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Motivations: why the 3He

&
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NS Phenomenological: a reliable flavor decomposition needs the neutron parton structure (PDFs, GPDs TMD:s....)

Q'O Q 9O
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Accurate and long-lasting experimental efforts in developing effective neutron targets to carefully investigate its
electromagnetic responses. 3H'e is SPECIAL
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Motivations: why the 3He

&  Phenomenological: a reliable flavor decomposition needs the neutron parton structure (PDFs, GPDs TMDs....)

Q'O Q 9O
O t

Accurate and long-lasting experimental efforts in developing effective neutron targets to carefully investigate its
electromagnetic responses. 3H'e is SPECIAL

& Due to the experimental energies, the accurate theoretical description (of a polarized 3He) has to be relativistic

S
=

& Theoretical: a LF description of three body interacting systems! Bonus:

Transverse-Momentum Distributions (TMDs) for addressing in a novel way the nuclear dynamics
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Motivations: why the 4He

* (Goal: extend the approach applied for SHe to any nuclei A and calculate the EMC ratio for ‘He
and 3 H [E. Pace, M. Rinaldi, G. Salmé, S. Scopetta, Phys. Lett. B 839 (2023) 137810]

. Since *He is a strongly bound system this could provide a challenging test to our approach

. Compare EMC effect for >He, *He and °H obtained by different modern NN and NNN
interactions (Argonne V18+UIX, NVIa+3N, NVIb+3N)

« Compare the EMC effect for *He obtained by different choice of Fé’ and Fg’ parametrization

[R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Phys. Rev. C 51 (1995) 38-51]

R. B. Wiringa et al., Phys. Rev. Lett. 74 (1995) 4396-4399]
'M.Viviani et al., Phys. Rev. C 107 (1) (2023) 014314]

M. Piarulli et al.,Phys. Rev. Lett. 120 (5) (2018) 052503]
*F. Fornetti's slide

M. Piarulli, S. Pastore, R. B. Wiringa, S. Brusilow, R. Lim,Phys. Rev. C 107 (1) (2023) 014314]
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The EMC effect

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes:

with T= proton/nucleus

s Q>

the cross-section for different kind of targets.
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The EMC effect

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes:

kl
kK e—mp / with T= proton/nucleus

they extracted the Structure Function of the target

F5 (%)

the cross-section for different kind of targets.
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The EMC effect

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes the
ratio

q
» —— Q>

At high energies, the expected result is R(x) = 1 up to corrections of the Fermi motion. BUT
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The EMC effect

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes the
ratio A

R(x) = F, "(x)/F>"(x) .

At high energies, the expected result is R(x) = 1 up to corrections of the Fermi motion. BUT il % ¥

fgmo“ Q% 50 Gev?
.
].3 - 2

Result:

Aubert et al. Phys.Lett. B123 (1983) 275
1488 citations (inSPIRE)

BMODEK & RITCHIE
FERMI SMEARING

12 4

Few % deviation from what expected.
WHY?
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The EMC effect

Almost 40 years ago, the European Muon Collaboration (EMC) measured in deep inelastic scattering (DIS) processes the
ratio

Naive parton model interpretation:

“Valence quarks, in the bound nucleon, are in average slower that
in the free nucleon”

s the bound proton bigger than the free one??
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The EMC effect in details
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We remind that for DIS off nuclei: 0= st — Q <A A
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The EMC effect in details

2
We remind that for DIS off nuclei: 0< x = Sl ~ A
i 2Mvy — M
i = 3

x < 0.3 “Shadowing region”: coherence eftects, the photon pA 115

interacts with partons belonging to different nucleons —
F2 1.1
1.05

0.2 < x <0.8 "EMC (binding) region”: mainly valence
!
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The EMC effect in details

2
We remind that for DIS off nuclei: 0< x = Q - Ya ~ A
i 2Mvy — M
i - $
x < 0.3 “Shadowing region”: coherence effects, the photon pA 115 N
interacts with partons belonging to different nucleons F—fl -
t ‘\ e . . . 17 : LS +? *i * [
0 0.2=<x<0.8 "EMC (binding) region”: mainly valence i ? f
By , T
quarks involvea 4 * ¢
0.95 i V
N . . Tam 0.0 & **{h I
0.8 < x <1 "Fermi motion region « Ca sIE £, i+
0-85E s Ca, NMC "4
. . S s Fe,SLAC !
main features: universal behavior independent on Q2 ; weakly 08 7 | Fe, BCDMS
dependent on A; scales with the density p = global property? 0.75 selonscbon bl b b
Or due to correlations...Local... X

Explanation (exotic) advocated: confinement radius bigger for bound nucleons, quarks in bags with 6, 9,..., 3A
quark, pion cloud effects... Alone or mixed with conventional ones...
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The EMC effect explanations and perspective?

