Effect of composition fluctuations in quark nucleation

Application to the two family scenario

Mirco Guerrini

collaborators: A. Drago (UniFe), G. Pagliara (UniFe) and A. Lavagno (PoliTo)

TNPI2023 - XIX Conference on Theoretical Nuclear Physics in Italy

Deconfinement in astrophysical systems

- Quarks d.o.f. expected at $n_B \sim$ few n_0
- Extreme densities reached in high density astrophysical systems
- **Deconfinement** could play a key role in astrophysical phenomena (e.g. BSGs CCSNe, *see Fischer et al. 2018*)

	n_B/n_0	T [MeV]	Y _e
Isolated NS	$10^{-8} - 8$	\sim 0	0.01-0.3
Core Collapse Supernovae (CCSN)	$10^{-8} - 8$	0 - 50	0.25-0.55
Proto NS (PNS)	$10^{-8} - 8$	0 - 50	0.01-0.3
Binary NS Mergers (BNSM)	$10^{-8} - 8$	0 - 100	0.01-0.6

Two family scenario

New d.o.f (hyperons, delta, quarks, ...) \Rightarrow softening in EOS \Rightarrow **lower mass** Important constraint: **very massive** $\sim 2M_{\odot}$ compact object observed Many possible solutions proposed (e.g. see *Vidaña 2022* for a review)

...one more possible solution...

Two families scenario (Drago et al. 2016)

- Strange matter hypothesis (*Witten 1984*)
- Hadronic stars up to $\sim 1.6 M_{\odot}$
- Quark stars up to $\sim 2 \ensuremath{M_{\odot}}$
- No Hybrid stars
- β -eq Quark EOS energetically favourable

Deconfinement is triggered by a first quark seed \rightarrow Nucleation analysis

Nucleation: the first seed of a new stable phase

if $P_H(\mu_H) < P_Q(\mu_Q) \Rightarrow H$ is a **metastable phase** \Rightarrow virtual drops of Q created

At the critical radius: unstable equilibrium $P_H = P_Q + \frac{2\sigma}{R}$, $T_H = T_Q$, $\mu_H = \mu_Q$

Nucleation with freezed composition

- In the past: Q seed created in equilibrium
- Now: (Bombaci et al. 2016) Strong timescale ≪ weak timescale
 ⇒ flavour composition conserved

$$\begin{split} N_q^{Q^*} &= \sum_{q\,h} \mathcal{C}_{h\,q} N_h^{H_\beta} \\ \text{e.g.} \ N_u^{Q^*} &= 2N_p^{H_\beta} + N_n^{H_\beta} + N_\Lambda^{H_\beta} + \dots \end{split}$$

Application to two family scenario

 H_eta is always metastable wrt \mathcal{Q}_eta but not wrt \mathcal{Q}^*

Note:

• $au
ightarrow \infty$ when $\mu_{Q^*}(P_{Q^*}) = \mu_{H_\beta}(P_{H_\beta})$

•
$$P$$
 and T nucleation $\gg \mu_{H_{eta}} = \mu_{Q^*}$

Existence of cold hadronic stars is insured by:

- weak interactions is slow \rightarrow flavour freezed
- finite size effect \rightarrow deconfimenent postponed

Application to two family scenario

PNS after deleptonization $Y_{Le} = 0$, $S \simeq 2$ for $\sim 10^2$ s

- T,P at which $au \sim 10^2$ s
- Before vertical blue line: $\textbf{PNS} \rightarrow \textbf{NS}$
- After vertical blue line: $PNS \rightarrow QS$

$$\Rightarrow {\it M_{PNS}} \gtrsim 1.5 - 1.6 \; {\sf M}_{\odot}$$
 converts to QS

Nucleation with composition fluctuations

Key idea: at finite T hadronic composition **fluctuates** around the mean values $\langle N_i^{H_\beta} \rangle$

Approach: let divide the process in two intermediate steps

Step 2: **Nucleation** with flavour freezed between H^* and Q^* starting from a hadronic phase having a composition $\{N_i^{H^*}\}$ locally different wrt the mean equilibrium values

Step 1: Prob. that in a certain volume the composition is $N_i^{H^*} = \left\langle N_i^{H_\beta} \right\rangle + \Delta N_i$

Nucleation with composition fluctuations

$$W = \Delta E - T_0 \Delta S + P_0 \Delta V - \sum_i \mu_{i,0} \Delta N_i$$

$$W_{2} = \frac{4}{3}\pi R^{3} n_{Q^{*}} \left[\mu_{Q^{*}} - \mu_{H^{*}} \right] + 4\pi\sigma R^{2} \qquad W_{1} = \frac{4}{3}\pi R^{3} n_{Q^{*}} \left[\mu_{H^{*}} - \sum_{i} \mu_{i}^{H_{\beta}} y_{i}^{H^{*}} \right]$$

$$\mathcal{P}(P, T, \Delta N_i) \sim \mathcal{P}_{nuc}^{H^* \to Q^*} \times \exp\left[-\frac{W_1(R_c, \Delta N_i)}{T}\right]$$

Note:

• $\exp\left[-\frac{W_1(R_c,\Delta N_i)}{T}\right]$ can be interpreted as the probability that $N_i = N_i^{H_\beta} + \Delta N_i$ • for small ΔN_i , $\exp\left[-\frac{W_1(R_c,\Delta N_i)}{T}\right]$ is a gaussian + non diag. terms

• with $\Delta N_i = 0$ we turn in the *Bombaci et al. 2016* case

Nucleation with composition fluctuations

$$\mathcal{P}(P, T, \Delta N_i) \sim \mathcal{P}_{nuc}^{H^* \rightarrow Q^*} \times \exp\left[-rac{W_1(R_c, \Delta N_i)}{T}
ight]$$

What should we expect?

If we choose "convenient" $\{\Delta N_i\}$ such that $W^{H_\beta \to Q^*} > W_2^{H^* \to Q^*}$

- The potential barrier will be lower
- We have to "pay" a W_1 energy cost to fluctuate H composition by $\{\Delta N_i\}$
- High T: nucleation faster wrt the Bombaci et al. 2016 approach
- Small T: high fluctuations are suppressed, Bombaci et al. 2016 is restored

Application to two flavour case

A "toy" application with two quark flavours:

- H_{eta} : p, n, e in eta-eq, ZL (Zhao et al. 2020)
- Q_{β} : u, d, e in β -eq, α Bag
- H^* : fluctuation st flavours are equal to Q_{eta}
- Q^* : equal to Q_{eta} by construction
- $Q^{freezed}$: flavours freezed from H_{β}

As expected:

- lower potential barrier (W₂)
- cost to pay to fluctuate by ΔN_i (W_1)

Summary

Introduction

- Exotic degrees of freedom expected at compact object densities
- Nucleation is the starting point for the deconfinement process

Application to two family scenario in PNS

- HS existence insured by flavour freezing and finite size effect
- + QS could be generated from $\sim 1.5-1.6~\text{M}_\odot$ PNS after deleptonization

Role of the fluctuations

- at finite T hadronic composition fluctuates around $N_i^{H_\beta}$
- One more step: I. Fluctuation in hadronic composition, II. Nucleation

Outlooks

- Complete the "fluctuation in hadronic phase" frameowork
- Test the two family scenario in more astrophysical conditions
- Search observables for the deconfinement (e.g. AT2018cow delayed signal wrt SN)