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Motivations: why the 3He
Phenomenological: a reliable flavor decomposition needs the neutron parton structure (PDFs, GPDs TMDs....) 

Accurate and long-lasting experimental efforts in developing effective neutron targets to carefully investigate its 
electromagnetic responses. 3H  is SPECIAL 

      

→𝐞

The polarized 3He target, 90% neutron target (e.g. H. Gao et al, PR12-09-014, Chen et al, PR12-11-007,@JLab12)

Due to the experimental energies, the accurate theoretical description (of a polarized 3He) has to be relativistic  

      
Theoretical: a LF description of three body interacting systems! Bonus: 
                    Transverse-Momentum Distributions (TMDs) for addressing in a novel way the nuclear dynamics
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Motivations: why the 4He

• Goal: extend the approach applied for  to any nuclei  and calculate the EMC ratio for  
and 


• Since  is a strongly bound system this could provide a challenging test to our approach


• Compare EMC effect for ,  and  obtained by different modern NN and NNN 
interactions (Argonne V18+UIX, NVIa+3N, NVIb+3N)


• Compare the EMC effect for  obtained by different choice of   and  parametrization

3He A 4He
3H

4He

3He 4He 3H

4He Fp
2 Fn

2

[E. Pace, M. Rinaldi, G. Salmè, S. Scopetta, Phys. Lett. B 839 (2023) 137810]

[R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Phys. Rev. C 51 (1995) 38–51]

[R. B. Wiringa et al., Phys. Rev. Lett. 74 (1995) 4396–4399]

[M.Viviani et al., Phys. Rev. C 107 (1) (2023) 014314]

[M. Piarulli et al.,Phys. Rev. Lett. 120 (5) (2018) 052503]

[M. Piarulli, S. Pastore, R. B. Wiringa, S. Brusilow, R. Lim,Phys. Rev. C 107 (1) (2023) 014314]
*F. Fornetti’s slide
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Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes:  

T

with T= proton/nucleus

the cross-section for different kind of targets.
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Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes:  

T

with T= proton/nucleus

the cross-section for different kind of targets.                                        they extracted the Structure Function of the target

𝖥𝖠
𝟤 (𝗑)
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At high energies, the expected result is R(x) = 1  up to corrections of the Fermi motion. BUT

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes the 
ratio  
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At high energies, the expected result is R(x) = 1  up to corrections of the Fermi motion. BUT

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes the 
ratio  

Few % deviation from what expected. 
                                 WHY?

Result: 
Aubert et al. Phys.Lett. B123 (1983) 275 
1488 citations (inSPIRE)
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Naive parton model interpretation: 
“Valence quarks, in the bound nucleon, are in average slower that 
in the free nucleon”

Is the bound proton bigger than the free one??

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes the 
ratio  
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We remind that for DIS off nuclei:

x ≤ 0.3 “Shadowing region”: coherence effects, the photon 
interacts with partons belonging to different nucleons
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We remind that for DIS off nuclei:

x ≤ 0.3 “Shadowing region”: coherence effects, the photon 
interacts with partons belonging to different nucleons

0.2 ≤ x ≤ 0.8 “EMC (binding) region”: mainly valence 
quarks involved

0.8 ≤ x ≤ 1 “Fermi motion region” 
 

main features: universal behavior independent on Q2 ; weakly 
dependent on A; scales with the density ρ → global property? 
Or due to correlations...Local...

