An overview on Strongly-Interacting Matter

Andrea Beraudo

INFN - Sezione di Torino

Cortona, 11-13 October 2023

Sezione	RL	Staff	Post-Doc	Ph.D.	Retired
Catania	Siringo	4	0	1	1
Firenze	Becattini	2	1	1	1
LNS	Greco, Plumari	3	1	3	0
Torino	Nardi	5+1	0	1	1

QCD phases identified through the order parameters

- Polyakov loop $\langle L \rangle \sim e^{-\beta \Delta F_Q}$: energy cost to add an isolated color charge
- Chiral condensate $\langle \overline{q}q \rangle \sim$ effective mass of a "dressed" quark in a hadron

QCD phases identified through the order parameters

- Polyakov loop $\langle L \rangle \sim e^{-\beta \Delta F_Q}$: energy cost to add an isolated color charge
- Chiral condensate $\langle \overline{q}q \rangle \sim$ effective mass of a "dressed" quark in a hadron

Heavy-Ion Collision (HIC) experiments performed to study the transition

- From QGP (color deconfinement, chiral symmetry restored)
- to hadronic phase (confined, chiral symmetry broken)

NB QCD chiral transition responsible for most of the baryonic mass of the universe: only ~ 35 MeV of the proton mass from $m_{u/d} \neq 0$

• Region explored at the LHC ($\sqrt{s_{\rm NN}} \approx 5$ TeV) and highest RHIC energy: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$). The region currently accessible on by lattice-QCD simulations (P. Parotto, UniTo and Wuppertal-Budapest collaboration);

- Region explored at the LHC ($\sqrt{s_{\rm NN}} \approx 5$ TeV) and highest RHIC energy: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$). The region currently accessible on by lattice-QCD simulations (P. Parotto, UniTo and Wuppertal-Budapest collaboration);
- Higher baryon-density region accessible at lower $\sqrt{s_{\rm NN}} \approx 10$ GeV (Beam-Energy Scan at RHIC), mainly studied via effective Lagrangians;

- Region explored at the LHC ($\sqrt{s_{\rm NN}} \approx 5$ TeV) and highest RHIC energy: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$). The region currently accessible on by lattice-QCD simulations (P. Parotto, UniTo and Wuppertal-Budapest collaboration);
- Higher baryon-density region accessible at lower $\sqrt{s_{\rm NN}} \approx 10$ GeV (Beam-Energy Scan at RHIC), mainly studied via effective Lagrangians;

Is there a Critical End-Point in the QCD phase diagram?

Non-perturbative QCD: screened perturbation theory vs lattice

Perturbation theory is re-organized, inserting an explicit mass term into the tree-level transverse gluon propagator and adding a corresponding mass counterterm to the interaction Lagrangian (G. Comitini, D. Rizzo, M. Battello and F. Siringo, PRD 104 (2021) 7, 074020)

Heavy-ion collisions: a cartoon of space-time evolution

- Soft probes (low-p_T hadrons): collective behavior of the medium;
- Hard probes (high-p_T particles, heavy quarks and quarkonia): produced in *hard pQCD* processes in the initial stage, allow to perform a tomography of the medium

化白豆 化间面 化医原油 医原生素

A medium displaying a collective behavior

$$(\epsilon + P)\frac{dv^{i}}{dt} \underset{v \ll c}{=} -\frac{\partial P}{\partial x^{i}}$$

・ロト・西ト・ヨト・ヨー うへぐ

A medium displaying a collective behavior

$$(\epsilon + P)\frac{dv^{i}}{dt} \underset{v \ll c}{=} -\frac{\partial P}{\partial x^{i}}$$

NB picture relying on the condition $\lambda_{
m mfp} \ll L$

<ロト</l>
<ロト
<日ト
<日ト
<日ト
<日ト
<日ト
<10
<10<

A medium displaying a collective behavior

Anisotropic azimuthal distribution of hadrons as a response to pressure gradients quantified by the *Fourier coefficients* v_n

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left(1 + 2\sum_n v_n \cos[n(\phi - \psi_n)] + \dots \right)$$
$$v_n \equiv \langle \cos[n(\phi - \psi_n)] \rangle$$

Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP

L. Del Zanna^{1,2,3,a}, V. Chandra², G. Inghirami^{1,2}, V. Rolando^{4,5}, A. Beraudo⁶, A. De Pace⁷, G. Pagliara^{4,5}, A. Drago^{4,5}, F. Becattini^{1,2,8}

Viscosity damps short-wavelength modes!

うへで 9/21

Why does hydrodynamics work so well?

