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Heavy-ion collisions: exploring the QCD phase-diagram
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QCD phases identified through the order parameters

@ Polyakov loop (L) ~ e BAFe: energy cost to add an
isolated color charge

@ Chiral condensate (gq) ~ effective mass of a “dressed”
quark in a hadron
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Heavy-ion collisions: exploring the QCD phase-diagram
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QCD phases identified through the order parameters

@ Polyakov loop (L) ~ e BAFe: energy cost to add an
isolated color charge

@ Chiral condensate (gq) ~ effective mass of a “dressed”
quark in a hadron

Heavy-lon Collision (HIC) experiments performed to study the transition

@ From QGP (color deconfinement, chiral symmetry restored)

@ to hadronic phase (confined, chiral symmetry broken)

NB QCD chiral transition responsible for most of the baryonic mass of the universe: only ~35

MeV of the proton mass from m, ;470
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Heavy-ion collisions: exploring the QCD phase-diagram
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@ Region explored at the LHC (y/syx = 5 TeV) and highest RHIC energy:
high-T /low-density (early universe, ng/n,~1079). The region currently accessible on by
lattice-QCD simulations (P. Parotto, UniTo and Wuppertal-Budapest collaboration);
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Heavy-ion collisions: exploring the QCD phase-diagram

NJL model, N;=2
phase diagram with isentropic trajectories
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@ Region explored at the LHC (y/syx = 5 TeV) and highest RHIC energy:
high-T /low-density (early universe, ng/n,~1079). The region currently accessible on by
lattice-QCD simulations (P. Parotto, UniTo and Wuppertal-Budapest collaboration);

@ Higher baryon-density region accessible at lower /sy ~ 10 GeV (Beam-Energy Scan at
RHIC), mainly studied via effective Lagrangians;
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Heavy-ion collisions: exploring the QCD phase-diagram
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@ Region explored at the LHC (y/syx = 5 TeV) and highest RHIC energy:
high-T /low-density (early universe, ng/n,~1079). The region currently accessible on by
lattice-QCD simulations (P. Parotto, UniTo and Wuppertal-Budapest collaboration);

@ Higher baryon-density region accessible at lower /sy ~ 10 GeV (Beam-Energy Scan at
RHIC), mainly studied via effective Lagrangians;
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Non-perturbative QCD: screened perturbation theory vs lattice

A(pg) (GeV?)

Lattice: Duarte et al. ——
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Perturbation theory is re-organized, inserting an explicit mass term into the tree-level
transverse gluon propagator and adding a corresponding mass counterterm to the
interaction Lagrangian (G. Comitini, D. Rizzo, M. Battello and F. Siringo, PRD 104

(2021) 7, 074020)
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Heavy-ion collisions: a cartoon of space-time evolution

Near-equilibrium QGP
2<T<5fmlc
Non-equilibrium QGP
03<T<2fmlc
Semi-hard particle production
0<T <03 fmic

nnnnnnnnnn
1fm/c=3x102%s

@ Soft probes (low-pr hadrons): collective behavior of the medium;

@ Hard probes (high-pt particles, heavy quarks and quarkonia): produced in hard pQCD
processes in the initial stage, allow to perform a tomography of the medium
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A medium displaying a collective behavior

Pressure-driven hydrodynamic expansion

dv' B _OP
dt v<c Oxf

(e+ P)
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A medium displaying a collective behavior

Pressure-driven hydrodynamic expansion

dv' B _OP
dt v<c Oxf

(e+ P)
NB picture relying on the condition ¢, < L
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A medium displaying a collective behavior

Pb-Pb events at 5, = 2.76 TeV
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Anisotropic azimuthal distribution of hadrons as a response to pressure gradients quantified by
the Fourier coefficients v,

dN N
d_¢:2_72 <1+2zﬂ:vncos[n(¢—1/fn)]+"'>

vy = (cos[n(¢p — n)])
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Relativistic viscous hydrodynamics for heavy-ion collisions

with ECHO-QGP

L. Del Zanna'234, V. Chandra?, G. Inghirami'2, V. Rolando**, A. Beraudo®, A. De Pace’, G. Pagliara**,

A. Drago*, F. Becattini'>
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Viscous hydrodynamics: the theoretical
challenge

BT =0, with T" =T 47"

@ Relativistic Navier-Stokes first-order
theory violates causality

T =2V HFuY

@ Second-order theory (Israel-Stewart
and developments) respects causality

A —i(w“” — 2V HY"7)
Tr
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Why does hydrodynamics work so well?