Explanation (exotic) advocated: confinement radius bigger for bound nucleons, quarks in bags with 6, 9,..., 3A  
quark, pion cloud effects... Alone or mixed with conventional ones...
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Situation: basically not understood. Very unsatisfactory. We need to know the reaction 
mechanism of hard processes off nuclei and the degrees of freedom which are involved:

the knowledge of nuclear PDFs is crucial for the analysis of heavy ions collisions;

neutron parton structure measured with nuclear targets; several QCD sum rules involve the neutron information 
(Bjorken SR, for example): importance of Nuclear Physics for QCD

Inclusive measurements cannot distinguish between models 
One has probably to go beyond (not treated here...) (R. Dupré and S.Scopetta, EPJA 52 (2016) 159)

Status of ”Conventional” calculations for light nuclei:

NR Calculations: qualitative agreement but no fulfillment of both particle and MSR... Not under control

A fully Poincarè covariant approach to perform the calculation is essential to embed  
relativistic effects and fulfill sum rules! 
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Why do we need a relativistic treatment ? 
General answer: to develop an advanced scheme, appropriate for the kinematics 
of JLAB12 and of EIC

The Standard Model of Few-Nucleon Systems, with nucleon and meson degrees of freedom within a non 
relativistic (NR) framework, has achieved high sophistication  
[e.g. the NR 3He and 3H Spectral Functions in Kievsky, Pace, Salmè, Viviani PRC 56, 64 (1997)]. 

Covariance wrt the Poincaré Group, GP , needed for nucleons at large 4-momenta and pointing to high precision 
measurements. Necessary if one studies, e.g., i) nucleon structure functions; ii) nucleon GPDs and TMDs, iii) 
signatures of short-range correlations; iv) exotics (e.g. 6-bag quarks in 2H), etc 

At least, one should carefully treat the boosts of the nuclear states, |Ψi ⟩ and |Ψf ⟩!

Our definitely preferred framework for embedding the successful NR phenomenology: 

Light-front Relativistic Hamiltonian Dynamics (RHD, fixed dof) +Bakamjian-Thomas (BT) construction of the 
Poincaré generators for an interacting theory.
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P.A.M. Dirac, 1949

hyperplane of the 
initial conditions
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The Light-Front framework has several advantages:
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Bakamjian and Thomas (PR 92 (1953) 1300) proposed an explicit construction of 10 Poincaré generators in presence 
of interactions.

The key ingredient is the mass operator: 

i) only the mass operator M contains the interaction 
ii) it generates the dependence of the 3 dynamical generators upon the interaction

The mass operator is given by the sum of M0 with an interaction V, or  M0 + U. The interaction, U or V, must  
commute with all the kinematical generators and with the non-interacting angular momentum, as in the NR case. 
The mass operator is given by the sum of M0 with an interaction V, or  M0 + U. The interaction, U or V, must  
commute with all the kinematical generators and with the non-interacting angular momentum, as in the NR case. 

In the Few-body case, one can easily embed the NR phenomenology: 

i) the mass equation for, e.g. the 2H: 
   becomes a Schr. eq.  

ii) The eigensolutions of the mass equation for the continuum are identical to the solutions of the      
    Lippmann-Schwinger equation.

where                       neglecting 
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In the three-body case, the mass operator is:

free mass operator              momenta in the intrinsic reference frame

2-body forces                3-body force

The commutation rules impose to VBT invariance for translations and rotations as well as independence on the 
total momentum, as it occurs for VNR.

Therefore what has been learned till now about the nuclear interaction, within a non-relativistic framework, can 
be re-used in a Poincaré covariant framework.
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In the three-body case, the mass operator is:

free mass operator              momenta in the intrinsic reference frame

2-body forces                3-body force

The commutation rules impose to VBT invariance for translations and rotations as well as independence on the 
total momentum, as it occurs for VNR.

Therefore what has been learned till now about the nuclear interaction, within a non-relativistic framework, can 
be re-used in a Poincaré covariant framework.

