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Quarkonia as an OQS

Can we describe how quarkonia propagates through a
medium from first principles?

We can try! Open Quantum Systems can help us outline a method
to do so.
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Quarkonia

They are bound states of a heavy quark-antiquark pair (QQ̄)
of the same kind (Olsen et al., 2017) which are stable with
respect to strong decay into open charm/bottom (Sarkar et al.,
2010).
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Observations

Experimental evidence (Chatrchyan et al., 2012) of nuclear effects
in the creation and propagation of quarkonia.



Context Open Quantum Systems Quantum Trajectories New Implementation Wrap-up and References Appendix

Why choosing quarkonia as a probe?

1 Hard scale: quarkonia mass mQQ̄,mQ ≫ ΛQCD. Easy to be
described by EFT.

2 Harder to dissociate from color screening than light quark
matter.

∆EJ/ψ = 2MD −MJ/ψ ≈ 0.6 GeV≫ ΛQCD ≈ 0.2 GeV. (1)
3 Well-known probe. Experimentally, clean signal through

dilepton decays.

(Porteboeuf, 2011)
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Open Quantum Systems 101

We divide the full quantum system (T)
into well-differentiated parts: the subsys-
tem (S) and the environment (E) (Breuer
and Petruccione, 2002).

The full quantum dynamics of the sub-
system, a bound state, is kept whereas
the environment is traced out.

Main character (density matrix, ρ) and observables ⟨O⟩:

ρ = pi
∑

i
|ψi⟩ ⟨ψi | −→ ⟨O⟩ = Tr{ρO}. (2)

Hamiltonian: HT = HS ⊗ IE + IS ⊗HE + HI , where HI = VS ⊗VE .
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Open Quantum Systems for Quarkonia
The explicit form of the full hamiltonian (using LO NRQCD in the
Coulomb gauge) would be:

(3)
HT = 1

2M
(
p2

Q + p2
Q̄

)
⊗ IE + IS ⊗ Hq+A

+
∫

d3x [δ(x− xQ)ta
Q − δ(x− xQ̄)ta∗

Q̄ ]⊗ gAa
0(x)

We know that:

TrE
[
T [Aa

0(t1, x1)Ab
0(t2, x2)]ρE

]
= −iδab∆(t1 − t2, x1 − x2) (4)

We can profit from the fact that propagators of the A0 component
can be linked with real and imaginary potentials like (Blaizot and
Escobedo, 2017):

V (r) = −∆R(ω = 0, r), W (r) = −∆<(ω = 0, r) (5)
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Evolution: Liouville - von Neumann equation.

d
dt ρT (t) = −i [HT , ρT (t)] =⇒ ρT (t) = −i

∫ ∞

0
dt ′[HT , ρT ] (6)

1 Go to the interaction picture.
2 Iterate the integral equation into the differential one.

dρI,T (t)
dt = −

∫ t

0
dt ′[HI(t), [HI(t ′), ρI,T (t ′)]] (7)

3 Divide DoF into subsystem + environment.
4 Trace out the environmental DoF −→ loss of unitarity.

TrE [ρT ] = ρS (8)
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Timescales

Further approximations can be done which also refer to the
characteristic timescales τi of the system, namely:

τS = 1/∆E , τE ∼ 1/T , τR ∼ M/T 2. (9)

Here ∆E is the energy gap between the energy levels of the bound
state, T is the temperature and M is the particle mass.

τE ≪ τR −→ Born and Markov approximations. (10)

τE ≪ τS −→ Born-Oppenheimer approximation. (11)

These considerations will help out with the algebraic manipulations
to reach the desired and consistent OQS shape of the equation of
evolution.
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Timescale assumptions

dρS(t)
dt = −

∫ t

0
dt ′TrE

[
[HI(t), [HI(t ′), ρI,T (t ′)]]

]
(12)

1 Born approximation −→ weakly interacting system.

ρT (t) ≈ ρS(t)⊗ ρE (t) ≈ ρS(t)⊗ ρE (0) (13)

