Combined lifetime and transition-probability measurements in ${ }^{96} \mathrm{Zr}$ via unsafe Coulomb excitation

Magda Zielińska, Marco Rocchini, Naomi Marchini, Jose Javier Valiente Dobón,...

Physics case:

quadrupole and octupole collectivity in ${ }^{96} \mathrm{Zr}$

Shape coexistence in ${ }^{96} \mathrm{Zr}$ - experimental information

- $\mathrm{B}\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)$measured using electron scattering, combined with known branching and mixing ratios:
\rightarrow transition strengths from the 2_{2}^{+}state
- $\mathrm{B}\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow \mathrm{O}_{1}^{+}\right)=2.3(3)$ Wu vs $\mathrm{B}\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{2}^{+}\right)=36(11)$ Wu: nearly spherical and a well-deformed structure ($\beta \approx 0.24$)
- very low mixing of coexisting structures: $\cos ^{2} \theta_{0}=99.8 \%, \cos ^{2} \theta_{2}=97.5 \%$,

Shape coexistence and type-II shell evolution in Zr isotopes

T. Togashi et al, PRL 117, 172502 (2016)

- $p-n$ tensor interaction reduces the $\mathrm{Z}=40$ gap when $\nu \mathrm{g}_{7 / 2}$ is being filled
- O_{2}^{+}states created by $2 \mathrm{p}-2 \mathrm{~h}$ (+ 4p-4h...) excitation across $Z=40$
- very different configurations and small mixing of O_{1}^{+}and O_{2}^{+}

Octupole collectivity in Zr isotopes: anomalous value for ${ }^{96} \mathrm{Zr}$

- evaluated $B\left(E 3 ; 3_{1}^{-} \rightarrow 0_{1}^{+}\right)$strength for ${ }^{96} \mathrm{Zr}$ strikingly high (53(6) W.u.), comparable with those known for nuclei with rigid pear shapes
- observed trend of $\mathrm{B}\left(\mathrm{E} 3 ; 3_{1}^{-} \rightarrow 0_{1}^{+}\right.$) values in Zr isotopes inconsistent with 3_{1}^{-}energies and hard to explain

T. Kibédi and R.H. Spear, At. Data

Nucl. Data Tables 80, 35 (2002)

Octupole collectivity in Zr isotopes: new BR measurement for ${ }^{96} \mathrm{Zr}$

- new measurement of E1/E3 branching ratio in ${ }^{96} \mathrm{Zr}$ ($Ł$. Iskra et al, Phys. Lett. B 788 (2019) 396) points to lower octupole collectivity, but the overall trend remains puzzling

- need to verify the 3^{-}lifetime

Decay scheme with revised branching and mixing ratios

J. Wiśniewski et al, Phys. Rev. C 108, 024302 (2023)

- which 4^{+}belongs to which band? if 4_{1}^{+}is part of the deformed structure, why is its decay to the 2_{1}^{+}so strong (mixing between bands should be weak)?
- the $2_{3}^{+} \rightarrow 2_{2}^{+}$decay seems surprisingly enhanced
- E1 transitions from presumably collective states compete with E2 ones; in particular, the 6^{+}state decays predominantly via E 1 ; is it related to a two-phonon octupole
 vibration?

Method:

unsafe Coulomb excitation combined with RDDS
(${ }^{106} \mathrm{Cd}$ at GANIL: proof of principle)

Experiment

- inelastic scattering data on ${ }^{106} \mathrm{Cd}$: byproduct of a RDDS lifetime measurement following multinucleon transfer in the ${ }^{106} \mathrm{Cd}+{ }^{92} \mathrm{Mo}$ reaction at $7 \mathrm{MeV} / \mathrm{A}$
M. Siciliano et al., Phys. Lett. B 806, 135474 (2020)
M. Siciliano et al., Phys. Rev. C 104, 034320 (2021)

- VAMOS at grazing angle (25°); lowest observed scattering angle (19.4 ${ }^{\circ}$) corresponding to 107\% of Cline's safe energy

Experiment

- population of 21 excited states observed (up to spin 6^{+})

- ${ }^{106} \mathrm{Cd}$ ions identified in VAMOS with $19.4^{\circ} \leq \theta_{\text {LAB }} \leq 30^{\circ}$ (Cline's criterion fulfilled for $\theta_{\text {LAB }} \leq 18^{\circ}$)
- we apply gates on $\theta_{\text {LAB }}$ with 1° width to study the dependence of the excitation cross sections on scattering angle
- due to complicated acceptance of the spectrometer as a function of θ, we normalise the measured γ-ray intensities to that of the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition

Sample results (strongly populated states)

$$
4_{1}^{+} \rightarrow 2_{1}^{+}
$$

$6_{2}^{+} \rightarrow 4_{1}^{+}$

- reasonable agreement with literature data for 4_{1}^{+}(weighted average of measured lifetimes)
- lifetime of the 6_{2}^{+}state deduced from the same data as our transition intensities (M. Siciliano et al., Phys. Rev. C 104, 034320 (2021) is not consistent with the measured intensity ratios
D. Kalaydjieva, PhD thesis, 2023

Sample results (strongly populated states)

$$
4_{1}^{+} \rightarrow 2_{1}^{+}
$$

$6_{2}^{+} \rightarrow 4_{1}^{+}$

- much better agreement for the 6_{2}^{+}state if we assume:
- $\left\langle 6_{2}^{+}\|E 2\| 4_{1}^{+}\right\rangle$matrix element from Coulomb excitation (D. Rhodes et al., Phys. Rev. C 103, L051301 (2021))
- or 6_{2}^{+}lifetime from ($\mathrm{n}, \mathrm{n}^{\prime} \gamma$) (A. Linnemann, PhD thesis, University of Cologne, 2005 but here the uncertainty is very large $\left(\tau=0.26_{-0.14}^{+0.44} \mathrm{ps}\right)$
D. Kalaydjieva, PhD thesis, 2023

Sample results (strongly populated states)

$$
4_{1}^{+} \rightarrow 2_{1}^{+}
$$

$6_{2}^{+} \rightarrow 4_{1}^{+}$

- finally, we can try to fit a set of matrix elements to the first few points of the cross-section distribution, and compare the resulting lifetimes:
4_{1}^{+}- GOSIA fit: 1.23(7) ps weighted average of lifetimes: 1.32(12) ps
6_{2}^{+}- GOSIA fit: 0.48(3) ps
M. Siciliano et al., Phys. Rev. C 104, 034320 (2021): 1.22(15) ps
D. Rhodes et al., Phys. Rev. C 103, L051301 (2021): 0.54(8) ps

Sample results (strongly populated states)

$$
4_{1}^{+} \rightarrow 2_{1}^{+}
$$

$6_{2}^{+} \rightarrow 4_{1}^{+}$

- similar analysis has been applied to all observed states, yielding $B(E 2)$ values complementary to those obtained from the RDDS analysis of the same date
- contrary to RDDS, it was possible to obtain B(E2) values for the decay of states that have lifetimes shorter than 1 ps
D. Kalaydjieva, PhD thesis, 2023

Proposed experiment

Counting rates

- PRISMA at $30^{\circ} ; 24^{\circ}-27^{\circ}$ "safe" Coulomb excitation, $27^{\circ}-36^{\circ}$ enhanced cross sections (up to 19\% over Cline's "safe" energy)
- $1 \mathrm{mg} / \mathrm{cm}^{2}{ }^{116} \mathrm{Sn}$ target on a light backing (${ }^{24} \mathrm{Mg}$?) Light degrader (again ${ }^{24} \mathrm{Mg}$?)
- grazing angle 40° - we do not want to open other reaction channels; rate of ${ }^{96} \mathrm{Zr}$ ions in PRISMA - 6kHz, 600 gamma-particle coincidences.

rates per day; blue - states within reach of a RDDS measurement

Expected results and complementary measurements

- Lifetimes of $6^{+}, 3^{-}$states - octupole collectivity, testing the two-phonon vibration hypothesis in conjunction with the measured E3/E1 branching ratio (23.011)
- Lifetime of 4_{2}^{+}, E2 and E3 strengths involving $2_{2}^{+}, 2_{3}^{+}, 4_{1}^{+}, 4_{2}^{+}, 6_{1}^{+}, 3_{1}^{-}, 5_{1}^{-}$- testing the above + type-Il shell-evolution scenario
- Cross-section evolution in the ${ }^{96} \mathrm{Zr}+{ }^{116} \mathrm{Sn}$ system over the "safe" energy - can we apply this method in the future to radioactive beams?
- Complementarity:
- "safe" Coulomb excitation of ${ }^{96} \mathrm{Zr}(22.18)$ - current project is not sensitive to quadrupole moments, but will offer enhanced cross sections for higher-lying states
- (p,p') on ${ }^{96} \mathrm{Zr}$ (23.011) - we aim to measure the 6^{+}lifetime, 23.011 will search for the direct $6^{+} \rightarrow 3^{-}$decay
- β decay into ${ }^{96} \mathrm{Zr}$ (TRIUMF, December 2023) - precise measurement of branching and mixing ratios in the decay of spin- $0,1,2,3$ states (we will reach higher in spin)