The formalism has been extended also for 4He
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For a correct description of the SF, so that the Macro-locality is implemented, it is crucial to distinguish 
between different frames, moving with respect to each other:

R. Alessandro, A. del Dotto, E. Pace, G. Perna, S. Scopetta and G. Salmè, PRC 104 (2021) 6, 065204 
E. Pace, M. Rinaldi, S. Scopetta and G. Salmè, Phys. Scr. 95, 064008 (2020) 
F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmè and M. Viviani, arXiv:2308.15925
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For a correct description of the SF, so that the Macro-locality is implemented, it is crucial to distinguish 
between different frames, moving with respect to each other:

The formalism has been extended also for A-nucleus

R. Alessandro, A. del Dotto, E. Pace, G. Perna, S. Scopetta and G. Salmè, PRC 104 (2021) 6, 065204 
E. Pace, M. Rinaldi, S. Scopetta and G. Salmè, Phys. Scr. 95, 064008 (2020) 
F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmè and M. Viviani, arXiv:2308.15925
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and fulfills the macroscopic locality (Keister, Polyzou, Adv. N. P. 20, 225 (1991)).

Euler angles of rotation from the z-axis to the polarization vector S

 three-body bound eigenstate of 

tensor product of a plane wave for particle 1 with LF momentum     in the intrinsic 
reference frame of the [1 + (23)] cluster times the fully interacting state of the (23) pair 
of energy eigenvalue      . It has eigenvalue:

The Spectral Function: probability distribution to find inside a bound system a particle with a given       when the rest 
of the system has energy        , with a polarization vector S:
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The spectral function is written in terms of the overlap LF < tT; α, ϵ; JJz; τσ′ , κ̃ |Ψℳ; STz >LF

The tensor product of the plane wave of the interacting particle and 
the state of the spectator system

In the intrinsic reference frame of the 
cluster [1; 2,3,…, A − 1]

The wave function of the nucleus A 
(i.e. the eigenstate of 

)M[1,2,…, A] ∼ MNR

In the intrinsic frame of the system 
[1,2,…, A]

The LF spectral function contains the determinant of the Jacobian of the transformation between 
the intrinsic frames  and , connected each other by a LF boost[1; 2,3,…, A − 1] [1,2,…, A]

We can express the LF overlap in terms of the IF overlap using Melosh rotations and then we can 
approximate the IF overlap into a NR overlap thanks to the BT construction: 
|{α}; ϕ >LF → |{α}; ϕ >IF ∼ |{α}; ϕ >NR

*F. Fornetti’s slide
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|{α}; ϕ >LF → |{α}; ϕ >IF ∼ |{α}; ϕ >NR

*F. Fornetti’s slide
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The spectral function is written in terms of the overlap LF < tT; α, ϵ; JJz; τσ′ , κ̃ |Ψℳ; STz >LF

The tensor product of the plane wave of the interacting particle and 
the state of the spectator system

In the intrinsic reference frame of the 
cluster [1; 2,3,…, A − 1]

The wave function of the nucleus A 
(i.e. the eigenstate of 

)M[1,2,…, A] ∼ MNR

In the intrinsic frame of the system 
[1,2,…, A]

The LF spectral function contains the determinant of the Jacobian of the transformation between 
the intrinsic frames  and , connected each other by a LF boost[1; 2,3,…, A − 1] [1,2,…, A]

We can express the LF overlap in terms of the IF overlap using Melosh rotations and then we can 
approximate the IF overlap into a NR overlap thanks to the BT construction: 
|{α}; ϕ >LF → |{α}; ϕ >IF ∼ |{α}; ϕ >NR
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hadronic tensor of the 
bound nucleon

 In the Bjorken limit the nuclear structure function can be obtained from the hadronic tensor:

nucleon structure functionBjorken variable

One should notice that:                                             but in the BJ limit 

therefore, F2 and the EMC effect can be evaluated the LC momentum distribution directly!

The hadronic tensor, in Impulse approximation is found to be (Pace, M.R., Salmè and S. Scopetta, Phys. Scri. 2020)
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One should notice that:                                             but in the BJ limit 

therefore, F2 and the EMC effect can be evaluated the LC momentum distribution directly!