FAR-FROM-EQUILIBRIUM ATTRACTORS IN A 3+1D TRANSPORT APPROACH AT FIXED η/s^*

Salvatore Plumari^{a,b}, Giuseppe Galesi^{a,b}, Lucia Oliva^{a,c} Vincenzo Nugara^{a,b}, Vincenzo Greco^{a,b}

Evaluating longitudinal and transverse pressure from the moments of the single-particle distribution arising from the Boltzmann Equation

$$p^{\mu}\partial_{\mu}f(x,\vec{p})=C[f]$$

one observes convergence to a universal result (hydrodynamic attractor) well before the conditions

$$\operatorname{Kn} \equiv \frac{\tau_R}{\tau} \ll 1 \quad \text{and} \quad \operatorname{Re}^{-1} \equiv \frac{\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}}}{e+P} \ll 1$$

are satisfied

• In non-central HIC's huge amount of orbital angular momentum $(|J_y| \sim 10^3 - 10^4\hbar)$ deposited in the interaction region;

• In non-central HIC's huge amount of orbital angular momentum $(|J_y| \sim 10^3 - 10^4\hbar)$ deposited in the interaction region;

- In non-central HIC's huge amount of orbital angular momentum $(|J_y| \sim 10^3 10^4 \hbar)$ deposited in the interaction region;
- Fireball acquires sizable vorticity (most vortical fluid in Nature)
 ū ≡ 1/2 (*∇* × *v*) ~ 10²²s⁻¹, partially transferred to polarization of produced particles assuming thermalization of spin degrees of freedom (analogous of Barnett effect in condensed matter)

$$\widehat{\rho} \equiv \frac{1}{Z} \exp\left[-(\widehat{H} - \boldsymbol{\omega} \cdot \widehat{\boldsymbol{J}} - \mu_Q \widehat{\boldsymbol{Q}})/T\right] \quad \longrightarrow \quad \langle \boldsymbol{S} \rangle \approx \frac{S(S+1)}{3} \frac{\boldsymbol{\omega}}{T}$$

- In non-central HIC's huge amount of orbital angular momentum $(|J_y| \sim 10^3 10^4\hbar)$ deposited in the interaction region;
- Fireball acquires sizable vorticity (most vortical fluid in Nature)
 ū ≡ 1/2 (*∇* × *v*) ~ 10²²s⁻¹, partially transferred to polarization of produced particles assuming thermalization of spin degrees of freedom (analogous of Barnett effect in condensed matter)

$$\widehat{\rho} \equiv \frac{1}{Z} \exp\left[-(\widehat{H} - \boldsymbol{\omega} \cdot \widehat{\boldsymbol{J}} - \mu_Q \widehat{\boldsymbol{Q}})/T\right] \quad \longrightarrow \quad \langle \boldsymbol{S} \rangle \approx \frac{S(S+1)}{3} \frac{\boldsymbol{\omega}}{T}$$

- In non-central HIC's huge amount of orbital angular momentum $(|J_y| \sim 10^3 10^4 \hbar)$ deposited in the interaction region;
- Fireball acquires sizable vorticity (most vortical fluid in Nature) \$\vec{\omega}\$ \equiv \frac{1}{2}\$ (\$\vec{\nabla}\$ × \$\vec{\nabla}\$) ~ 10²²s⁻¹, partially transferred to polarization of produced particles assuming thermalization of spin degrees of freedom (analogous of Barnett effect in condensed matter)

$$\widehat{\rho} \equiv \frac{1}{Z} \exp\left[-(\widehat{H} - \boldsymbol{\omega} \cdot \widehat{\boldsymbol{J}} - \mu_Q \widehat{Q})/T\right] \quad \longrightarrow \quad S^{\mu}(p) = -\frac{1}{8m} \epsilon^{\mu\rho\sigma\tau} p_{\tau} \frac{\int p_{\lambda} d\Sigma^{\lambda} n_F (1 - n_F) \overline{\omega}_{\rho\sigma}}{\int p_{\lambda} d\Sigma^{\lambda} n_F}$$

• Above formulas generalized to relativistic systems (Becattini et al.)