2 Markov approximation −→ no memory in the system.

(0, t) −→ (−∞, 0), ρT (t ′) ≈ ρT (t) (14)

3 Born-Oppenheimer approximation −→ the light degrees of
freedom of the plasma accommodate very fast to changes
produced by quarkonia (∼ atomic physics).
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Lindblad form

As a result, after some rearranging, we get the Lindblad equation:

dρS(t)
dt = −i [HS(t), ρS(t)] +

∑
k

(
LkρSL†

k −
1
2{L

†
kLk , ρS(t)}

)
, (15)

Lk ∼ Denv .(t, x) · (V k
S (t) + i

4T
dV k

S (t)
dt ) is called the Lindblad

operator (Akamatsu, 2022).
1 k > 1, if more than one kind of operator (decay channel).
2 Denv .(t, x) ∼ ∆(t, x), from tracing out the environmental

DoF.
Conceptually, Lindblad operators are going to produce jumps
between states (modifying the internal quantum numbers of the
system). Thus, they are also called jump operators.
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Quantum trajectories: an algorithm to solve Lindblad’s.
We redefine the subsystem hamiltonian by adding the 1-loop
contributions, H1−loop (Akamatsu, 2022; Blaizot and Escobedo,
2018; Yao and Mehen, 2019).
It becomes a non-hermitian hamiltonian.

Heff = HS + H1−loop = HS −
i
2

∑
k
γkL†

kLk (16)

dρS(t)
dt = −i [Heff (t), ρS(t)] +

∑
k

LkρSL†
k , (17)

The state is evolved in Schrödinger-like way (norm decreases).
When the norm goes below a certain value, a projection (jump) is
performed according to certain selection rules.
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Description of the algorithm

1 Non-hermitian hamiltonian evolution step is performed. Its
non-unitarity makes the norm of the state decrease.

⟨ψ(t1)|ψ(t1)⟩ > ⟨ψ(t2)|ψ(t2)⟩ , where t1 < t2 (18)

2 A random number decides if the jump is performed. The state
will normally evolve until the norm goes below this value.

When ⟨ψ(t)|ψ(t)⟩ < Random Number −→ jump. (19)

3 Randomly select the jump according to certain selection rules.
We project using the corresponding jump operator:

|ψnew ⟩ = L̂x (q⃗) |ψold⟩ (20)

4 Renormalize and back again.



Context Open Quantum Systems Quantum Trajectories New Implementation Wrap-up and References Appendix

Description of the algorithm

1 Non-hermitian hamiltonian evolution step is performed. Its
non-unitarity makes the norm of the state decrease.

⟨ψ(t1)|ψ(t1)⟩ > ⟨ψ(t2)|ψ(t2)⟩ , where t1 < t2 (18)

2 A random number decides if the jump is performed. The state
will normally evolve until the norm goes below this value.

When ⟨ψ(t)|ψ(t)⟩ < Random Number −→ jump. (19)

3 Randomly select the jump according to certain selection rules.
We project using the corresponding jump operator:

|ψnew ⟩ = L̂x (q⃗) |ψold⟩ (20)

4 Renormalize and back again.



Context Open Quantum Systems Quantum Trajectories New Implementation Wrap-up and References Appendix

Description of the algorithm

1 Non-hermitian hamiltonian evolution step is performed. Its
non-unitarity makes the norm of the state decrease.

⟨ψ(t1)|ψ(t1)⟩ > ⟨ψ(t2)|ψ(t2)⟩ , where t1 < t2 (18)

2 A random number decides if the jump is performed. The state
will normally evolve until the norm goes below this value.

When ⟨ψ(t)|ψ(t)⟩ < Random Number −→ jump. (19)

3 Randomly select the jump according to certain selection rules.
We project using the corresponding jump operator:

|ψnew ⟩ = L̂x (q⃗) |ψold⟩ (20)

4 Renormalize and back again.



Context Open Quantum Systems Quantum Trajectories New Implementation Wrap-up and References Appendix