Situation: basically not understood. Very unsatistactory. We need to know the reaction
mechanism of hard processes off nuclei and the degrees of freedom which are involved:

. the knowledge of nuclear PDFs is crucial for the analysis of heavy ions collisions;

. neutron parton structure measured with nuclear targets; several QCD sum rules involve the neutron information
(Bjorken SR, for example): importance of Nuclear Physics for QCD
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The EMC effect explanations and perspective?

Situation: basically not understood. Very unsatistactory. We need to know the reaction
mechanism of hard processes off nuclei and the degrees of freedom which are involved:

. the knowledge of nuclear PDFs is crucial for the analysis of heavy ions collisions;

. neutron parton structure measured with nuclear targets; several QCD sum rules involve the neutron information
(Bjorken SR, for example): importance of Nuclear Physics for QCD

Inclusive measurements cannot distinguish between models
One has probably to go beyond (not treated here...) (R. Dupré and S.Scopetta, EPJA 52 (2016) 159)

@ Hard Exclusive Processes (GPDs)
e SIDIS (TMDs)
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Status of “Conventional” calculations for light nuclei:

NR Calculations: qualitative agreement but no fulfiliment of both particle and MSR... Not under control
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The EMC effect explanations and perspective?

Situation: basically not understood. Very unsatistactory. We need to know the reaction
mechanism of hard processes off nuclei and the degrees of freedom which are involved:

the knowledge of nuclear PDFs is crucial for the analysis of heavy ions collisions;

. neutron parton structure measured with nuclear targets; several QCD sum rules involve the neutron information
(Bjorken SR, for example): importance of Nuclear Physics for QCD

Inclusive measurements cannot distinguish between models
One has probably to go beyond (not treated here...) (R. Dupré and S.Scopetta, EPJA 52 (2016) 159)

@ Hard Exclusive Processes (GPDs)
e SIDIS (TMDs)

Status of “Conventional” calculations for light nuclei:

NR Calculations: qualitative agreement but no fulfiliment of both particle and MSR... Not under control

A tully Poincaré covariant approach to perform the calculation is essential to embed
relativistic effects and fulfill sum rules!
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The relativistic Hamiltonian dynamics framework

Why do we need a relativistic treatment ?

General answer: to develop an advanced scheme, appropriate for the kinematics
of JLAB12 and of EIC
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The relativistic Hamiltonian dynamics framework

Why do we need a relativistic treatment ?

General answer: to develop an advanced scheme, appropriate for the kinematics
of JLAB12 and of EIC

The Standard Model of Few-Nucleon Systems, with nucleon and meson degrees of freedom within a non

relativistic (NR) framework, has achieved high sophistication
[e.g. the NR 3He and 3H Spectral Functions in Kievsky, Pace, Salme, Viviani PRC 56, 64 (1997)].

Covariance wrt the Poincaré Group, Gp , needed for nucleons at large 4-momenta and pointing to high precision
measurements. Necessary it one studies, e.g., i) nucleon structure functions; ii) nucleon GPDs and TMDs, iii)
signatures of short-range correlations; iv) exotics (e.g. 6-bag quarks in 2H), etc

At least, one should carefully treat the boosts of the nuclear states, |W, > and 1W; )!
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The relativistic Hamiltonian dynamics framework

Why do we need a relativistic treatment ?

General answer: to develop an advanced scheme, appropriate for the kinematics
of JLAB12 and of EIC

The Standard Model of Few-Nucleon Systems, with nucleon and meson degrees of freedom within a non

relativistic (NR) framework, has achieved high sophistication
[e.g. the NR 3He and 3H Spectral Functions in Kievsky, Pace, Salme, Viviani PRC 56, 64 (1997)].

Covariance wrt the Poincaré Group, Gp , needed for nucleons at large 4-momenta and pointing to high precision
measurements. Necessary it one studies, e.g., i) nucleon structure functions; ii) nucleon GPDs and TMDs, iii)
signatures of short-range correlations; iv) exotics (e.g. 6-bag quarks in 2H), etc

At least, one should carefully treat the boosts of the nuclear states, |W, > and 1W; )!

Our definitely preferred framework for embedding the successtul NR phenomenology:

Light-front Relativistic Hamiltonian Dynamics (RHD, fixed dof) +Bakamjian-Thomas (BT) construction of the
Poincaré generators for an interacting theory.
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The relativistic Hamiltonian dynamics framework

In RHD+BT, one can address both Poincaré covariance and locality, general principles
to be implemented in presence of interaction:

@ Poincaré covariance — The 10 generators, P* — 4D displacements and
M"H — [ orentz transformations, have to fulfill

[P, P"] =0, [M" P’]l=—u(g""P" —g"’P"),

[Mu-l/’ M,OO’] - _Z(g[_Lp MI/O' + gl/J M/_Lp e g,u.-O' MI/,O i gl/p M/J,O')

Also P and ‘7  have to be taken into account !