Annual Review of Nuclear and Particle Science Polarization and Vorticity in the Quark–Gluon Plasma

Francesco Becattini1 and Michael A. Lisa2

- In non-central HIC's huge amount of orbital angular momentum $(|J_y| \sim 10^3 10^4 \hbar)$ deposited in the interaction region;
- Fireball acquires sizable vorticity (most vortical fluid in Nature) \$\vec{\omega}\$ \equiv \frac{1}{2}\$ (\$\vec{\nabla}\$ × \$\vec{\nabla}\$) ~ 10²²s⁻¹, partially transferred to polarization of produced particles assuming thermalization of spin degrees of freedom (analogous of Barnett effect in condensed matter)

$$\widehat{\rho} \equiv \frac{1}{Z} \exp\left[-(\widehat{H} - \boldsymbol{\omega} \cdot \widehat{\boldsymbol{J}} - \mu_Q \widehat{Q})/T\right] \quad \longrightarrow \quad \left|S^{\mu}(\boldsymbol{p}) = -\frac{1}{8m} \epsilon^{\mu\rho\sigma\tau} p_{\tau} \frac{\int p_{\lambda} d\Sigma^{\lambda} n_F (1 - n_F) \overline{\omega}_{\rho\sigma}}{\int p_{\lambda} d\Sigma^{\lambda} n_F}\right|$$

• Above formulas generalized to relativistic systems (Becattini et al.)

A medium inducing energy-loss of colored probes

Strong unbalance of di-jet events, visible at the level of the event-display itself, without any analysis: jet-quenching

A medium inducing energy-loss of colored probes

Strong unbalance of di-jet events, visible at the level of the event-display itself, without any analysis: jet-quenching

A medium inducing energy-loss of colored probes

Suppression of high-momentum hadrons and jets quantified through the *nuclear modification factor*

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{
m coll}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

interpreted as in-medium energy-loss of *colored* particles

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 14 / 21

How the medium responds to jets

Wake arising from jet propagation in an ideal and viscous medium studied in *linearized* hydrodynamics (Daniel Pablos et al., JHEP 05 (2021) 230)

 $T^{\mu\nu} \equiv T_0^{\mu\nu} + \delta T^{\mu\nu} , \quad \nabla_{\mu} T^{\mu\nu} = 0 , \quad \nabla_{\mu} \delta T^{\mu\nu} = J^{\nu}$

15 / 21

A medium screening the $Q\overline{Q}$ interaction

Suppression of Υ production in Pb-Pb collisions at the LHC, in particular its excited (weaker binding, larger radius!) states.

A medium screening the $Q\overline{Q}$ interaction

Suppression of Υ production in Pb-Pb collisions at the LHC, in particular its excited (weaker binding, larger radius!) states. In first approximation, Debye screening of the $Q\overline{Q}$ interaction(T. Matsui and H. Satz, PLB 178 (1986) 416-422)

$$V_{Q\overline{Q}}(r) = -C_F \frac{\alpha_s}{r} \longrightarrow -C_F \frac{\alpha_s}{r} e^{-m_D r}$$

A medium screening the $Q\overline{Q}$ interaction

Suppression of Υ production in Pb-Pb collisions at the LHC, in particular its excited (weaker binding, larger radius!) states. In first approximation, Debye screening of the $Q\overline{Q}$ interaction(\top . Matsui and H. Satz, PLB 178 (1986) 416-422)

$$V_{Q\overline{Q}}(r) = -C_F \frac{\alpha_s}{r} \longrightarrow -C_F \frac{\alpha_s}{r} e^{-m_D r}$$

However, treating quarkonium as an Open Quantum System allows a richer description of its interaction and evolution in the medium (see J.M. Martinez Vera's talk)

HF in HIC's: what do we want to learn? A bit of history...

From the random walk of the emulsion particles (follow the motion along one direction!) one extracts the diffusion coefficient

$$\langle x^2
angle \underset{t o \infty}{\sim} 2 rac{D_s t}{D_s t}$$

HF in HIC's: what do we want to learn? A bit of history...

From the random walk of the emulsion particles (follow the motion along one direction!) one extracts the diffusion coefficient

$$\langle x^2
angle \underset{t o \infty}{\sim} 2 \frac{D_s t}{D_s t}$$

and from Einstein formula one estimates the Avogadro number:

$$\mathcal{N}_A K_B \equiv \mathcal{R} \longrightarrow \mathcal{N}_A = \frac{\mathcal{R} T}{6\pi a \eta D_s}$$

Perrin obtained the values $N_A \approx 5.5 - 7.2 \cdot 10^{23}$.

<ロ><回><一><日><日><日><日><日><日><日><日><日><日><日><10<<17/21

HF in HIC's: what do we want to learn? A bit of history...

From the random walk of the emulsion particles (follow the motion along one direction!) one extracts the diffusion coefficient

$$\langle x^2
angle \underset{t o \infty}{\sim} 2 \frac{D_s t}{D_s t}$$

and from Einstein formula one estimates the Avogadro number:

$$\mathcal{N}_A K_B \equiv \mathcal{R} \longrightarrow \mathcal{N}_A = \frac{\mathcal{R} T}{6\pi a \eta D_s}$$

17 / 21

Perrin obtained the values $N_A \approx 5.5 - 7.2 \cdot 10^{23}$. We would like to derive HQ transport coefficients in the QGP with a comparable precision and accuracy!

