
\begin{gathered}
T^{\mu \nu} u_{\nu}=\varepsilon u^{\mu}, \\
n=n^{\mu} u_{\mu}
\end{gathered}
$$

ε and n are the energy and particles density in the LRF.
Fluid is not in equilibrium \Longrightarrow define locally effective T and Γ via Landau matching conditions:

$$
T=\frac{\varepsilon}{3 n}, \quad \Gamma=\frac{n}{d T^{3} / \pi^{2}},
$$

d is the \# of dofs, fixed $d=1$.

Transport code: consistency checks

Collision Rate

Thermalisation

Expected and computed collision rate in unit of n^{2} as a function of $z=m / T$. Theoretical value $R=\frac{1}{2} n^{2}\langle\sigma v\rangle$.

Particles initialised with momentum modulus $p=1.2 \mathrm{GeV}$. Within $t \sim 0.6 \mathrm{fm}$ the system thermalises; equilibrium temperature $T \equiv 0.4 \mathrm{GeV}$.

Code setup

- Cell: $\Delta x=\Delta y=0.4 \mathrm{fm}, \Delta \eta_{s}=0.08$. Results taken in one-cell-thick slices in η_{s}.
- Test particles: from 10^{7} up to $3 \cdot 10^{8}$.
- Time discretization: to avoid causality violation ($\sim 10^{3}$ time steps).
- Performance: 1 core-hour per 10^{6} total particles in $2 \cdot 10^{3}$ time steps.
- Initial conditions: $T_{0}=0.5 \mathrm{GeV}, \Gamma_{0}=1, \xi_{0}=-0.5,0,10,+\infty$

Testing boost-invariance

Compute normalized moments at different η_{s} 's within an interval $\Delta \eta_{s}=0.04$.

No dependence on η ! We look for them at midrapidity: $\eta \in[-0.02,0.02]$

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)

$$
p^{\mu} \partial_{\mu} f_{p}=-\frac{p \cdot u}{\tau_{e q}}\left(f_{e q}-f_{p}\right) .
$$

Exactly solvable, by fixing number and energy conservation.
Two coupled integral equations for $\Gamma_{\text {eff }} \equiv \Gamma$ and $T_{\text {eff }} \equiv T$:

$$
\begin{gathered}
\Gamma(\tau) T^{4}(\tau)=D\left(\tau, \tau_{0}\right) \Gamma_{0} T_{0}^{4} \frac{\mathcal{H}\left(\alpha_{0} \tau_{0} / \tau\right)}{\mathcal{H}\left(\alpha_{0}\right)}+\int_{\tau_{0}}^{\tau} \frac{d \tau^{\prime}}{2 \tau_{e q}\left(\tau^{\prime}\right)} D\left(\tau, \tau^{\prime}\right) \Gamma\left(\tau^{\prime}\right) T^{4}\left(\tau^{\prime}\right) \mathcal{H}\left(\frac{\tau^{\prime}}{\tau}\right), \\
\Gamma(\tau) T^{3}(\tau)=\frac{1}{\tau}\left[D\left(\tau, \tau_{0}\right) \Gamma_{0} T_{0}^{3} \tau_{0}+\int_{\tau_{0}}^{\tau} \frac{d \tau^{\prime}}{\tau_{e q}\left(\tau^{\prime}\right)} D\left(\tau, \tau^{\prime}\right) \Gamma\left(\tau^{\prime}\right) T^{3}\left(\tau^{\prime}\right) \tau^{\prime}\right]
\end{gathered}
$$

Here $\alpha=(1+\xi)^{-1 / 2}$. System solvable by iteration.

vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation, starting from kinetic theory (G. S. Denicol et al., PRL105, 162501 (2010)) :

$$
\begin{gathered}
\partial_{\tau} \varepsilon=-\frac{1}{\tau}(\varepsilon+P-\pi), \\
\partial_{\tau} \pi=-\frac{\pi}{\tau_{\pi}}+\frac{4}{3} \frac{\eta}{\tau_{\pi} \tau}-\beta_{\pi} \frac{\pi}{\tau},
\end{gathered}
$$

where $\tau_{\pi}=5(\eta / s) / T$ and $\beta_{\pi}=124 / 63$.
Solved with a Runge-Kutta-4 algorithm.

aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Almaalol, Alqahtani, Strickland, PRC 99, 2019). System of three coupled ODEs:

$$
\begin{gathered}
\partial_{\tau} \log \gamma+3 \partial_{\tau} \log \Lambda-\frac{1}{2} \frac{\partial_{\tau} \xi}{1+\xi}+\frac{1}{\tau}=0 ; \\
\partial_{\tau} \log \gamma+4 \partial_{\tau} \log \Lambda+\frac{\mathcal{R}^{\prime}(\xi)}{\mathcal{R}(\xi)} \partial_{\tau} \xi=\frac{1}{\tau}\left[\frac{1}{\xi(1+\xi) \mathcal{R}(\xi)}-\frac{1}{\xi}-1\right] ; \\
\partial_{\tau} \xi-\frac{2(1+\xi)}{\tau}+\frac{\xi(1+\xi)^{2} \mathcal{R}^{2}(\xi)}{\tau_{\text {eq }}}=0 .
\end{gathered}
$$

Solved with a Runge-Kutta-4 algorithm.

