## **Electron Spectroscopy with the**

### **SLICES** setup



Istituto Nazionale di Fisica Nucleare



- <u>SLICES (Spes Low-energy Internal</u> Conversion Electron Spectrometer)
  - Large area (~ 3900 mm<sup>2</sup>) Si(Li) detector
     6.8 mm thick segmented in 32 sectors







N. Marchini et al.: Nucl. Inst. Meth. A 1020 (2021) 165860

- <u>SLICES (Spes Low-energy Internal</u> Conversion Electron Spectrometer)
  - Large area (~ 3900 mm<sup>2</sup>) Si(Li) detector
     6.8 mm thick segmented in 32 sectors
  - Four truncate wedge shaped permanent magnets around a lead absorber







N. Marchini et al.: Nucl. Inst. Meth. A 1020 (2021) 165860

- <u>SLICES (Spes Low-energy Internal</u> Conversion Electron Spectrometer)
  - Large area (~ 3900 mm<sup>2</sup>) Si(Li) detector
     6.8 mm thick segmented in 32 sectors
  - Four truncate wedge shaped permanent magnets around a lead absorber
  - Efficiency above 10% in the 800-1300 keV energy range





- <u>SLICES (Spes Low-energy Internal</u> Conversion Electron Spectrometer)
  - Large area (~ 3900 mm<sup>2</sup>) Si(Li) detector
     6.8 mm thick segmented in 32 sectors
  - Four truncate wedge shaped permanent magnets around a lead absorber
  - Efficiency above 10% in the 800-1300 keV energy range





N. Marchini et al.: Nucl. Inst. Meth. A 1020 (2021) 165860

- <u>SLICES (Spes Low-energy Internal</u> Conversion Electron Spectrometer)
  - Large area (~ 3900 mm<sup>2</sup>) Si(Li) detector
     6.8 mm thick segmented in 32 sectors
  - Four truncate wedge shaped permanent magnets around a lead absorber
  - Efficiency above 10% in the 800-1300 keV energy range
  - Movable tape at the  $\beta$  decay station



N. Marchini et al.: Nucl. Inst. Meth. A 1020 (2021) 165860

- <u>SLICES (Spes Low-energy Internal</u> Conversion Electron Spectrometer)
  - Large area (~ 3900 mm<sup>2</sup>) Si(Li) detector
     6.8 mm thick segmented in 32 sectors
  - Four truncate wedge shaped permanent magnets around a lead absorber
  - Efficiency above 10% in the 800-1300 keV energy range
  - Movable target remotely controlled





N. Marchini et al.: Nucl. Inst. Meth. A 1020 (2021) 165860

## SLICES Commissioning @CN -Electric monopole transitions in <sup>106</sup>Pd



## <sup>106</sup>Pd - Physics case

#### 0<sub>3</sub> as Intruder State



P. Garrett et al.: Physica Scripta 93 (2018) 063001

## **SLICES Commissioning**

- $^{106}Pd(p,n)$  @ 5MeV  $\rightarrow$   $^{106}Ag$
- <sup>106</sup>Ag decays for 99% with ε decay in
   <sup>106</sup>Pd with T<sub>1/2</sub> = 24 min