FAR-FROM-EQUILIBRIUM ATTRACTORS
IN A 3+1D TRANSPORT APPROACH AT FIXED p/s*

SALVATORE PLUMARI®P, GIUSEPPE GALESI®P, LUCIA OLIVA®® Evaluating Iongitudinal and transverse pressure from
VINCENZO NUGARA™P, VINCENZO GRECO™P . . .. . . .
the moments of the single-particle distribution arising
from the Boltzmann Equation

P9, f(x. §) = CIf]

one observes convergence to a universal result
(hydrodynamic attractor) well before the conditions

\/’TMV’TI/
#<<1
e+ P

P L." PT

Kn = " <1 and Re!
T

are satisfied

ol ol n IR | n N

10 10 1w
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Vorticity and polarization

PROJECTILE
SPECTATORS

o TARGET
SPECTATORS

@ In non-central HIC's huge amount of orbital angular momentum (|J,| ~ 10° — 10%7)
deposited in the interaction region;
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Vorticity and polarization
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@ In non-central HIC's huge amount of orbital angular momentum (|J,| ~ 10° — 10%7)
deposited in the interaction region;
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Vorticity and polarization

()

@ In non-central HIC's huge amount of orbital angular momentum (|J,| ~ 10° — 10%7)
deposited in the interaction region;

o Fireball acquires sizable vorticity (most vortical fluid in Nature) & = 1(V x V) ~ 10?251,
partially transferred to polarization of produced particles assuming thermalization of spin
degrees of freedom (analogous of Barnett effect in condensed matter)

1 ~ ~ ~ S5(S+1
p= Sen[ (A w 1-n@)T] — (5~ D
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Vorticity and polarization

SUBKTOMIC SWIRLS

A rest frame

@ In non-central HIC's huge amount of orbital angular momentum (|J,| ~ 10° — 10%7)
deposited in the interaction region;

o Fireball acquires sizable vorticity (most vortical fluid in Nature) & = 1(V x V) ~ 10?251,
partially transferred to polarization of produced particles assuming thermalization of spin
degrees of freedom (analogous of Barnett effect in condensed matter)

1 S S(S+1
p5§exp[—(H7w-J—uQQ)/T} — <5>z%;
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Vorticity and polarization
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@ In non-central HIC's huge amount of orbital angular momentum (|J,| ~ 10° — 10%7)

deposited in the interaction region;

o Fireball acquires sizable vorticity (most vortical fluid in Nature) & = 1(V x V) ~ 10?51,
partially transferred to polarization of produced particles assuming thermalization of spin
degrees of freedom (analogous of Barnett effect in condensed matter)

1 1

p=Zexp [—(ﬁ—w J- uo@)/T} — |SH(p)=—5"Tp

8m

-

[ prdEZ ne(1 — ne)w,0

J pxdX*ng

@ Above formulas generalized to relativistic systems (Becattini et al.)
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Vorticity and polarization

Annual Review of Nuclear and Particle Science
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@ In non-central HIC's huge amount of orbital angular momentum (|J,| ~ 10° — 10%7)

deposited in the interaction region;

@ Fireball acquires sizable vorticity (most vortical fluid in Nature) & = %(ﬁ X V) ~1

022,"71

partially transferred to polarization of produced particles assuming thermalization of spin
degrees of freedom (analogous of Barnett effect in condensed matter)

1 1
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8m

-

[ prdEZ ne(1 — ne)w,0

J pxdX*ng

@ Above formulas generalized to relativistic systems (Becattini et al.)
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A medium inducing energy-loss of colored probes

- ATLAS

Run: 169045
Event: 1914004
Date: 2010-11-12
Time: 04:11:44 CET

60 ] P [GeV]

Strong unbalance of di-jet events, visible at the level of the event-display itself, without
any analysis: jet-quenching
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A medium inducing energy-loss of colored probes

~ CMS,/ | cMs Experiment at LHC, CERN
T _ Data recorded: Sun Nov 14 19:31:39 2010 CEST
— Run/Event: 151076 / 1328520

Lumi section: 249
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Strong unbalance of di-jet events, visible at the level of the event-display itself, without
any analysis: jet-quenching
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A medium inducing energy-loss of colored probes

T
= I, Pb-Pb (ALICE)
A h, Pb-Pb (CMS)

© 1.9 Pb |5 - 5.02 TeV, NSD (ALICE)

