Heavy Barions and new Interacting Boson Fermion Fermion Model results

Hugo Garcia-Tecocoatzi NINPHA Project

Istituto Nazionale di Fisica Nucleare Sezione di Genova

October $11^{\rm th}$ 2023

Hugo Garcia-Tecocoatzi		Istituto Nazionale di Fisica Nucleare Sezione di Genov
Spectroscopy	1/25	

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
•	O	000	000	0000	00000000	0000

Contents

- Heavy Baryons
 - Charm baryon masses
 - Strong decay widths
- Nuclear charge exchange reactions
 - Double beta decay
 - Interacting Boson Model
- Conclusions

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	•	000	000	0000		0000

New hadrons discovered at LHC

Spectroscopy

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	●OO	000	0000		0000

Heavy baryon with charm quarks

Wave function $\Psi = \sum \omega \psi \phi \chi$ Three particles of spin 1/2 $1/2 \times 1/2 \times 1/2 = 1/2 + 1/2 + 3/2$

Hugo Garcia-Tecocoatzi Spectroscopy

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	O●O	000	0000	00000000	0000

Heavy baryon with a single charm quark

Wave function $\Psi = \sum \omega \psi \phi \chi$ Three particles of spin 1/2 $1/2 \times 1/2 \times 1/2 = 1/2 + 1/2 + 3/2$

$$\begin{split} & \Xi_c^0 := \frac{1}{\sqrt{2}} (|dsc\rangle - |sdc\rangle) \\ & \Xi_c^+ := \frac{1}{\sqrt{2}} (|usc\rangle - |suc\rangle) \\ & \Lambda_c^+ := \frac{1}{\sqrt{2}} (|udc\rangle - |duc\rangle) \end{split}$$

$$\begin{split} \Omega_c &:= |ssc\rangle \\ \Xi_c^{*0} &:= \frac{|sz\rangle}{\sqrt{2}} (|dsc\rangle + |sdc\rangle) \\ \Xi_c^{*+} &:= \frac{1}{\sqrt{2}} (|usc\rangle + |suc\rangle) \\ \Sigma_c^{++} &:= |uuc\rangle \\ \Sigma_c^0 &:= |ddc\rangle \\ \Sigma_c^+ &:= \frac{1}{\sqrt{2}} (|udc\rangle + |duc\rangle) \end{split}$$

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	OO●	000	0000		0000

Phenomenological model I

- We describe the observed excited states of Ω_c , Σ_c , Λ_c , Ξ_c , and Ξ'_c at the same time, PRD107 034031 (2023)
- We work within the quark-model framework
- The masses of the charmed baryon states are calculated as the eigenvalues of the Hamiltonian of Ref. [1], which is modeled as:

$$H = H_{\rm h.o.} + P_s \, \mathbf{S}^2 + P_{sl} \, \mathbf{S} \cdot \mathbf{L} + P_l \, \mathbf{I}^2 + P_f \, \mathbf{C}_2(\mathrm{SU}(3)_{\rm f}),$$
(1)

${\bf S}, {\bf L}, {\it I}$ and ${\bf C_2}({\rm SU(3)_f})$ are the spin, orbital momentum, isospin and Casimir operators, respectively.

[1] E. Santopinto, A. Giachino, J. Ferretti, H. Garcia-Tecocoatzi, M.A. Bedolla, R. Bijker, E. Ortiz-Pacheco, EPJC 79(12), 1012 (2019).

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	●00	0000		0000

Results for Ω_c , PRD107 034031 (2023)

Hugo	Garcia-Tecocoatzi
Spect	roscopy

New Ω_c states observed by LHCb, PRL131 131902(2023)

New state $\Omega_c(3327)$ with mass=3327.1 \pm 1.2 MeV and Γ = 20 \pm 5 MeV

H. Garcia-Tecocoatzi, A. Giachino, J. Li, A. Ramirez-Morales, and E. Santopinto, PRD107 034031 (2023)

Hugo	Garcia-Tecocoatzi
Spect	roscopy

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summ:
O	O	000	00●	0000		0000

