Combined lifetime and transition-probability measurements in ⁹⁶Zr via unsafe Coulomb excitation

Magda Zielińska, Marco Rocchini, Naomi Marchini, Jose Javier Valiente Dobón,...

Physics case:

quadrupole and octupole collectivity in ⁹⁶Zr

Shape coexistence in ⁹⁶Zr – experimental information

 B(E2; 2⁺₂ → 0⁺₁) measured using electron scattering, combined with known branching and mixing ratios:

 \rightarrow transition strengths from the 2⁺₂ state

- B(E2; 2⁺₁ → 0⁺₁) = 2.3(3) Wu vs B(E2; 2⁺₂ → 0⁺₂) = 36(11) Wu: nearly spherical and a well-deformed structure (β ≈ 0.24)
- very low mixing of coexisting structures: $\cos^2\theta_0 = 99.8\%$, $\cos^2\theta_2 = 97.5\%$,

Shape coexistence and type-II shell evolution in Zr isotopes

- p-n tensor interaction reduces the Z=40 gap when $\nu g_{7/2}$ is being filled
- 0⁺₂ states created by 2p-2h
 (+ 4p-4h...) excitation across Z=40
- very different configurations and small mixing of 0⁺₁ and 0⁺₂

Octupole collectivity in Zr isotopes: anomalous value for ⁹⁶Zr

- evaluated B(E3; 3⁻₁ → 0⁺₁) strength for ⁹⁶Zr strikingly high (53(6) W.u.), comparable with those known for nuclei with rigid pear shapes
- observed trend of B(E3; 3⁻₁ → 0⁺₁) values in Zr isotopes inconsistent with 3⁻₁ energies and hard to explain

Octupole collectivity in Zr isotopes: new BR measurement for ⁹⁶Zr

 new measurement of E1/E3 branching ratio in ⁹⁶Zr (Ł. Iskra et al, Phys. Lett. B 788 (2019) 396) points to lower octupole collectivity, but the overall trend remains puzzling

need to verify the 3⁻ lifetime

Decay scheme with revised branching and mixing ratios

J. Wiśniewski et al, Phys. Rev. C 108, 024302 (2023)

- which 4⁺ belongs to which band? if 4⁺₁ is part of the deformed structure, why is its decay to the 2⁺₁ so strong (mixing between bands should be weak)?
- the $2^+_3 \rightarrow 2^+_2$ decay seems surprisingly enhanced
- E1 transitions from presumably collective states compete with E2 ones; in particular, the 6⁺ state decays predominantly via E1; is it related to a two-phonon octupole vibration?

unsafe Coulomb excitation combined with RDDS

(¹⁰⁶Cd at GANIL: proof of principle)

4th AGATA Pre-PAC, LNL, October 2-3, 2023 - p. 8/17

Experiment

 inelastic scattering data on ¹⁰⁶Cd: byproduct of a RDDS lifetime measurement following multinucleon transfer in the ¹⁰⁶Cd + ⁹²Mo reaction at 7 MeV/A

M. Siciliano et al., Phys. Lett. B 806, 135474 (2020)M. Siciliano et al., Phys. Rev. C 104, 034320 (2021)

 VAMOS at grazing angle (25°); lowest observed scattering angle (19.4°) corresponding to 107% of Cline's safe energy

Experiment

• population of 21 excited states observed (up to spin 6^+)

- ¹⁰⁶Cd ions identified in VAMOS with $19.4^{\circ} \le \theta_{LAB} \le 30^{\circ}$ (Cline's criterion fulfilled for $\theta_{LAB} \le 18^{\circ}$)
- we apply gates on θ_{LAB} with 1° width to study the dependence of the excitation cross sections on scattering angle
- due to complicated acceptance of the spectrometer as a function of θ, we normalise the measured γ-ray intensities to that of the 2⁺₁ → 0⁺₁ transition

- reasonable agreement with literature data for 4⁺₁ (weighted average of measured lifetimes)
- lifetime of the 6⁺₂ state deduced from the same data as our transition intensities (M. Siciliano et al., Phys. Rev. C 104, 034320 (2021) is not consistent with the measured intensity ratios

D. Kalaydjieva, PhD thesis, 2023

• much better agreement for the 6^+_2 state if we assume:

- (6⁺₂ ||E2||4⁺₁) matrix element from Coulomb excitation (D. Rhodes et al., Phys. Rev. C 103, L051301 (2021))
- or 6_2^+ lifetime from $(n,n'\gamma)$ (A. Linnemann, PhD thesis, University of Cologne, 2005 but here the uncertainty is very large ($\tau = 0.26^{+0.44}_{-0.14}$ ps)

D. Kalaydjieva, PhD thesis, 2023

 finally, we can try to fit a set of matrix elements to the first few points of the cross-section distribution, and compare the resulting lifetimes:

```
4_1^+ – GOSIA fit: 1.23(7) ps
weighted average of lifetimes:
1.32(12) ps
```

6⁺₂ – GOSIA fit: 0.48(3) ps M. Siciliano et al., Phys. Rev. C 104, 034320 (2021): 1.22(15) ps D. Rhodes et al., Phys. Rev. C 103, L051301 (2021): 0.54(8) ps

- similar analysis has been applied to all observed states, yielding B(E2) values complementary to those obtained from the RDDS analysis of the same date
- contrary to RDDS, it was possible to obtain B(E2) values for the decay of states that have lifetimes shorter than 1 ps

D. Kalaydjieva, PhD thesis, 2023

Proposed experiment

Counting rates

- PRISMA at 30°; 24°–27° "safe"
 Coulomb excitation, 27°–36°
 enhanced cross sections (up to 19% over Cline's "safe" energy)
- 1 mg/cm² ¹¹⁶Sn target on a light backing (²⁴Mg?) Light degrader (again ²⁴Mg?)
- grazing angle 40° we do not want to open other reaction channels; rate of ⁹⁶Zr ions in PRISMA – 6kHz, 600 gamma-particle coincidences.

rates per day; blue – states within reach of a RDDS measurement

Expected results and complementary measurements

- Lifetimes of 6⁺, 3⁻ states octupole collectivity, testing the two-phonon vibration hypothesis in conjunction with the measured E3/E1 branching ratio (23.011)
- Lifetime of 4⁺₂, E2 and E3 strengths involving 2⁺₂, 2⁺₃, 4⁺₁, 4⁺₂, 6⁺₁, 3⁻₁, 5⁻₁ testing the above + type-II shell-evolution scenario
- Cross-section evolution in the ⁹⁶Zr + ¹¹⁶Sn system over the "safe" energy can we apply this method in the future to radioactive beams?
- Complementarity:
 - "safe" Coulomb excitation of ⁹⁶Zr (22.18) current project is not sensitive to quadrupole moments, but will offer enhanced cross sections for higher-lying states
 - (p,p') on 96 Zr (23.011) we aim to measure the 6⁺ lifetime, 23.011 will search for the direct 6⁺ \rightarrow 3⁻ decay
 - β decay into ⁹⁶Zr (TRIUMF, December 2023) precise measurement of branching and mixing ratios in the decay of spin-0,1,2,3 states (we will reach higher in spin)