Description of the algorithm

1 Non-hermitian hamiltonian evolution step is performed. Its
non-unitarity makes the norm of the state decrease.

⟨ψ(t1)|ψ(t1)⟩ > ⟨ψ(t2)|ψ(t2)⟩ , where t1 < t2 (18)

2 A random number decides if the jump is performed. The state
will normally evolve until the norm goes below this value.

When ⟨ψ(t)|ψ(t)⟩ < Random Number −→ jump. (19)

3 Randomly select the jump according to certain selection rules.
We project using the corresponding jump operator:

|ψnew ⟩ = L̂x (q⃗) |ψold⟩ (20)

4 Renormalize and back again.



Context Open Quantum Systems Quantum Trajectories New Implementation Wrap-up and References Appendix

Description of the algorithm

1 Non-hermitian hamiltonian evolution step is performed. Its
non-unitarity makes the norm of the state decrease.

⟨ψ(t1)|ψ(t1)⟩ > ⟨ψ(t2)|ψ(t2)⟩ , where t1 < t2 (18)

2 A random number decides if the jump is performed. The state
will normally evolve until the norm goes below this value.

When ⟨ψ(t)|ψ(t)⟩ < Random Number −→ jump. (19)

3 Randomly select the jump according to certain selection rules.
We project using the corresponding jump operator:

|ψnew ⟩ = L̂x (q⃗) |ψold⟩ (20)

4 Renormalize and back again.



Context Open Quantum Systems Quantum Trajectories New Implementation Wrap-up and References Appendix

Jumps

Selection rules are enacted via the partial decay rates Γ(p) (Blaizot
and Escobedo, 2018). These explicitly depend on the shape of the
Lindblad operators.

Decay rates are defined as:

Γk(p) = Lk(p)L†
k(p). (21)
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QTRAJ (1.0 + ϵ)

QTRAJ 1.0 (Ba Omar et al., 2022): C-based code which simulates
through the quantum trajectories algorithm and shows the relative
population of colour and wave states for quarkonia.

The current potential available compatible with the Lindblad
formalism is the Munich potential. This approach is adequate for a
regime where rT ≪ 1 and is performed with a finite number of
Lindblad operators.

Goal of +ϵ : New potentials −→ Infinite number of Lindblad
operators −→ reach regime where rT ≈ 1.
How?:

1 Adding definitions of new potentials to QTRAJ.
2 Modifying the selection rules ←→ Defining new Lindblad

operators.
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Current efforts
New potential, less restrictive, to try to perform up to rT ≈ 1. We
will use the general expression:

∆(ω = 0, r) = −∆R(ω = 0, r) + i∆<(ω = 0, r), (22)
which was found when tracing out the environment to get the
Lindblad operators.

These correspond to real and imaginary
potentials, in our case: .

Re{HI(r)} = −CFαs(1/a0)e−mDr

r , (23)

Im{HI(r)} = g2T
2π

∫ ∞

0
dx x

(x2 + 1)2

[
1− sin(xrmD)

xrmD

]
(24)

where mD is the Debye mass:

mD =
√

2Nc + Nf
6 gT (25)
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New Lindblad operators:
Lindblad operators are in this framework:

L̂x (q⃗) = Kx

√
∆(q⃗)cs( q⃗ · ˆ⃗r

2 ), (26)

where cs stands for sin
(

q⃗ · ˆ⃗r/2
)

if x ∈ {s → o, o → s, o → o (1)} and

cos ( q⃗·ˆ⃗r
2 ) is x ∈ {o → o (2)}.