* 7,Po-Pb |5, = 276 TeV, 0-10% (GMS) |
| | © W PbPb |5, = 276 TeV, 0-10% (CMS).
1 v 2.PoPo |5, = 276 TeV, 0-10% (CMS) ]
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Suppression of high-momentum hadrons and jets quantified through the nuclear
modification factor "
Raa = (th/de)
AA =
<Ncoll> (th/de)PP

interpreted as in-medium energy-loss of colored particles
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How the medium responds to jets
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Wake arising from jet propagation in an ideal and viscous medium studied in linearized
hydrodynamics (Daniel Pablos et al., JHEP 05 (2021) 230)

TH = T +0TH , V,TH =0, V,6T" = J
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A medium screening the QQ interaction

o A R B A RN £~ 8O0 T T T T T T 1:1:1200:“““‘“‘\‘\\\\‘\\\\‘\H“H‘:

S I CMSpp (5=276 TeV | Lt CMS PbPb (s =276 Tev] S |- CMS PbPb {5y = 2.76 TeV 7]

v [ ] © 700[~ - 8 [ Cent. 0-100%, y| < 2.4 1

& Ii<24 ] 6k Cent. 0-100%, Iyl <24 J 1000 L, = 150 ub* 4

< 40— " — b E " 9 S L int = i
=] [ p, >4 GeVic ] S 600~ P, >4 GeVic - IS

= S ] = r 4GeVic 1

= [ Ly, =230 nb™ ] < F Ly = 150 pb™ ] P P 1

g i 1 gsop i q geer ]

& 30 - g f ] ¢ T o data ]

o [ ¢ data ] @ 2001 e data E o i ]

r total fit 4 o — total fit B 600~ N — total PbPb fit B

L --- background ] £ --- background ] L - background ]

201 groand 4 a00f- ground - 3 r ] I ]

L ] E ] 4001~ pl()ws asz;ed) 1

[ ] 200 E r i - 1

10~ L J F 4 p 4

E 100f~ , 200 - e ey p

o L ‘L ot L L L L L L ] | A S I N N B

7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14 o 3 9 10 1 12 Ta

Mass(u'y) [GeV/c?] Mass(uy) [GeV/c’] Mass(u'y) [GeV/c?]

Suppression of T production in Pb-Pb collisions at the LHC, in particular its excited
(weaker binding, larger radius!) states.
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A medium screening the QQ interaction
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Suppression of T production in Pb-Pb collisions at the LHC, in particular its excited
(weaker binding, larger radius!) states. B
In first approximation, Debye screening of the QQ interaction(T. Matsui and H. Satz,
PLB 178 (1986) 416-422)
(6 as
VQ*(r) = —CFT — —CFTe mpr
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A medium screening the QQ interaction

R=4,7=0, Tr = 190 MeV, tyes = 0.6 fm
. C ALICE - Y(25) 4 CMS - Y(38)
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Gluo-dissociation

Inelastic scattering

Suppression of T production in Pb-Pb collisions at the LHC, in particular its excited
(weaker binding, larger radius!) states.

In first approximation, Debye screening of the Q@ interaction(T. Matsui and H. Satz,
PLB 178 (1986) 416-422)

Qs Qs _
VQ@(’):—CF7 — _CFTe o

However, treating quarkonium as an Open Quantum System allows a richer description
of its interaction and evolution in the medium (see J.M. Martinez Vera's talk)

16/21



HF in HIC's: what do we want to learn? A bit of history...

rimental data.) See Problem 4.5. [Data from Perrin, 194.)

From the random walk of the emulsion particles (follow the motion along one direction!) one
extracts the diffusion coefficient
(x*) ~ 2Dt

t—o0
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HF in HIC's: what do we want to learn? A bit of history...

rimental data) See Problem 4.5. [Data from Perrin, 1948.]

From the random walk of the emulsion particles (follow the motion along one direction!) one
extracts the diffusion coefficient
(x*) ~ 2Dt
t—o0
and from Einstein formula one estimates the Avogadro number:

RT

Ke=R A = ———
NaKs — NaT G

Perrin obtained the values N4 ~ 5.5 — 7.2 - 103,
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HF in HIC's: what do we want to learn? A bit of history...

rimental data) See Problem 4.5. [Data from Perrin, 1948.]

