Updates on... Study of the $e^{++}e^{-} \rightarrow \pi^{+}\pi^{-}\psi(2S)$ reaction at $\sqrt{s} > 4.6$ GeV and search for the charged $Z_c(4430)$ exotic state

Marco Scodeggio

mscodegg@fe.infn.it

Weekly Charmonium Meeting 14th June 2023

Preamhle

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ $\rightarrow [\pi^{+}\pi^{-}/f_{0}(980)]\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^+Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

Previous Slides: HERE PhD Thesis: HERE

Motivation

In Refs. [9, 10], the $Z_c(3900)^{\pm}$ state is seen both in $\pi\psi(2S)$ and $\pi J/\psi$, and in relation with the Y(4260) resonance

Ref. [10] finds R = $\sigma(\pi^{\pm}Z_{c}(3900)^{\mp} \rightarrow \pi^{+}\pi^{-}J/\psi)/\sigma(\pi^{+}\pi^{-}J/\psi) \sim 22\%$, neglecting the the J/ ψ to ψ (2S) PHSP change, ~100 events are expected around Y (4660)

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ $\rightarrow [\pi^{+}\pi^{-}/f_{0}(980)]\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^{\pm}Z_c(4430) \rightarrow \pi^{+}\pi^{-}\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

Previous Slides: HERE PhD Thesis: HERE

How

The study will make use of the data $@\sqrt{s} > 4.6$ GeV

No Z_c(4430) **signal** was observed in the **mono-energetic datasets**^[11], so the main idea is to merge all the data $@\sqrt{s} > 4.6 \text{ GeV}$ to use the whole statistics

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001 ^[11] Phys. Rev. D **104**, 052012

Weekly Charmonium - June 2023

Preamble

What and Why

The $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction offers the possibility to probe the **XYZ sector**, via the investigation of 2 exotic states

The **Y(4660)** via the e⁺e⁻ $\rightarrow [\pi^{+}\pi^{-}/f_{0}(980)]\psi(2S)$

Y(4660), observed by BaBar^[1], BELLE^[2], and BESIII^[3] hypothesised to be a **baryonium**^[4], a **molecule**^[5], or a **tetraquark**^[6]

Study of the exotic $Z_c(4430)$ state through the $e^+e^- \rightarrow \pi^+Z_c(4430) \rightarrow \pi^+\pi^-\psi(2S)$

Z⁺_c(4430) was **observed** and studied in the *B*-decays in the $\pi \psi(2S)$ invariant mass by BELLE^[7] (and by LHCb^[8])

What's New?

- (i) Systematic uncertainties were added
- Now expanded $@\sqrt{s} > 4.7 \text{ GeV}$ (ii)
- Analytical shape for the $f_0(500)$ and an interference (iii) term were tested
- (iv)KKMC is being implemented to study ISR and VP correction factors

^[1] Phys. Rev. D **89**, 111103 ^[2] Phys. Rev. D **91**, 112007 ^[3] Phys. Rev. D **104**, 052012 ^[4] J. Phys. G **35**, 075008 (2008) ^[5] Phys. Lett. B **665**, 26-29 ^[6] Phys. Rev. D **89**, 114010 ^[7] Phys. Rev. D **88**, 074026 ^[8] Phys. Rev. Lett. **112**, 222002 ^[9] Phys. Rev. D **96**, 032004 ^[10] Phys. Rev. Lett **110**, 252001 ^[11] Phys. Rev. D **104**, 052012

Weekly Charmonium - June 2023

Extraction of the $\sigma(e^+e^- \longrightarrow \pi^+\pi^-\psi(2S))$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

For **each** *I*, the **signal** is modelled via a signal MC sample with a **sum of** Gaussian and Crystal Ball functions

√s [GeV]	Efficiency [%]
4.612	38.90
4.626	40.45
4.640	41.59
4.660	41.54
4.680	40.72
4.700	39.16