We do not have a microscope!

Transport coefficients can be accessed indirectly, comparing transport predictions with different values of momentum broadenig

$$c = \frac{2T^2}{D_s}$$

with experimental results for momentum (left) and angular (right) HF particle distributions (figure from A.B. *et al.*, JHEP 05 (2021) 279)

• Still far from accuracy and precision of Perrin result for $\mathcal{N}_{A...}$

Where do we stand?

- Still far from accuracy and precision of Perrin result for $\mathcal{N}_{A\cdots}$
- Lattice results dominated by systematic uncertanties from prior information (HotQCD Coll., PRL130 (2023) 23, 231902)

- Still far from accuracy and precision of Perrin result for $\mathcal{N}_{A...}$
- Lattice results dominated by systematic uncertanties from prior information (HotQCD Coll., PRL130 (2023) 23, 231902)
- Attempts to provide better estimates from Boltzmann eq. in a Quasi-Particle system (M.L. Sambataro et al., 2304.02953)

- Still far from accuracy and precision of Perrin result for $\mathcal{N}_{A...}$
- Lattice results dominated by systematic uncertanties from prior information (HotQCD Coll., PRL130 (2023) 23, 231902)
- Attempts to provide better estimates from Boltzmann eq. in a Quasi-Particle system (M.L. Sambataro et al., 2304.02953)

 Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models tuned to reproduce e⁺e⁻ data. Breaking of factorization of hadronic cross-sections in pp collisions

$$d\sigma_h \neq \sum_{a,b,X} f_a(x_1) f_b(x_2) \otimes d\hat{\sigma}_{ab
ightarrow c\bar{c}X} \otimes D_{c
ightarrow h_c}(z)$$

・ロト・西ト・ヨト・ヨー うへぐ

 Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models tuned to reproduce e⁺e⁻ data. Breaking of factorization of hadronic cross-sections in pp collisions

$$d\sigma_h \neq \sum_{a,b,X} f_a(x_1) f_b(x_2) \otimes d\hat{\sigma}_{ab
ightarrow c\bar{c}X} \otimes D_{c
ightarrow h_c}(z)$$

• Ratio very similar to the one observed in AA collisions:

 Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models tuned to reproduce e⁺e⁻ data. Breaking of factorization of hadronic cross-sections in pp collisions

$$d\sigma_h \neq \sum_{a,b,X} f_a(x_1) f_b(x_2) \otimes d\hat{\sigma}_{ab
ightarrow c\bar{c}X} \otimes D_{c
ightarrow h_c}(z)$$

• Ratio very similar to the one observed in AA collisions: is there a reservoir of color-charges available in both systems, where HQ's can undergo recombination?

 Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models tuned to reproduce e⁺e⁻ data. Breaking of factorization of hadronic cross-sections in pp collisions

$$d\sigma_h \neq \sum_{a,b,X} f_a(x_1) f_b(x_2) \otimes d\hat{\sigma}_{ab
ightarrow c\bar{c}X} \otimes D_{c
ightarrow h_c}(z)$$

- Ratio very similar to the one observed in AA collisions: is there a reservoir of color-charges available in both systems, where HQ's can undergo recombination?
- Possibility explored by Catania (PLB 821 (2021) 136622) and Torino (2366:02952) units

 Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models tuned to reproduce e⁺e⁻ data. Breaking of factorization of hadronic cross-sections in pp collisions

$$d\sigma_h \neq \sum_{a,b,X} f_a(x_1) f_b(x_2) \otimes d\hat{\sigma}_{ab \to c\bar{c}X} \otimes D_{c \to h_c}(z)$$

- Ratio very similar to the one observed in AA collisions: is there a reservoir of color-charges available in both systems, where HQ's can undergo recombination?
- Possibility explored by Catania (PLB 821 (2021) 136622) and Torino (2306.02152) units

- Evaluation of transport coefficients from Gauge-Gravity duality (Florence);
- More advanced issued on spin-polarization in dissipative relativistic fluids (Florence);
- Quantum corrections to cosmological EoS (Florence);
- Develoment of viscous resistive RMHD code (Torino+Florence);
- Role on dimension-2 condensates on dynamical gluon mass (Catania);
- Initial stages of the collision (LNS and Catania)
- Multi-charm production in HIC's (LNS)