Light-cone momentum 
distribution

Free nucleon structure function

With: fN
1 (ξ) = ∫ dk⊥nn(ξ, k⊥) LF momentum distribution: 

nN(ξ, k⊥) =
1

2π ∫
A−1

∏
i=2

[dki] |
∂kz

∂ξ
| 𝒩N(k, k2, …, kA−1)

Squared nuclear wave function. Thanks to 
the BT construction, one is allowed to 
use the NR one

Determinant of the Jacobian matrix. LF boost: effect of a 
Poincaré covariance approach

FA
2 (x) = ∑

N
∫

1

ξmin

dξ FN
2 (

mx
ξMA

) fN
1 (ξ)

*F. Fornetti’s slide
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From the normalization of the Spectral Function one has
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From the normalization of the Spectral Function one has

We can define the essential sum rules that must be satisfied:

Baryon number sum rule                               Momentum sum rule       

Within the LFHD we are able to fulfill both sum rules at the same time!

E. Pace, M.R., G. Salmè and S. Scopetta, Phys. Lett. B (2023) 137810

A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204) 
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From the normalization of the Spectral Function one has

Not possible within the IF!  (Frankfurt & Strikman; Miller;....80’s)

We can define the essential sum rules that must be satisfied:

Baryon number sum rule                               Momentum sum rule       

Within the LFHD we are able to fulfill both sum rules at the same time!

E. Pace, M.R., G. Salmè and S. Scopetta, Phys. Lett. B (2023) 137810

A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmè and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204) 
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The distributions are peaked in 1/A with an accuracy of 1/1000:

MSR and Number of baryon sum rules are numerically satisfied

3He

• The tails of the distributions are generated by the short range correlations 
(SRC) induced by the potentials (i.e the high-momentum content of the 1-
body momentum distribution)


• The tails of the LC momentum distribution calculated by the Av18/UIX 
potential is larger than the ones obtained by the EFT potentials for both  
and deuteron


• This difference will partially cancel out on the EMC ratio 

χ 4He
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The distributions are peaked in 1/A with an accuracy of 1/1000:

MSR and Number of baryon sum rules are numerically satisfied

3He

LC momentum distribution in the polarized case 

             
           s

hown by E. Proietti
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Solid line: with Av18 description of 3He, Dashed line: including three-body forces (U-IX) with ”SMC” nucleon 
structure functions (Adeva et al PLB 412, 414 (1997)).

Full squares: data from J. Seely et al., PRL. 103, 202301 (2009) reanalyzed by S. A. Kulagin and R. Petti, PRC 82, 
054614 (2010)

E. Pace, M.R., G. Salmè and S. Scopetta, Phys. Lett. B (2023) 137810
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SMC

NMC

GRV

SMC

       extracted from the MARATHON data 
[MARATHON, PRL 128,132003 (2022) ]

E. Pace, M.R., G. Salmè and S. Scopetta, Phys. Lett. B (2023) 137810

F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmè and M. Viviani, arXiv:2308.15925
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• The differences between the calculations from different potentials are of the same order for both 
nuclei 

• They are definitely smaller than the difference between data and theoretical prediction

Full squares: JLab data from 
experiment E03103
[J. Arrington, et al,  Phys. Rev. C 104 (6) 
(2021) 065203]

arXiv:2308.15925 [nucl-th]

Analogous results obtained 
also for  and 3He 4He

*F. Fornetti’s slide

https://arxiv.org/abs/2308.15925


Matteo Rinaldi TNPI2023

 The 4He EMC effect within the LFHD   

63

*F. Fornetti’s slide
The dependance on the ratio  is largely under control as well the dependance on the 
parametrization of  in the properly EMC region

Fn
2 /Fp

2
Fp

2

Full squares: JLab data from 
experiment E03103
[J. Arrington, et al,  Phys. Rev. C 104 (6) 
(2021) 065203]arXiv:2308.15925 [nucl-th]

Both lines calculated with Av18/UIX 
Solid line: SMC parametrization of  
Dashed line: NVIb+3N: CJ15 +TMC 
Parametrization of  

 extracted from MARATHON data

Fp
2

Fp
2

Fn
2

[B. Adeva, et al., Phys. Lett. B 412 (1997) 414–424.]