Results for Ξ_c' and Ξ_c , PRD107 034031

$\Xi_c'(snc)$ $\mathcal{F} = 6_{\mathbf{f}}$	$^{2S+1}L_J$	Three-quark predicted mass (MeV)	Quark-diquark predicted mass (MeV)	Experimental mass (MeV)	Predicted Γ _{tot} (MeV)	Experimental Γ (MeV)
$ \begin{split} & N = 0 \\ & l_{\lambda} = 0, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0 \rangle \\ & l_{\lambda} = 0, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0 \rangle \end{split} $	${}^{2}S_{1/2}$ ${}^{4}S_{3/2}$	$2571^{+8}_{-8} \\ 2640^{+7}_{-7}$	$2577^{+10}_{-10}\\2650^{+9}_{-9}$	2578.0 ± 0.9 (*) 2645.9 ± 0.71 (*)	$0 \\ 0.4^{+0.2}_{-0.2}$	† 2.25 ± 0.41 (*)
$\begin{split} N &= 1 \\ & l_1 = 1, l_p = 0, k_\lambda = 0, k_p = 0 \rangle \\ & l_1 = 1, l_p = 0, k_\lambda = 0, k_p = 0 \rangle \\ & l_1 = 1, l_p = 0, k_\lambda = 0, k_p = 0 \rangle \\ & l_1 = 1, l_p = 0, k_\lambda = 0, k_p = 0 \rangle \\ & l_1 = 1, l_p = 0, k_\lambda = 0, k_p = 0 \rangle \\ & l_1 = 0, l_p = 1, k_\lambda = 0, k_p = 0 \rangle \\ & l_1 = 0, l_p = 1, k_\lambda = 0, k_p = 0 \rangle \\ & l_1 = 0, l_p = 1, k_\lambda = 0, k_p = 0 \rangle \end{split}$	${}^{2}P_{1/2}$ ${}^{4}P_{1/2}$ ${}^{2}P_{3/2}$ ${}^{4}P_{3/2}$ ${}^{4}P_{5/2}$ ${}^{2}P_{1/2}$ ${}^{2}P_{3/2}$	$\begin{array}{c} 2893^{+9}_{-9} \\ 2935^{+14}_{-15} \\ 2920^{+9}_{-9} \\ 2962^{+9}_{-9} \\ 3007^{+12}_{-12} \\ 3040^{+10}_{-10} \\ 3067^{+10}_{-10} \end{array}$	$\begin{array}{c} 2893^{+11}_{-11} \\ 2941^{+14}_{-14} \\ 2919^{+13}_{-13} \\ 2966^{+10}_{-13} \\ 3009^{+14}_{-14} \\ \dagger\dagger \\ \dagger\dagger \\ \dagger\dagger \\ \dagger\dagger \end{array}$		$\begin{array}{c} 7^{+4}_{-3} \\ 5^{+2}_{-3} \\ 28^{+14}_{-14} \\ 19^{+9}_{-9} \\ 43^{+21}_{-21} \\ 157^{+80}_{-80} \\ 100^{+47}_{-48} \end{array}$	
$\Xi_c(snc)$ $\tilde{3}_f$	$^{2S+1}L_{J}$	Three-quark predicted mass (MeV)	Quark-diquark predicted mass (MeV)	Experimental mass (MeV)	Predicted Γ _{tot} (MeV)	Experimental Γ (MeV)
	${}^{2}S_{1/2}$	2466^{+10}_{-10}	2473^{+10}_{-10}	2469.42 ± 1.77 (*)	0	≈0
$ \begin{split} & N = 1 \\ & l_{2} = 1, l_{p} = 0, k_{1} = 0, k_{p} = 0) \\ & l_{1} = 1, l_{p} = 0, k_{1} = 0, k_{p} = 0) \\ & l_{1} = 0, l_{p} = 1, k_{1} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{1} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{1} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{1} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{4} = 0, k_{p} = 0) \\ & l_{2} = 0, l_{p} = 1, k_{2} = 0, k_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, k_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, k_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, k_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, k_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, k_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, k_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, l_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, l_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, l_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, l_{p} = 0 \\ & l_{2} = 0, l_{p} = 0, l_{p} = 0, l_{p} = 0 \\ & l_{2} = 0, l_{p} = 0 \\ & l_{2} = 0, l_{p} = 0 \\ & l_{2} = 0, l_{p} =$	$\begin{array}{c} {}^2P_{1/2} \\ {}^2P_{3/2} \\ {}^2P_{1/2} \\ {}^4P_{1/2} \\ {}^2P_{3/2} \\ {}^4P_{3/2} \\ {}^4P_{5/2} \end{array}$	$\begin{array}{c} 2788^{+10}_{-10}\\ 2815^{+10}_{-10}\\ 2935^{+12}_{-12}\\ 2977^{+20}_{-20}\\ 2962^{+12}_{-12}\\ 3004^{+17}_{-17}\\ 3049^{+18}_{-19} \end{array}$	2789-9 2814-9 †† †† †† †† ††	$\begin{array}{c} 2793.3 \pm 0.28 \ (*) \\ 2818.49 \pm 2.07 \ (*) \\ \dagger \\ 2968.6 \pm 3.3 \\ \dagger \\ \dagger \\ \dagger \\ \dagger \end{array}$	$\begin{array}{c} 3^{+2}_{-2} \\ 5^{+2}_{-2} \\ 17^{+9}_{-8} \\ 13^{+6}_{-6} \\ 89^{+45}_{-31} \\ 56^{+29}_{-31} \\ 122^{+59}_{-60} \end{array}$	$\begin{array}{c} 9.5\pm2.0\;(^{*})\\ 2.48\pm0.5\;(^{*})\\ \stackrel{\dagger}{}\\ 20\pm3.5\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \end{array}$
$l_{N} = 2$ $ l_{\lambda} = 2, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0\rangle$	${}^{2}D_{3/2}$	3118^{+14}_{-14}	3113_14	3122.9 ± 1.23	50 ⁺²⁴	4 ± 4