Matteo Rinaldi TNPI2023
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The relativistic Hamiltonian dynamics framework

In RHD-+BT, one can address both Poincaré covariance and locality, general principles
to be implemented in presence of interaction:

@ Poincaré covariance — The 10 generators, P* — 4D displacements and
M"" — [orentz transformations, have to fulfill

[P, P"] =0, [M" P’]l=—u(g""P" —g"’P"),

[/Vl“‘”, Mpo] i _Z(gupr + g T MPP — gt P — gV M“’U)

Also P and 77  have to be taken into account !

® Macroscopic locality (= cluster separability (relevant in nuclear physics)): i.e.
observables associated to different space-time regions must commute in the limit
of large spacelike separation (i.e. causally disconnected), rather than for arbitrary
(microscopic-locality) spacelike separations. In this way, when a system is
separated into disjoint subsystems by a sufficiently large spacelike separation, then
the subsystems behave as independent systems.

Keister, Polyzou, Adv. Nucl. Phys. 20, 225 (1991) .
This requires a careful choice of the intrinsic relativistic coordinates.

Matteo Rinaldi TNPI2023




Forms of relativistic Dynamics

The 1nstant form

The front form

%0 = ct X% = ct+2z
X! = x x!=x
X2 =y X*=y
3= 7 X}=ct—z
10 0 0 o 0 0 !
= _[0-1 0 0 s [0 -1 00
aud S B\ R A ) THY 0 0 -1 0
R0a0 1 L0 0 0
. i 0 3
PR () Y. xT =x"+x
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Forms of relativistic Dynamics

The 1nstant form

X = ct
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X2=y

X} =z
1 0 0 0
s _[0-1 0 0
SR R e B
PR ) e |
M ()
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Forms of relativistic Dynamics - The front form

The Light-Front framework has several advantages:

@ 7 Kinematical generators: i) three LF boosts ( In instant form they are
dynamical!), ii) P = (P™ = P° 4+ P? P_), iii) Rotation around the z-axis.
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Forms of relativistic Dynamics - The front form

The Light-Front framework has several advantages:

@ 7 Kinematical generators: i) three LF boosts ( In instant form they are
dynamical!), ii) P = (P™ = P° 4+ P? P_), iii) Rotation around the z-axis.

@ The LF boosts have a subgroup structure : trivial Separation of intrinsic and

global motion, as in the NR case. important to correctly treat the boost between
initial and final states !

@ P > 0 — meaningful Fock expansion, once massless constituents are absent

@ No square root in the dynamical operator P, propagating the state in the
LF-time.

Matteo Rinaldi
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Forms of relativistic Dynamics - The front form

The Light-Front framework has several advantages:

® 7 Kinematical generators: i) three LF boosts ( In instant form they are
dynamical!), ii) P = (P™ = P° 4+ P? P_), iii) Rotation around the z-axis.

@ The LF boosts have a subgroup structure : trivial Separation of intrinsic and

global motion, as in the NR case. important to correctly treat the boost between
initial and final states !

@ P" > 0 — meaningful Fock expansion, once massless constituents are absent

@ No square root in the dynamical operator P, propagating the state in the
LF-time.

@ The infinite-momentum frame (IMF) description of DIS is easily included.
Drawback: the transverse LF-rotations are dynamical

But within the Bakamjian-Thomas (BT) construction of the generators in an
interacting theory, one can construct an intrinsic angular momentum fully kinematical!

37
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Bakamjian-Thomas construction and LFHD

Bakamijian and Thomas (PR 92 (1953) 1300) proposed an explicit construction of 10 Poincaré generators in presence
of interactions.

(@

€ The key ingredient is the mass operator:

) only the mass operator M contains the interaction
ii) it generates the dependence of the 3 dynamical generators upon the interaction

& The mass operator is given by the sum of Mgwith an interaction V, or Mgy + U. The interaction, U or V, must
commute with all the kinematical generators and with the non-interacting angular momentum, as in the case.
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Bakamjian-Thomas construction and LFHD

Bakamijian and Thomas (PR 92 (1953) 1300) proposed an explicit construction of 10 Poincaré generators in presence
of interactions.

(@

€ The key ingredient is the mass operator:

) only the mass operator M contains the interaction
ii) it generates the dependence of the 3 dynamical generators upon the interaction

& The mass operator is given by the sum of Mgwith an interaction V, or Mgy + U. The interaction, U or V, must
commute with all the kinematical generators and with the non-interacting angular momentum, as in the case.

In the Few-body case, one can easily embed the NR phenomenology:

) the mass equation for, e.g. the 2H: [M5(12) + U] |vp) = [4m2 + 4k* + U} [Yp) = M |vp) = [2m — Bp]” |¢p)
becomes a Schr. eq.

4m® + 4k* + 4m VR |yp) = [4m® — 4mBp

Yp) where U = 4mVNVR  neglecting (BD/2m)2
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Bakamjian-Thomas construction and LFHD

Bakamijian and Thomas (PR 92 (1953) 1300) proposed an explicit construction of 10 Poincaré generators in presence
of interactions.