Using:

e−i k⃗ r⃗ =
∞∑
ℓ=0

(−i)ℓjℓ(kr)Yℓm(k⃗u)Y ∗
ℓ,m(⃗ru), (27)

we get:

L̂x (q⃗) = Kx

√
∆(q⃗)

∞∑
t

ℓ∑
m=−ℓ

jℓ(qr)Y m
ℓ (Ωr ) =

∞∑
t

L̂x
α(q⃗), (28)

where for the case of the cosine α = 2t and for the sine α = 2t + 1.
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∆(q⃗)cs( q⃗ · ˆ⃗r

2 ), (26)

where cs stands for sin
(

q⃗ · ˆ⃗r/2
)

if x ∈ {s → o, o → s, o → o (1)} and

cos ( q⃗·ˆ⃗r
2 ) is x ∈ {o → o (2)}. Using:

e−i k⃗ r⃗ =
∞∑
ℓ=0

(−i)ℓjℓ(kr)Yℓm(k⃗u)Y ∗
ℓ,m(⃗ru), (27)

we get:

L̂x (q⃗) = Kx

√
∆(q⃗)

∞∑
t

ℓ∑
m=−ℓ

jℓ(qr)Y m
ℓ (Ωr ) =

∞∑
t

L̂x
α(q⃗), (28)

where for the case of the cosine α = 2t and for the sine α = 2t + 1.
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New rules

The change affects how selection rules are implemented:

1 We choose the kind of transition that quarkonia will undergo:
apply the proper Lindblad operator:

L̂s−→o(q⃗), L̂o−→s(q⃗), , L̂o−→o(1)(q⃗), L̂o−→o(2)(q⃗). (29)

2 We choose the value of t of L̂x
t (q⃗): virtual angular momentum

of the one gluon exchange.
3 We choose q from its momentum distribution.
4 We apply the Lindblad operator so:

L̂x
t (q⃗) |ψold⟩ = |ψnew ⟩ . (30)
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Behaviour of the jump operators
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Tendency of the jumps
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Plots that can be retrieved.

These results are from Strickland’s original code (Brambilla et al.,
2022).
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Conclusions

1 The inclusion of less restrictive potentials allows the expansion
the regime of validity of the simulations.

2 This means two things: either temperature does not have to
be as high as before for applying this formalism or the small
dipole approximation implicit in the Boltzmann equation is no
longer applied. The latter case is of our greater interest.

3 The new shape of the Lindblad operators depend on the
momentum exchanged with the medium particles. In the
region of interest, ∆J = 1 dominates.

Thank you!
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Behaviour of the jump operators
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Approximations: Born approximation

It is a weak coupling between the subsystem and the environment,
HI ≪ 1.

ρT (t) = ρS(t)⊗ ρE (t) + ρcorr (t) ≈ ρS(t)⊗ ρE (t), (31)

where ρcorr is the correlation component between the environment
and the subsystem.

dρT ,I(t)
dt ≈ −

∫ t

0
dτ [HI(t), [HI(τ), ρS,I(τ)⊗ ρE ,I(0)]] (32)



Context Open Quantum Systems Quantum Trajectories New Implementation Wrap-up and References Appendix

Approximations: Markov approximation

Taking into account only the current step in order to obtain the
next one ρS,I(τ) −→ ρS,I(t). We will perform the change of
variable τ −→ τ ′ = t − τ so:

τ = 0 −→ τ ′ = t − τ = t
τ = t −→ τ ′ = t − τ = 0
Since the correlation time of the environment is much less
than the average relaxation time of the system we can take
t −→∞.

If we also trace over the environment, we get:

dρS,I(t)
dt ≈ −

∫ ∞

0
dτ trE{[HI(t), [HI(t − τ), ρS,I(t)⊗ ρE ,I(0)]]}.

(33)
Redfield equation.
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Approximations: Born-Oppenheimer approximation

The environmental degrees of freedom move much faster than the
quarkonium so effectively they instantly change to any changes
that the quarkonium may induce.

VS(t − s) ≈ VS(t)− s dVS(t)
dt + · · · = VS(t)− is[HS ,VS(t)] + . . .

(34)
Gradient expansion for Brownian motion.
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1 Projecting ρS(t) into spherical harmonics.
2 Also, split into the singlet-octet colour basis.

ρS(t) = diag(ρsing ,s
S , ρoct,s

S , ρsing ,p
S , ρoct,p

S ) (35)

Great computational advantage: 3D −→ 1D ·Y ℓ
m(θ, ϕ).
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Quark-gluon plasma

It is a deconfined phase on the QCD phase diagram [12].
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