Hugo Garcia-Teco Spectroscopy

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	●000	00000000	0000

Strong decay widths

We can use the decay properties to identify baryons

- Open-flavor strong decays
- Study of the decay channels
- At the moment, there is no decay model from first principles, i.e., a QCD decay model.
- There are many models inspired by QCD, such as the flux tube, the elementary emission model, effective Lagrangians, or ³P₀, none of them, of course, correspond to QCD!

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	O●OO	00000000	0000

$^{3}P_{0}$ decay model

- The qq̄ pair is created with the vacuum quantum numbers: 0⁺⁺
- Due to parity conservation, the pair is created in P-wave
- The spin should be S = 1 to couple to J = 0
- It has only one coupling constant

Contents O	Motivation O	Model 000	Results 000	Decay widths ○○●○	IBM Spectroscopy 00000000	Summary 0000

Decay Widths

- Decay widths are calculated using predicted masses and their associated quantum numbers.
- The ³P₀ model is employed to calculate the strong-decay widths for a charm baryon A decaying into a charm baryon B and a meson C, or a charm baryon A decaying into a light baryon B and a charm meson C, denoted as A → BC:

$$\Gamma = \frac{2\pi\gamma_0^2}{2J_A + 1} \Phi_{A \to BC}(q_0) \sum_{M_{J_A}, M_{J_B}} |\mathcal{M}^{M_{J_A}, M_{J_B}}|^2$$
(2)

Error propagation was performed using the bootstrap method.

Model 000 Results

Decay widths 000● IBM Spectroscop

Summary 0000

Results, partial-decay widths PRD107 034031 (2023)