(@

€ The key ingredient is the mass operator:

) only the mass operator M contains the interaction
ii) it generates the dependence of the 3 dynamical generators upon the interaction

& The mass operator is given by the sum of Mgwith an interaction V, or Mgy + U. The interaction, U or V, must
commute with all the kinematical generators and with the non-interacting angular momentum, as in the case.

In the Few-body case, one can easily embed the NR phenomenology:

) the mass equation for, e.g. the 2H: [M5(12) + U] |vp) = [4m2 + 4k* + U} [Yp) = M |vp) = [2m — Bp]” |¢p)
becomes a Schr. eq.

4m® + 4k* +4m V"] |¢p) = [4m* — 4mBp| |¢p) where U = 4mVNR  neglecting (BD/Qm)2

ii) The eigensolutions of the mass equation for the continuum are identical to the solutions of the

_Lippmann-Schwinger equation.
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The BT Mass operator for an A=3 system

& |n the three-body case, the mass operator is: MBT(123) — M0(123) + V 2 3 T V23 1T V31 2 +K1§f§/

~—
2-body forces 3-body force

M, (123) \/ m?

free mass operator momenta in the intrinsic reference frame kl e k2 — k3 — ()

& The commutation rules impose to VBT invariance for translations and rotations as well as independence on the
total momentum, as it occurs for VNR,
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The BT Mass operator for an A=3 system

& |n the three-body case, the mass operator is: MBT(123) — M0(123) + V 2 3 T V23 1T V31 2 +K1§52

~—
2-body forces 3-body force

M, (123) \/ m?

free mass operator momenta in the intrinsic reference frame kl e k2 — k3 — ()

& The commutation rules impose to VBT invariance for translations and rotations as well as independence on the
total momentum, as it occurs for VNR,

¢ One can assume Mg (123)~ M
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The BT Mass operator for an A=3 system

& |n the three-body case, the mass operator is: MBT(123) — Mo(123) = V 2 3 T V23 1T V31 2 +@

1(123) Z\/mQ

free mass operator momenta in the intrinsic reference frame kl e k2 e k3 — ()

~—
2-body forces 3-body force

& The commutation rules impose to VBT invariance for translations and rotations as well as independence on the
total momentum, as it occurs for VNR,

¢ One can assume Mg (123)~ M

€ Therefore what has been learned till now about the nuclear interaction, within a non-relativistic framework. can
be re-used in a Poincaré covariant framework.

The formalism has been extended also for 4He
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R. Alessandro, A. del Dotto, E. Pace, G. Perna, S. Scopetta and G. Salme, PRC 104 (2021) 6, 065204

Refe re n Ce fra m es E. Pace, M. Rinaldi, S. Scopetta and G. Salme, Phys. Scr. 95, 064008 (2020)

F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmeé and M. Viviani, arXiv:2308.15925

For a correct description of the SF, so that the Macro-locality is implemented, it is crucial to distinguish

between difterent frames, moving with respect to each other:
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F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmeé and M. Viviani, arXiv:2308.15925

between different frames, moving with respect to each other:

For a correct description of the SF, so that the Macro-locality is implemented, it is crucial to distinguish

@ The Lab frame, where P = (/\/IG)
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R. Alessandro, A. del Dotto, E. Pace, G. Perna, S. Scopetta and G. Salme, PRC 104 (2021) 6, 065204

Refe re n Ce fra m es E. Pace, M. Rinaldi, S. Scopetta and G. Salme, Phys. Scr. 95, 064008 (2020)

F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmeé and M. Viviani, arXiv:2308.15925

For a correct description of the SF, so that the Macro-locality is implemented, it is crucial to distinguish

between difterent frames, moving with respect to each other:

@ The Lab frame, where P = (M, 0)
@ The intrinsic LF frame of the whole system, (123), where P = (My(123),0.) with
k*(123) = € Mo(123) and Mp(123) = V/m? + K2+ \/m? + K3 + \/m? + K3
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R. Alessandro, A. del Dotto, E. Pace, G. Perna, S. Scopetta and G. Salme, PRC 104 (2021) 6, 065204

Refe re n Ce fra m es E. Pace, M. Rinaldi, S. Scopetta and G. Salme, Phys. Scr. 95, 064008 (2020)

F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmeé and M. Viviani, arXiv:2308.15925

For a correct description of the SF, so that the Macro-locality is implemented, it is crucial to distinguish

between different frames, moving with respect to each other:

@ The Lab frame, where P = (M, 0)
@ The intrinsic LF frame of the whole system, (123), where P = (My(123),0. ) with

k*(123) = € Mo(123) and Mo(123) = V/m? + K2 + \/m? + K + /m? + K

@ The intrinsic LF frame of the cluster, (1;23), where P = (M(1,23),0,), with
57 (1;23) = € Mo(1,23) and Mo(1,23) = v/m? + K2 + /M2 + |k’

while pL(/ab) — kL(123) — K,L(]., 23)