Auxiliary functions

$$
\begin{gathered}
D\left(\tau_{2}, \tau_{1}\right)=\exp \left[-\int_{\tau_{1}}^{\tau_{2}} \frac{d \tau}{\tau_{e q} \tau}\right] \\
\mathcal{H}^{n m}(y)=\frac{2 y^{2 m+1}}{2 m+1} F_{1}\left(\frac{1}{2}+m, \frac{1-n}{2} ; \frac{3}{2}+m ; 1-y^{2}\right) .
\end{gathered}
$$

Computation of moments in other models

- RTA:

$$
\begin{aligned}
M^{n m}(\tau)=\frac{(n+2 m+1)!}{(2 \pi)^{2}}[D(\tau, & \left.\tau_{0}\right) \alpha_{0}^{n+2 m-2} T_{0}^{n+2 m+2} \Gamma_{0} \frac{\mathcal{H}^{n m}\left(\alpha \tau_{0} / \tau\right)}{\left[\mathcal{H}^{20}\left(\alpha_{0}\right) / 2\right]^{n+2 m-1}}+ \\
& \left.+\int_{\tau_{0}}^{\tau} \frac{d \tau^{\prime}}{\tau_{e q}\left(\tau^{\prime}\right)} D\left(\tau^{\prime}, \tau^{\prime}\right) \Gamma\left(\tau^{\prime}\right) T^{n+2 m+2}\left(\tau^{\prime}\right) \mathcal{H}^{n m}\left(\frac{\tau^{\prime}}{\tau}\right)\right]
\end{aligned}
$$

- DNMR:

$$
\bar{M}_{\mathrm{DNMR}}^{n m}=1-\frac{3 m(n+2 m+2)(n+2 m+3)}{4(2 m+3)} \frac{\pi}{\varepsilon}
$$

- aHydro:

$$
\bar{M}_{\mathrm{a} \text { Hydro }}^{n m}(\tau)=(2 m+1)(2 \alpha)^{n+2 m-2} \frac{\mathcal{H}^{n m}(\alpha)}{\left[\mathcal{H}^{20}(\alpha)\right]^{n+2 m-1}}
$$

Comparison with other models

Compute normalized moments with DNMR, anisotropic hydrodynamics (aHydro) and Relaxation Time Approximation (RTA) Boltzmann Equation.

- Better agreement with RTA and aHydro for lower order moments
- Better agreement with DNMR for lower η / s
(V. Ambrus et al., PRD 104.9 (2021))

Pressure anisotropy in different frameworks

For $\eta / s=1 / 4 \pi$ and $\eta / s=10 / 4 \pi$, compute P_{L} / P_{T} from three different initial anisotropies: $\xi_{0}=-0.5,0,10$.

- RTA (not showed) really similar to aHydro
- aHydro attractor reached \sim time than RBT
- vHydro attractor reached at later time, especially for larger η / s

Midrapidity

At midrapidity no difference w.r.t. the boost invariant case.

T-dependent η / s : Plot with respect to τ

$$
\begin{array}{|l|}
\hline-\eta / s=1 / 4 \pi \\
- \text { Caso } 1 \\
- \text { Caso } 2
\end{array}
$$

Universal behaviour lost at different τ (depend on local T)

T-dependent η / s : Plot with respect to $\tau / \tau_{\text {eq }}$

$$
\begin{array}{|l|}
\hline-\eta / s=1 / 4 \pi \\
- \text { Caso } 1 \\
-- \text { Caso } 2
\end{array}
$$

Universal behaviour restored after 'loops'.

Non-monotonic $\tau / \tau_{\text {eq }}$ for Case 1

Loops when $\tau / \tau_{\text {eq }}$ is no more a monotonic function: $\tau_{\text {eq }} \propto \eta / s(T) / T$ grows faster than τ.

[^0]: How to solve the Boltzmann Equation with the full collision integral C[f1?
 Numerical solution with test particle method: simulation of propagating particles which collide with locally fixed cross-section σ_{22}.