$\Omega_c(ssc) \ \mathcal{F} = 6_{\mathrm{f}}$	$\Xi_c K$	$\Xi_c'K$	$\Xi_c^* K$	$\Xi_c K^*$	$\Xi_c' K^*$	$\Xi_c^* K^*$	$\Omega_c \eta$	$\Omega_c^*\eta$	$\Omega_c \phi$	$\Omega_c^*\phi$	$\Omega_c \eta'$	$\Omega_c^*\eta'$	$\Xi_8 D$	$\Xi_{10}D$	Predicted Γ_{tot}
$\Omega_c(2709)^2 S_{1/2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Omega_c(2778)^4 S_{3/2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Omega_c(3008)^2 P_{1/2}$	4.1	0	0	0	0	0	0	0	0	0	0	0	0	0	4.1
$\Omega_c(3050)^4 P_{1/2}$	7.5	0.1	0	0	0	0	0	0	0	0	0	0	0	0	7.6
$\Omega_c(3035)^2 P_{3/2}$	26.3	0	0	0	0	0	0	0	0	0	0	0	0	0	26.3
$\Omega_c(3077)^4 P_{3/2}$	6.3	0.4	0	0	0	0	0	0	0	0	0	0	0	0	6.7
$\Omega_c(3122)^4 P_{5/2}$	40.9	8.9	0.3	0	0	0	0	0	0	0	0	0	0	0	50.1
$\Omega_c(3129)^2 P_{1/2}$	_	8.9	5.5	0	0	0	0	0	0	0	0	0	0	0	14.4
$\Omega_c(3156)^2 P_{3/2}$	_	61.1	10.5	0	0	0	0	0	0	0	0	0	0	0	71.6
$\Omega_c(3315)^2 D_{3/2}$	1.9	1.8	2.3	0	0	0	0.3	_	0	0	0	0	4.3	0	10.6
$\Omega_c(3360)^2 D_{5/2}$	5.4	5.1	0.5	0	0	0	1.2	_	0	0	0	0	12.2	0	24.4
$\Omega_c(3330)^4 D_{1/2}$	0.2	0.2	3.3	0	0	0	0.1	0.1	0	0	0	0	12.3	0	16.2
$\Omega_c(3357)^4 D_{3/2}$	2.0	0.5	5.2	0.2	0	0	0.2	0.6	0	0	0	0	21.7	0	30.4
$\Omega_c(3402)^4 D_{5/2}$	5.0	1.2	5.0	1.6	0	0	0.3	1.2	0	0	0	0	46.9	1.1	62.3
$\Omega_c(3466)^4 D_{7/2}$	7.8	2.0	5.0	2.6	0	0	0.8	0.9	0	0	0	0	83.2	20.9	123.2
$\Omega_c(3342)^2S_{1/2}$	0.2	0.3	0.1	0	0	0	0.1	_	0	0	0	0	0.5	0	1.2
$\Omega_c(3411)^4S_{3/2}$	0.2	0.1	0.4	0.2	0	0	_	0.1	0	0	0	0	2.1	0.2	3.3
$\Omega_c(3585)^2S_{1/2}$	0.3	1.0	0.7	3.0	11.6	0.1	1.1	0.5	0	0	0	0	_	_	18.3
$\Omega_c(3654)^4S_{3/2}$	0.1	0.1	1.2	2.8	1.0	17.2	0.2	1.4	0	0	_	0	_	_	24.0
$\Omega_c(3437)^2 D_{3/2}$	_	6.5	107.0	53.5	0	0	4.0	27.0	0	0	0	0	_	_	198.0

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000	•0000000	0000

IBM Spectroscopy for NUMEN

Nuclear spectroscopy using IBM

Nuclear spectroscopy and the NUMEN collaboration (theoretical group)

Hugo Garcia-Tecocoatzi	
Spectroscopy	

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000		0000

Double Beta Decay

Double Beta Decay with Neutrinos

- Experimentally observed
- Transitions between ground states
- Effective values of g_A

Double Beta Decay without Neutrinos

- Not observed experimentally
- Its observation implies that the neutrino is its own antiparticle
- Physics beyond the standard model

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000		0000

Double Beta Decay without Neutrinos

Half-life of Double Beta Decay without Neutrinos

$$\tau_{0\nu}^{-1}(A \to B) = G_{0\nu} |M_{0\nu}|^2(m_{\nu_e})$$
(3)

where $|M_{0\nu}|$ is the nuclear matrix element between nuclear states.

Agostini, et al., Rev. Mod. Phys. 95, 025002 (2023)

Hugo	Garcia-Tecocoatzi	
Spect	roscopy	

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000		0000

The NUMEN Project

- Study candidates for neutrinoless double beta decay.
- Charge-exchange reactions induced by heavy ions

$$N_T(A, Z) + N_P(a, z) \to N_T(A, Z+2) + N_P(a, z-2)$$

 $N_T(A, Z) + N_P(a, z) \to N_T(A, Z-2) + N_P(a, z+2)$ (4)

Use experimental information to constrain nuclear models.

F. Cappuzzello, ..., H. Garcia-Tecocoatzi, et al., [NUMEN Collaboration] Prog.Part.Nucl.Phys. 128 (2023) 103999

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summ
O	O	000	000	0000		0000

Proton Transfer in the Reaction⁷⁶Se (¹⁸O, ¹⁹F) ⁷⁵As

- Study the reaction ⁷⁶Se (¹⁸O, ¹⁹F) ⁷⁵As.
- Use experimental information to constrain nuclear models.