The formalism has been extended also for A-nucleus
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The spin-dependent LF spectral function

A. Del Dotto, E. Pace, G. Salme, S. Scopetta, Physical Review C 95, 014001 (2017)

The Spectral Function: probability distribution to find inside a bound system a particle with a given K when the rest
of the system has energy € , with a polarization vector S:

Prio(R,e,8) = p(€)>:>:[_F<tT;Oz,€;JJZ;TO'/,IZ',‘\UM;STzXSTZ;WM‘F@,O'T;JJZ;G:Q/; Tt)LF

Jax Tt

8 Euler angles of rotation from the z-axis to the polarization vector S

three-body bound eigenstate of Mp1(123) ~ MK

Matteo Rinaldi TNPI2023
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The spin-dependent LF spectral function

A. Del Dotto, E. Pace, G. Salme, S. Scopetta, Physical Review C 95, 014001 (2017)

The Spectral Function: probability distribution to find inside a bound system a particle with a given K when the rest
of the system has energy € , with a polarization vector S:

P (R, e, S P> D 1r(tTi o€ JJzi 70! RIVAG STANS T Wad| &, 075 Iz €, 5 TE) L

Jax Tt

8 Euler angles of rotation from the z-axis to the polarization vector S

three-body bound eigenstate of Mp1(123) ~ MK

¢ |RK,o7;JJ;;€,; TT)LF tensor product of a plane wave for particle 1 with LF momentum & in the intrinsic

“reference frame of the [1 + (23)] cluster times the fully interacting state of the (23) pair
of energy eigenvalue € . It has eigenvalue:

Mo(1,23) = /m? + [k2 + Es Es=\/MZ+|sl2  Ms=2ym?+ me
and fulfills the macroscopic locality (Keister, Polyzou, Adv. N. P. 20, 225 (1991)).

kK=(k" =& Mo(1,23),k. =K, )
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The spin-dependent LF spectral function

The spectral function is written in terms of the overlap ; . < tT a, €, J] (7o S SN e

The tensor product of the plane wave of the interacting particle and ="

the state of the spectator system

In the intrinsic reference frame of the
cluster [1;2.3,....,A — 1]

Matteo Rinaldi

TNPI12023

The wave function of the nucleus A
(i.e. the eigenstate of

M[1,2,...,A] ~ M™%
In the intrinsic frame of the system
[1,2,..., A]

*F. Fornetti’s slide
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The spin-dependent LF spectral function

The spectral function is written in terms of the overlap ; . < tT a, €, JJ (7o S SN e

The tensor product of the plane wave of the interacting particle and & The wave function of the nucleus A

the state of the spectator system | .
(i.e. the eigenstate of

In the intrinsic reference frame of the M[1.2,...,A] ~ MK

cluster [1;2,3,...,A — 1] In the intrinsic frame of the system
[1,2,..., A]

We can express the LF overlap in terms of the IF overlap using Melosh rotations and then we can
approximate the IF overlap into a NR overlap thanks to the BT construction:

;@ >IF s @ > s @ > NR

*F. Fornetti’s slide
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The spin-dependent LF spectral function

The spectral function is written in terms of the overlap ; » < tT a, €, JJ (7o S SN e

The tensor product of the plane wave of the interacting particle and =" The wave function of th e .
the state of the spectator system .
(i.e. the eigenstate of

In the intrinsic reference frame of the M[1.2,...,A] ~ MK
cluster [1;2,3,...,A — 1] In the intrinsic frame of the system

[1,2,..., A]

We can express the LF overlap in terms of the IF overlap using Melosh rotations and then we can
approximate the IF overlap into a NR overlap thanks to the BT construction:

{05} ¢>LF—> {05} ¢>1F {05} ¢>NR

The LF spectral function contalns the determinant of the Jacobian of the transformation between |
the intrinsic frames [1;2,3,...,A — 1]and [1,2,..., A], connected other boost |

*F. Fornetti’s slide
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The nuclear structure function F»

The hadronic tensor, in Impulse approximation is found to be (Pace, M.R., Salmé and S. Scopetta, Phys. Scri. 2020)

d dr’
W2 (Pa, Taz) = Z‘,d/ S PR

hadronic tensor of the
1 _w» Pound nucleon

dK/J_ dh 1 r dl"\';_j_ dh N L P/i
9 3 Lo [ Grzar ¢ PRI (D e Wi Yoo [ G PR 2

2 H{ | 2 a2 .
X = 25 = Bjorken variable £ = MoAm) LT X Z = Q7 nucleon structure function

- (2) =~z g 3, Wik (P, a)

One should notice that: /de /d/-f+ #/d% /de but in the BJ limit /d€ /d’f /dff /d€

therefore, F, and the EMC effect can be evaluated the LC momentum distribution directly!
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The nuclear structure function F»

One should notice that: /de /a//<:+ #/dﬁ:+ /de but in the BJ limit /G’E /dff+ Z/G’fi+ /0’6

therefore, F, and the EMC effect can be evaluated the LC momentum distribution directly!