[A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens, 
N. Sato, Phys. Rev. D 93 (11) (2016) 114017]

[MARATHON, PRL 128,132003 (2022) ] 
[E.Pace, M.Rinaldi, G.Salmè and S.Scopetta Phys. Lett. 
B 839(2023) 127810]

https://arxiv.org/abs/2308.15925
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The dependance on the ratio  is largely under control as well the dependance on the 
parametrization of  in the properly EMC region

Fn
2 /Fp

2
Fp

2

Full squares: JLab data from 
experiment E03103
[J. Arrington, et al,  Phys. Rev. C 104 (6) 
(2021) 065203]arXiv:2308.15925 [nucl-th]

Both lines calculated with Av18/UIX 
Solid line: SMC parametrization of  
Dashed line: NVIb+3N: CJ15 +TMC 
Parametrization of  

 extracted from MARATHON data

Fp
2

Fp
2

Fn
2

[B. Adeva, et al., Phys. Lett. B 412 (1997) 414–424.]

[A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens, 
N. Sato, Phys. Rev. D 93 (11) (2016) 114017]

[MARATHON, PRL 128,132003 (2022) ] 
[E.Pace, M.Rinaldi, G.Salmè and S.Scopetta Phys. Lett. 
B 839(2023) 127810]

SMC

NMC

GRV

We calculated the valence 
contribution to the EMC 
effect within an approach: 

 i) able to include relativistic effects 
ii) fulfill number and momentum sum  
    rules at the same time! 
iii) including conventional nuclear effects 

https://arxiv.org/abs/2308.15925
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The dependance on the ratio  is largely under control as well the dependance on the 
parametrization of  in the properly EMC region

Fn
2 /Fp

2
Fp

2

Full squares: JLab data from 
experiment E03103
[J. Arrington, et al,  Phys. Rev. C 104 (6) 
(2021) 065203]arXiv:2308.15925 [nucl-th]

Both lines calculated with Av18/UIX 
Solid line: SMC parametrization of  
Dashed line: NVIb+3N: CJ15 +TMC 
Parametrization of  

 extracted from MARATHON data

Fp
2

Fp
2

Fn
2

[B. Adeva, et al., Phys. Lett. B 412 (1997) 414–424.]

[A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens, 
N. Sato, Phys. Rev. D 93 (11) (2016) 114017]

[MARATHON, PRL 128,132003 (2022) ] 
[E.Pace, M.Rinaldi, G.Salmè and S.Scopetta Phys. Lett. 
B 839(2023) 127810]

SMC

NMC

GRV

We calculated the valence 
contribution to the EMC 
effect within an approach: 

 i) able to include relativistic effects 
ii) fulfill number and momentum sum  
    rules at the same time! 
iii) including conventional nuclear effects 

We are not excluding the existence of 
 effects beyond the conventional ones! 

We need to test the approach with heavier 
                          nuclei

https://arxiv.org/abs/2308.15925


CONCLUSIONS
A Poincaré covariant description of nuclei, based on the light-front Hamiltonian dynamics, has been proposed. 
The Bakamjian-Thomas construction of the Poincaré generators allows one to embed the successful 
phenomenology for few-nucleon systems in a Poincaré covariant framework. 
N.B. Normalization and momentum sum rule are both automatically fulfilled.

Analyses of A(e,e’,p)X reactions, with polarized initial and final states, for accessing nuclear TMD’s in 
3He are in progress

LC spin-dependent momentum distributions are available, for both longitudinal and transverse 
polarizations of the nucleon.  (see E. Proietti’s talk)  

Encouraging calculation of 3He and 4He EMC, shedding light on the role of a reliable description of 
the nucleus.  
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