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Extraction of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$

BESIII @√s = 4.630 GeV 3.695 3.7 3.705 3.71 $M(\pi^+\pi^-J/\psi)$ (GeV/c²) BESIII @√s = 4.660 GeV 3.695 3.7 3.705 3.71 3.69 M(π+π-J/ψ) (GeV/c²) BESIII @√s = 4.700 GeV

 $M(\pi^+\pi^-J/\psi)$ (GeV/c²)

Data Fits

For **each** \sqrt{s} , the $\pi\pi\psi(2S)$ contribution is extracted by fitting the $M(\pi\pi J/\psi)$ invariant spectrum

The **signal** is modelled with a **sum of Gaussian and Crystal Ball**

A **polynomial** function is used to describe the **background**

Extraction of the $\sigma(e^+e^- -> \pi^+\pi^-\psi(2S))$ Semi-OLD $\pi\pi\psi(2S)$ cross-section

Results from BELLE and BaBar are reported too, further confirming the compatibility of this thesis' results with the published literature

[11] Phys. Rev. D **104**, 052012

NEW

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Extraction of the $\sigma(e^+e^- -> \pi^+\pi^-\psi(2S))$ $\pi\pi\psi(2S)$ cross-section NEW

The observed **cross-section** is **compatible** with the previous result of Ref. [11]

Results from BELLE and BaBar are reported too, further confirming the compatibility of this thesis' results with the published literature

[11] Phys. Rev. D **104**, 052012

Study of the Intermediate States

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Weekly Charmonium - June 2023

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

OLD

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution OLD

No particular structures

can be recognised

Within the statistical uncertainty, $\sigma_{Born} \mathbf{X} \mathbf{B}$ is **flat** wrt $\sigma_{Born}(\pi \pi \psi(2S))$

The hypothesis of the **Y(4660)** being an **f₀(980) - ψ(2S) molecule**^[12] cannot be confirmed

[12] Phys. Lett. B 665, 26-29 (2008)

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

$$\Gamma(s) = \sqrt{1 - \frac{4m_{\pi^{\pm}}^2}{s}\Gamma}$$

Weekly Charmonium - June 2023

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Extraction of the $\sigma(f_0(980) \psi(2S))$ $f_0(980)$ contribution

$$\Gamma(s) = \sqrt{1 - \frac{4m_{\pi^{\pm}}^2}{s}\Gamma}$$

Weekly Charmonium - June 2023

Systematic Uncertainties on the Cross-sections NEW

- Luminosity: 1% as from Ref. [13]
- Vacuum polarisation: 0.5% from Ref. [14]
- ISR radiative corrections: Difference in the $(1 + \delta)$ between the last two iterations
- Tracking efficiency: 1.0% per track^[10], 2.0% (leptons) and 3.5% (average of 2 pion-topologies) • Intermediate states branching fractions: from PDG
- Lepton separation, trigger efficiency, and FSR: 1.0% from Ref. [11]

[10] Phys. Rev. Lett **110**, 252001 [11] Phys. Rev. D **104**, 052012 [13] Chin. Phys. C 46, 11, 113003 [14] Sov. J. Nucl. Phys **41**, 466-472

Systematic Uncertainties on the Cross-sections

NEW

The systematic uncertainties come from the integrated luminosity, the vacuum polarisation, the ISR radiative corrections, the tracking efficiency, and residual sources

Source	4.610 (pb)	4.630 (pb)	4.640 (pb)	4.660 (pb)	4.680 (pb)	4.700 (pb)
Luminosity	0.17	0.21	0.26	0.28	0.26	0.22
Vacuum polarisation	0.09	0.11	0.13	0.14	0.13	0.11
ISR corrections	0.07	0.07	0.00	0.03	0.03	0.02
Tracking efficiency	0.60	0.74	0.90	0.96	0.91	0.75
Intermediate states branching fractions	0.16	0.20	0.25	0.26	0.25	0.21
Other sources	0.17	0.21	0.26	0.28	0.26	0.22
Total systematic uncertainty	0.68	0.83	1.01	1.08	1.02	0.85