| Light-cone momentum
‘ distribution

Free nucleon structure function

Determinant of the Jacobian matrix. LF boost: effect of a
Poincaré covariance approach

Squared nuclear wave function. Thanks to
the BT construction, one is allowed to

use the NR one
A

Azl
— D‘I/lN(f K)) =— H dk;]
=2 -

& d/VN(k, k2, ...,kA_l)

2r ) -

Matteo Rinaldi TNPI2023

o

——1 *F. Fornetti's slide

o4



LC momentum distributions

From the normalization of the Spectral Function one has

Matteo Rinaldi TNPI2023
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LC momentum distributions

From the normalization of the Spectral Function one has

Baryon number sum rule Momentum sum rule

Within the LFHD we are able to fulfill both sum rules at the same time!

E. Pace, M.R., G. Salmé and S. Scopetta, Phys. Lett. B (2023) 137810
A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmeé and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204)

Matteo Rinaldi TNPI2023
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LC momentum distributions

From the normalization of the Spectral Function one has

We can define the essential sum rules that must be satisfied:

- N

d§

Na= |

Within the LFHD we are able to fulfill both sum rules at the same time!

ZE&) + (A= 2)FME)| =1 MSR = [ de ¢

~_ -

Baryon number sum rule Momentum sum rule

E. Pace, M.R., G. Salmé and S. Scopetta, Phys. Lett. B (2023) 137810
A. Del Dotto, E. Pace, G. Perna, A. Rocco, G. Salmeé and S. Scopetta, Phys.Rev.C 104 (2021) 6, 065204)

Not possible within the IF! (Frankfurt & Strikman; Miller;....80')

Matteo Rinaldi TNPI2023
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LC momentum distributions

= N

R I EAGRICERIAG)

MSR = [ de € [26/€) + (A~ D)) =1

* The tails of the distributions are generated by the short range correlations
(SRC) induced by the potentials (i.e the high-momentum content of the 1-

The distributions are peaked in 1/A with an accuracy of 1/1000: body momentum distribution)
MSR and Number of ban' sum rules are numerically satisfied

10:'

< e
If ~§
ol /]
O I,' \
| 1 / ‘\\ \
II" 77 ‘:\ A
] 7/ N
' ///l ‘\\ \\\\
0.01 I/ /11 A . N\
0 0.2 0.4 ‘ 0.6 0.8

Matteo Rinaldi

* The tails of the LC momentum distribution calculated by the Av18/UIX

potential is larger than the ones obtained by the yEFT potentials for both ‘*He
and deuteron

* This difference will partially cancel out on the EMC ratio

i l proton
10 | neutron ---- _

- NR-proton

1 - NR-neutron - - - -
@ i
= 01 i
0.01 [ ]
0.001 L .

0 0.8 1
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LC momentum distributions

Na = | 2646+ (A- 2] =1 MR [ de € (2609 + A= 2O =1

* The tails of the distributions are generated by the short range correlations

- _ _ _ (SRC) induced by the potentials (i.e the high-momentum content of the 1-
The distributions are peaked in 1/A with an accuracy of 1/1000: body momentum distribution)

MSR and Number of ban' sum rules are numerically satisfied

* The tails of the LC momentum distribution calculated by the Av18/UIX
potential is larger than the ones obtained by the yEFT n~*- ‘tials for both ‘*He

and deuteron
. ed casSC
+  This differ po\aV\Z
10} p—
ntum b NR-neutron - --- -
1 oMm WO Y / _i
| fi \ 01 L i
0.1} I ) .
Y ,I' }\ i A
| y / \ \ ; 0.01 | :
li ’.;' \.\\ ‘Q'\
/4 \ A\
Rl 02 04 0.6 08 1 0.001 - '
¢ 0 0.2 0.4 0.6 0.8 1

. . & 50
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The 3He EMC effect within the LFHD

E. Pace, M.R., G. Salmé and S. Scopetta, Phys. Lett. B (2023) 137810

o A F3\(x)
(x) = 3 FP()+(A-2) FI(x)

. Solid line: with Av18 description of 3He, Dashed line: including three-body forces (U-IX) with “SMC" nucleon
structure functions (Adeva et al PLB 412, 414 (1997)).