The ⁷⁶Se is described using IBM-2, with 34 protons and 42 neutrons: $N_{\pi} = 3$ proton bosons $N_{\nu} = 4$ neutron bosons (holes) I. Ciraldo, H. Garcia-Tecocoatzi, et al., NUMEN Collaboration, submitted to PRC

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000	00000€00	0000

Reaction ⁷⁶Se (¹⁸O, ¹⁹F) ⁷⁵As

• ⁷⁵As is described as ⁷⁴Ge+p, ⁷⁴Ge: $N_{\pi} = 2$ proton bosons $N_{\nu} = 4$ neutron bosons (holes) The IBFM-2 Hamiltonian is given by

$$H = H^{\mathsf{B}} + H^{\mathsf{F}}_{\rho} + V^{\mathsf{BF}}_{\rho}.$$
 (5)

Transition operators

$$A_m^{\dagger(j)} = \zeta_j a_{jm}^{\dagger} + \sum_{j'} \zeta_{jj'} s^{\dagger} [\tilde{d} \times a_{j'}^{\dagger}]_m^{(j)}, \tag{6}$$

$$\tilde{B}_{m}^{(j)} = -\theta_{j}^{*} s a_{jm}^{\dagger} - \sum_{j'} \theta_{jj'}^{*} [\tilde{d} \times a_{j'}^{\dagger}]_{m}^{(j)},$$

$$(7)$$

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000	000000●0	0000

Odd-Odd Nuclei

The complexity of odd-odd nuclei.

Hugo Garcia-Tecocoatzi		Istituto Nazionale di Fisica Nucleare Sezione di Genova
Spectroscopy	20 / 25	

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000	0000000●	0000

Odd-Odd Nuclei in IBFFM

IBFFM Hamiltonian

$$H = H^{B} + H_{\pi}^{F} + V_{\pi}^{BF} + H_{\nu}^{F} + V_{\nu}^{BF} + V_{RES}.$$
(8)
where

$$= 4\pi V_{\delta} \,\delta(\mathbf{r}_{\pi} - \mathbf{r}_{\nu}) \,\delta(\mathbf{r}_{\pi} - \mathbf{R}_{0}) \,\delta(\mathbf{r}_{\nu} - R_{0}) \\ - \frac{1}{\sqrt{3}} \,V_{\sigma\sigma} \left(\boldsymbol{\sigma}_{\pi} \cdot \boldsymbol{\sigma}_{\nu}\right) \\ + 4\pi \,V_{\sigma\sigma\delta} \left(\boldsymbol{\sigma}_{\pi} \cdot \boldsymbol{\sigma}_{\nu}\right) \delta(\mathbf{r}_{\pi} - \mathbf{r}_{\nu}) \,\delta(\mathbf{r}_{\pi} - R_{0}) \,\delta(\mathbf{r}_{\nu} - R_{0}) \\ + V_{T} \left(3 \,\frac{(\boldsymbol{\sigma}_{\pi} \cdot \mathbf{r}_{\pi\nu})(\boldsymbol{\sigma}_{\nu} \cdot \mathbf{r}_{\pi\nu})}{r_{\pi\nu}^{2}} - (\boldsymbol{\sigma}_{\pi} \cdot \boldsymbol{\sigma}_{\nu})\right).$$
(9)

New ODDODD code July 2023!!!!

 V_{R}

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000	00000000	●000

Conclusions

- We calculated the mass spectra of the charmed baryons (ρ and λ mode excitations up to the D-wave.
- We calculated the strong-decay widths of ground- and excited-charmed baryon into the charmed baryon-(vector/pseudoscalar) meson pairs and the (octet/ decuplet) baryon-(pseudoscalar/vector) charmed meson pairs.
- The uncertainties are treated rigorously and propagated in full to the parameters of the model using a Monte Carlo bootstrap method.
- The identification of the states is a complex task
- The ${}^{3}P_{0}$ can describe the trend of the data with only one parameter.
- H. Garcia-Tecocoatzi, A. Giachino, , A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera e-Print: 2307.00505 [hep-ph] (2023)

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000	00000000	0●00

Conclusions

- We want to apply the formalism and operators to compute the spectroscopic amplitudes in the IBFFM scheme, from even-even to odd-odd nuclei, for transfer and charge reactions.
- Consider intermediate states positive and negative parities (odd-odd nuclei), in the double charge exchange reactions.
- The main objective of our research is to compute the form factors necessary for the Lenske-Colonna reaction code. These form factors are crucial for accurately describing both single and double charge exchange reactions.

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000	00000000	00●0

Thanks for listening!

Contents	Motivation	Model	Results	Decay widths	IBM Spectroscopy	Summary
O	O	000	000	0000		0000

Predictions of Ω_b excited states