Analysis of the $\pi^{\pm}\psi(2S)$ Invariant Mass and Search for the $Z_c(4430)^{\pm}$

Study of $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ at $\sqrt{s} > 4.6$ GeV and search for the $Z_c(4430)^{\pm}$ - Marco Scodeggio

Analysis of the $\pi^{\pm}\psi(2S)$ Invariant Mass and Search for the $Z_c(4430)^{\pm}$ semi-OLD

In accordance with Ref.[11] and the Dalitz plots only f₀ contributions are considered

Yield is 0 \pm 4, hence no evident Z_c(4430) contribution is present

Bayesian U.L. @90% C.L. is set

Analysis of the $\pi^{\pm}\psi(2S)$ Invariant Mass and Search for the $Z_c(4430)^{\pm}$

$$R = \frac{\sigma_{\rm Born}(e^+e^- \to \pi^{\pm}Z_c(4430)^{\mp} \to \pi^{\pm}Z_c(4430)^{\mp})}{\sigma_{\rm Born}(e^+e^- \to \pi^{\pm}\pi^{-}\psi)}$$

Production Ratio Estimation

When **compared with the paper**^[10] used as motivation for this analysis, the $Z_{c}(4430)^{\pm}$ state production in the $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\psi(2S)$ channel is suppressed by at least 20 times with respect to that of the $Z_c(3900)^{\pm}$ hadron in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Analysis of the $\pi^{\pm}\psi(2S)$ Invariant Mass and Search for the $Z_c(4430)^{\pm}$

Instead of looking at the whole πψ(2S) mass spectrum, it is worthwhile to check the M_{Max}(πψ(2S)) as it was done for the Z_c(3900)

Fit and U.L. are under study

Conclusions and Outlook

- The **results found** in this analysis **confirm Ref.[11]** and clearly **highlight** the **f**₀ contributions to the $\pi^+\pi^-\psi(2S)$ cross-section
 - A search for the Z_c(4430) exotic state is performed via the
 - $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction, but **no evident Z_c(4430)** is found
 - The extension of the analysis @Vs > 4.7 GeV is under completion
- the $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ reaction is studied up to its systematic uncertainties 1. (with the caveat of KKMC recalculation of ISR and VP corrections)
- the $e^+e^- \rightarrow f_0(980)\psi(2S)$ sub-process is under optimization with an analytical function and a 2. potential interference term
- the Z_c(4430) is searched in another mass distribution to potentially increase its significance 3.

Thanks for your attention!

Final Born Cross-sections Results

Sample	$\sigma_{\rm Born}(\pi^+\pi^-\psi(2S)) \ (\rm pb)$	$\begin{array}{c} \sigma_{\text{Born}}(f_0(980)\psi(2S))\times\\ \mathcal{B}(f_0(980)\to\pi^+\pi^-) \text{ (pb)} \end{array}$
4.610	$17.19^{+0.15}_{-3.14} \pm 0.68$	$6.88^{+2.46}_{-2.46}\pm0.37$
4.630	$21.04^{+1.83}_{-1.70} \pm 0.83$	$12.48^{+2.20}_{-2.20} \pm 0.68$
4.640	$25.77^{+1.60}_{-1.85} \pm 1.01$	$14.24^{+2.01}_{-2.01} \pm 0.70$
4.660	$27.52^{+0.88}_{-1.89} \pm 1.08$	$13.66^{+1.56}_{-1.56} \pm 0.62$
4.680	$26.00^{+0.36}_{-1.07} \pm 1.02$	$14.48^{+1.09}_{-1.09} \pm 0.67$
4.700	$21.57^{+1.58}_{-1.70} \pm 0.85$	$12.18^{+1.69}_{-1.69} \pm 0.57$