. Full squares: data from J. Seely et al., PRL. 103, 202301 (2009) reanalyzed by S. A. Kulagin and R. Petti, PRC 82,
054614 (2010)
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The 3He EMC effect within the LFHD

E. Pace, M.R., G. Salmé and S. Scopetta, Phys. Lett. B (2023) 137810
F. Fornetti, E. Pace, M. Rinaldi, S. Scopetta, G. Salmé and M. Viviani, arXiv:2308.15925

1'2 1.2 | ] 1 I i | 'l.
1.15 E Av18/UIX ! l E
1146— —— NVia 9
E —-- — NVIb & h
= 1.1 T —s— E03103 / l .
\'C) 1.1— J s—
s 1.05 X § D
L % IC B
(?I o C ]
1 1.05}— i
0.95 | - L 4
1= — H .
0'90 012 014 016 018 1 ; H :
5 [ 1 | 1 l 1 1 | I I [ { I 1 1 1 [ [ " ) ]
X %% 0.2 0.2 0.6 0.8 1

FJ'(x) extracted from the MARATHON data
[MARATHON, PRL 128,132003 (2022) ]

FY(x) SMC
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The 4He EMC effect within the LFHD

14

arXiv:2308.15925 [nucl-th]

Full squares: JLab data from
experiment E03103

[J. Arrington, et al, Phys. Rev. C 104 (6)
(2021) 065203]

| | | | I |

Av18/UIX
- NVla
— — NVIb
E03103

1.3

2

i

Remc(X)

Illl|llll|llll’lll!
IIlllllllllllllllli

'Analogous results obtained |
alsofor "Heand"He |

0.9

Illllllll
Illl|llll

O 8 | | 1 I | 1 | I 1 | ) I 1 | | l 1 | 1

0 0.2 0.4 06 0.8 *F. Fornetti's slide

A

* The differences between the calculations from different potentials are of the same order for both
| nuclei '
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https://arxiv.org/abs/2308.15925

The 4He EMC effect within the LFHD ke deb

arXiv:2308.15925 [nuc|-th] [J. Arrington, et al, Phys. Rev. C 104 (6)

(2021) 065203]

1.4 Both lines calculated with Av18/UIX

Solid line: SMC parametrization of Fé’

Dashed line: NVIb+3N: CJ15 +TMC
Parametrization of Fé’

F;’ extracted from MARATHON data

1
[ 1 1 |

1.3

I\PT“III

1.2

\
[ | |

1.1

Remc(X)

[B. Adeva, et al., Phys. Lett. B 412 (1997) 414—424.]

[A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens,
N. Sato, Phys. Rev. D 93 (11) (2016) 114017]

0.9
[MARATHON, PRL 128,132003 (2022) ]

T T [E.Pace, M.Rinaldi, G.Salmé and S.Scopetta Phys. Lett.
0.8/ o 0 0 0.6 B 839(2023) 127810]

lllllllll
IIII|IIII

—

The dependance on the ratio F7'/ Fé’ s largely under control as well the dependance on the _
i parametrization of F? in the properly EMC region F. Fornetti's slide |
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https://arxiv.org/abs/2308.15925

The 4He EMC effect within the LFHD "

arXiv:2308.15925 [nuc|-th] [J. Arrington, et al, Phys. Rev. C 104 (6)

(2021) 065203]

Both lines calculated with Av18/UIX
Solid line: SMC parametrization of Fé’

Dashed line: NVIb+3N: CJ15 +TMC

-

. _ Parametrization of /"7
$° We calculated the valence | F? extracted from MARATHON data
s contribution to the EMC P
d=sia] effect within an approach: /=
i) able to include relativistic effects s // : [B. Adeva, et al., Phys. Lett. B 412 (1997) 414—424.]
i) fulfill number and momentum sum f [A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens,

les at th time! N. Sato, Phys. Rev. D 93 (11) (2016) 114017]
rules at the same time!

[MARATHON, PRL 128,132003 (2022) ]

[E.Pace, M.Rinaldi, G.Salmé and S.Scopetta Phys. Lett.
B 839(2023) 127810]

IIII|IIII

iii) including conventional nuclear effects

—

The dep r control as well the dependance on the

iparametr “F. Fornetti's slide
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https://arxiv.org/abs/2308.15925

The 4He EMC effect within the LFHD "

arXiv:2308.15925 [nuc|-th] [J. Arrington, et al, Phys. Rev. C 104 (6)

(2021) 065203]

1-4£ | : Both lines calculated with Av18/UIX
- Solid line: SMC parametrization of Fé’
Dashed line: NVIb+3N: CJ15 +TMC
. - Parametrization of Fé’
$° We calculated the valence F? extracted from MARATHON data
ATTENTION COﬂtI’IbUtIOn to the EMC { /_‘I
it effect within an approach: //_:
i) able to include relativistic effects ; /}/ pd - [B. Adeva, et al., Phys. Lett. B 412 (1997) 414—424.]
i) fulfill number and momentum sum B - [A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens,
. | - N. Sato, Phys. Rev. D 93 (11) (2016) 114017]
rules at the same time! —
i) including conventional nuclear effects - [MARATHON, PRL 128,132003 (2022) ]
1) InCiUding vent Y - [E.Pace, M.Rinaldi, G.Salmé and S.Scopetta Phys. Lett.
1 B 839(2023) 127810]

We are not excluding the existence of
effects beyond the conventional ones!