From the random walk of the emulsion particles (follow the motion along one direction!) one
extracts the diffusion coefficient

(x*) ~ 2Dt
t—o0
and from Einstein formula one estimates the Avogadro number:
RT
6man D
Perrin obtained the values Ny ~ 5.5 — 7.2 - 10?3. We would like to derive HQ transport
coefficients in the QGP with a comparable precision and accuracy! 17/21
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We do not have a microscope!
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Transport coefficients can be accessed indirectly, comparing transport predictions with different
values of momentum broadenig
o 2772

"~ D,
with experimental results for momentum (left) and angular (right) HF particle distributions
(figure from A.B. et al., JHEP 05 (2021) 279)
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do we stand”

3 | ] IQCD, L. Altenkort et al, PRD 103 (2021) 014511

- IQCD, H.T. Ding et al, PRD 86 (2012) 014509

F I oCD, D. Banerjee et al., PRD 85 (2012) 014510
H I s7AR, PRL 118 (2017) 212301
I  AUcE, PLB 813 (2021) 136054

I Auce, JHEP 01 (2022) 174 m

P I M BRI PR L P PRI L L
2 4|1- 6 é 1|0 ‘I|2 1|4 1‘6 ‘I|8 20
2nD, T, at T, = 155 MeV

@ Still far from accuracy and precision of Perrin result for N4...
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do we stand”
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@ Still far from accuracy and precision of Perrin result for NV4...

@ Lattice results dominated by systematic uncertanties from prior information
(HotQCD Coll., PRL130 (2023) 23, 231902)
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Where do we stand?
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@ Still far from accuracy and precision of Perrin result for NV4...

@ Lattice results dominated by systematic uncertanties from prior information

(HotQCD Coll., PRL130 (2023) 23, 231902)

@ Attempts to provide better estimates from Boltzmann eq. in a Quasi-Particle

system (M.L. Sambataro et al., 2304.02953)
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Where do we stand?
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@ Still far from accuracy and precision of Perrin result for NV4...

@ Lattice results dominated by systematic uncertanties from prior information
(HotQCD Coll., PRL130 (2023) 23, 231902)

@ Attempts to provide better estimates from Boltzmann eq. in a Quasi-Particle
system (M.L. Sambataro et al., 2304.02953)
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A small QGP droplet also in pp collisions?

°D T T
':f’ 1= PP, 5 =5.02TeV —
8- ALICE, ly| <05 A*
= CMS, ly| < 1.0 (PLB 803(2020) 135328) . c
ALICE: Phys. Rev. C 104, 054905 @9

H»ALICE: Phys. Rev. Lett. 127, 202301

@"

e
=

@ Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models
tuned to reproduce e™e™ data. Breaking of factorization of hadronic cross-sections in pp
collisions

don# Y f(x1) fo(x2) @ dGapseax @Desn.(2)
a,b,X
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A small QGP droplet also in pp collisions?

o 7 T ‘A E T T T T ]
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@ Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models
tuned to reproduce e™e™ data. Breaking of factorization of hadronic cross-sections in pp
collisions

don# Y f(x1) fo(x2) @ dGapseax @Desn.(2)
a,b,X
@ Ratio very similar to the one observed in AA collisions:
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A small QGP droplet also in pp collisions?

@ Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models
tuned to reproduce e™e™ data. Breaking of factorization of hadronic cross-sections in pp
collisions

don# Y f(x1) fo(x2) @ dGapseax @Desn.(2)
a,b,X

@ Ratio very similar to the one observed in AA collisions: is there a reservoir of color-charges

available in both systems, where HQ's can undergo recombination?
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A small QGP droplet also in pp collision

N e
WOF 7 m ©™ JFLHC: pp @ 5.02 TeV. E
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@ Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models
tuned to reproduce e™e™ data. Breaking of factorization of hadronic cross-sections in pp

collisions
don# Y fi(x1) fo(x2) @ dGapseax @Desn.(2)
a,b,X
@ Ratio very similar to the one observed in AA collisions: is there a reservoir of color-charges
available in both systems, where HQ's can undergo recombination?

@ Possibility explored by Catania (PLB 821 (2021) 136622) and Torino (2306.02152) units 021



A small QGP droplet also in pp collisions?
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@ Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization models
tuned to reproduce e”e” data. Breaking of factorization of hadronic cross-sections in pp

collisions

don# Z fa(x1) fo(x2) ® d6ap—scex @Dcn.(2)

a,b,X

@ Ratio very similar to the one observed in AA collisions: is there a reservoir of color-charges

available in both systems, where HQ's can undergo recombination?

@ Possibility explored by Catania (PLB 821 (2021) 136622) and Torino (2306.02152) units
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Further projects not covered in this talk...

e Evaluation of transport coefficients from Gauge-Gravity duality (Florence);

@ More advanced issued on spin-polarization in dissipative relativistic fluids
(Florence);

Quantum corrections to cosmological EoS (Florence);

Develoment of viscous resistive RMHD code (Torino+Florence);

Role on dimension-2 condensates on dynamical gluon mass (Catania);
Initial stages of the collision (LNS and Catania)

Multi-charm production in HIC's (LNS)
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