1 < AP P g > s =y Sl e 4 g AT - Sallee™ . Y e g - .= e SRR

‘Thedep ~ Veneedio tes”hle_approaCh plLgpel ar control as well the dependance on the
{ nuclel
paramett - ‘F. Fornetti's slide |
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ariant description of nuclei, based on the light-front Hamiltonian dynamics, has been proposed.
omas construction of the Poincaré generators allows one to embed the successful
few-nucleon systems in a Poincaré covariant framework.

d momentum sum rule are both automatically fulfilled.

1 distributions are available, for both longitudinal and transverse
. Proietti’s talk)

MC, shedding light on the role of a reliable description of

and final states, for accessing nuclear TMD’s in



Y~ A Poincaré covariant description of nuclei, based on the light-front Hamiltonian dynamics, has been proposed.
The Bakamijian-Thomas construction of the Poincaré generators allows one to embed the successful
phenomenology for few-nucleon systems in a Poincaré covariant framework.

N.B. Normalization and momentum sum rule are both automatically fulfilled.

v LC spin-dependent momentum distributions are available, for both longitudinal and transverse
polarizations of the nucleon. (see E. Proietti’s talk)

v Encouraging calculation of 3He and “He EMC, shedding light on the role of a reliable description of
the nucleus.



Y~ A Poincaré covariant description of nuclei, based on the light-front Hamiltonian dynamics, has been proposed.
The Bakamijian-Thomas construction of the Poincaré generators allows one to embed the successful
phenomenology for few-nucleon systems in a Poincaré covariant framework.

N.B. Normalization and momentum sum rule are both automatically fulfilled.

v LC spin-dependent momentum distributions are available, for both longitudinal and transverse
polarizations of the nucleon. (see E. Proietti’s talk)

v Encouraging calculation of 3He and “He EMC, shedding light on the role of a reliable description of
the nucleus.

Analyses of A(e,e’,p)X reactions, with polarized initial and final states, for accessing nuclear TMD’s in
3He are In progress




Rescaling

Structure Functions for Light Nuclei

S. A. Kulagin®* and R. Petti® T

! Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia
2 Department of Physics and Astronomy,

University of South Carolina, Columbia SC 29208, USA
Abstract

We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei
including %H, 3He, *He, Be, 2C and “N. In order to verify the consistency of available data,
we calculate the x? deviation between different data sets. We find a good agreement between the
results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates
an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment
with respect to previous data for nuclei heavier than 3He. We also discuss the extraction of
the neutron/proton structure function ratio Fj'/F? from the nuclear ratios *He/?H and *H/'H.
Our analysis shows that the E03-103 data on *He/?H require a renormalization of about 3% in
order to be consistent with the FJ'/F) ratio obtained from the NMC experiment. After such a
renormalization, the 3He data from the E03-103 data and HERMES experiments are in a good
agreement. Finally, we present a detailed comparison between data and model calculations, which
include a description of the nuclear binding, Fermi motion and off-shell corrections to the structure
functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections.
Overall, a good agreement with the available data for all nuclei is obtained.
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Backup Slides: effective polarizations

Matteo Rinaldi

Effective polarizations

Key role in the extraction of neutron polarized structure functions and neutron Collins
and Sivers single spin asymmetries, from the corresponding quantities measured for *He

Effective longitudinal polarization (axial charge for the nucleon)

P = /dx/dpLAf (x,|pL|*)

Effective transverse polarization (tensor charge for the nucleon)

ol —/ de [ dpu A (x,lpuf?)
J (0 .

Effective polarizations proton neutron
LF longitudinal polarization | -0.02299 | 0.87261
LF transverse polarization -0.02446 | 0.87314
non relativistic polarization | -0.02118 | 0.89337

@ The difference between the LF polarizations and the non relativistic results are up
to 2% in the neutron case (larger for the proton ones, but it has an overall small
contribution), and should be ascribed to the intrinsic coordinates, implementing
the Macro-locality, and not to the Melosh rotations involving the spins.

@ N.B. Within a NR framework: p[(NR) = p| (NR)

TNPI12023
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d

'he BT Mass operator for A=3 nucler - |l

"he NR mass operator is written as

k2
MM =3m+ Y S+ VT Vs VT Vi
=1 .3

nd must obey to the commutation rules proper ot the Galilean group, leading to

translational invariance and independence of total 3-momentum.

Those properties are analogous to the ones in the BT construction. This allows us to
consider the standard non-relativistic mass operator as a sensible BT mass operator, and
embed it in a Poincaré covariant approach.

T
=

Mpr(123) = Mo(123) + Vis's + Vi3 + Va1 + Vigz ~ MM

ne 2-body phase-shifts contain the relativistic dynamics, and the Lippmann-Schwinger
uation, like the Schrodinger one, has a suitable structure for the BT construction.

T

nerefore what has been learned till now about the nuclear interaction, within a

non-relativistic framework, can be re-used in a Poincaré covariant framework.

The eigenfuntions of M"ME do not fulfill the cluster separability, but we take care of

M

acro-locality in the spectral function.
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