### **Experimental Goals**



### Better solution: 4 Cluster of three magnets 11mm thick

## E0 transitions in <sup>106</sup>Pd



N. Marchini et al.: Phys. Rev. C 105 (2022) 054304

| $J_i^{\pi} \longrightarrow J_f^{\pi}$                                                                                                                                                                                         | $E_{\gamma} \; [\text{keV}]$                                                                                                    | $lpha_{Exp.}\cdot 10^3$                                                                                                      | $\alpha_K(E2)$ .                   | $10^3  \alpha_K(M1) \cdot 10^3$                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $2^+_2 \longrightarrow 2^+_1$                                                                                                                                                                                                 | 616                                                                                                                             | 2.97(11)                                                                                                                     | 2.89                               | 2.97                                                                                                                                             |
| $2^+_2 \longrightarrow 0^+_1$                                                                                                                                                                                                 | 1128                                                                                                                            | 0.64(9)                                                                                                                      | 0.68                               |                                                                                                                                                  |
| $2^+_3 \longrightarrow 2^+_1$                                                                                                                                                                                                 | 1050                                                                                                                            | 1.06(7)                                                                                                                      | 0.79                               | 0.89                                                                                                                                             |
| $0^+_2 \longrightarrow 2^+_1$                                                                                                                                                                                                 | 621                                                                                                                             | 2.6(2)                                                                                                                       | 2.8                                |                                                                                                                                                  |
| $0^+_3 \longrightarrow 2^+_1$                                                                                                                                                                                                 | 1195                                                                                                                            | 0.71(13)                                                                                                                     | 0.60                               |                                                                                                                                                  |
| $0^+_4 \longrightarrow 2^+_2$                                                                                                                                                                                                 | 873                                                                                                                             | 1.23(8)                                                                                                                      | 1.20                               |                                                                                                                                                  |
|                                                                                                                                                                                                                               |                                                                                                                                 | $\sim^2(\mathrm{FO})$                                                                                                        | / 59)                              | 2 103                                                                                                                                            |
|                                                                                                                                                                                                                               |                                                                                                                                 | 0-16.11                                                                                                                      |                                    | 0 · · · · · · · · · · · · · · · · · · ·                                                                                                          |
|                                                                                                                                                                                                                               |                                                                                                                                 | $q^{-}(E0)$                                                                                                                  | $(\mathbf{E}Z)$                    | $ ho$ = $\cdot$ 10=                                                                                                                              |
| $J_i^{\pi} \longrightarrow J_f^{\pi}$                                                                                                                                                                                         | $E_{\gamma} \; [\text{keV}]$                                                                                                    | $q^{-}(E0)$<br>Present                                                                                                       | Previous                           | $\frac{\rho^{-} \cdot 10^{-}}{\text{Present}  \text{Previous}}$                                                                                  |
| $\begin{array}{c} J_i^{\pi} \longrightarrow J_f^{\pi} \\ 0_2^+ \longrightarrow 0_1^+ \end{array}$                                                                                                                             | $\frac{E_{\gamma} \; [\text{keV}]}{1134}$                                                                                       | $\begin{array}{c} q^{-}(\text{EO}) \\ \hline \text{Present} \\ \hline 0.166(15) \end{array}$                                 | $\frac{(E2)}{Previous}$ $0.162(7)$ | $\begin{array}{c c} p & 10^{-1} \\ \hline Present & Previous \\ 17(4) & 16.4(40) \\ \end{array}$                                                 |
| $\begin{array}{c} J_i^{\pi} \longrightarrow J_f^{\pi} \\ 0_2^+ \longrightarrow 0_1^+ \\ 0_3^+ \longrightarrow 0_1^+ \end{array}$                                                                                              |                                                                                                                                 | q (E0)<br>Present<br>0.166(15)<br>0.09(15)                                                                                   | Previous<br>0.162(7)               | $\begin{array}{c c} \hline \rho & 10^{\circ} \\ \hline \text{Present} & \text{Previous} \\ \hline 17(4) & 16.4(40) \\ 2(4) & < 3 \\ \end{array}$ |
| $\begin{array}{c} J_i^{\pi} \longrightarrow J_f^{\pi} \\ 0_2^+ \longrightarrow 0_1^+ \\ 0_3^+ \longrightarrow 0_1^+ \\ 0_4^+ \longrightarrow 0_1^+ \end{array}$                                                               | $E_{\gamma} \; [\text{keV}]$<br>1134<br>1706<br>2001                                                                            | $\begin{array}{c} q (E0) \\ \hline Present \\ \hline 0.166(15) \\ 0.09(15) \\ \hline 0.124(18) \end{array}$                  | Previous<br>0.162(7)               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                           |
| $\begin{array}{c} J_i^{\pi} \longrightarrow J_f^{\pi} \\ 0_2^+ \longrightarrow 0_1^+ \\ 0_3^+ \longrightarrow 0_1^+ \\ 0_4^+ \longrightarrow 0_1^+ \\ 0_4^+ \longrightarrow 0_2^+ \end{array}$                                | $     \begin{array}{r} E_{\gamma} \; [\text{keV}] \\     1134 \\     1706 \\     2001 \\     867 \\     \end{array} $           | $\begin{array}{c} q (E0) \\ \hline Present \\ \hline 0.166(15) \\ 0.09(15) \\ \hline 0.124(18) \\ 0.22(6) \end{array}$       | Previous<br>0.162(7)               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                           |
| $\begin{array}{c} J_i^{\pi} \longrightarrow J_f^{\pi} \\ 0_2^+ \longrightarrow 0_1^+ \\ 0_3^+ \longrightarrow 0_1^+ \\ 0_4^+ \longrightarrow 0_1^+ \\ 0_4^+ \longrightarrow 0_2^+ \\ 2_2^+ \longrightarrow 2_1^+ \end{array}$ | $     \begin{array}{r} E_{\gamma} \ [\text{keV}] \\     1134 \\     1706 \\     2001 \\     867 \\     616 \\     \end{array} $ | $\begin{array}{c} q (E0) \\ \hline Present \\ \hline 0.166(15) \\ 0.09(15) \\ 0.124(18) \\ 0.22(6) \\ 0.027(38) \end{array}$ | Previous<br>0.162(7)               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                           |

- Test the validity of the new setup
- Definite value for the  $\alpha_{K}(2_{3} \rightarrow 2_{1})$
- Extraction of additional q<sup>2</sup>(E0)

## E0 transitions in <sup>106</sup>Pd



Interpretation with a simple two level mixing model --Suggestion of shape coexistence scenario

• Definite value for the  $\alpha_{K}(2_{3} \rightarrow 2_{1})$ 

Extraction of additional q<sup>2</sup>(E0)

## SLICES - <sup>68</sup>Zn

- <sup>68</sup>Zn(p,n) @ 5.5 MeV → <sup>68</sup>Ga
- $^{68}$ Ga  $\epsilon$  decays (99%) in  $^{68}$ Zn with  $T_{1/2} = 68m \rightarrow$  cycles of irradiation and measurement
- Same magnetic transport system configuration of the commissioning

| Transition                                                 | Energy [keV] |
|------------------------------------------------------------|--------------|
| 0 <sub>2</sub> <sup>+</sup> -> 2 <sub>1</sub> <sup>+</sup> | 578          |
| 2 <sub>2</sub> <sup>+</sup> -> 2 <sub>1</sub> <sup>+</sup> | 806          |
| 2 <sub>1</sub> <sup>+</sup> -> 0 <sub>1</sub> <sup>+</sup> | 1077         |
| 2 <sub>3</sub> <sup>+</sup> -> 2 <sub>1</sub> <sup>+</sup> | 1261         |
| 0 <sub>2</sub> <sup>+</sup> -> 0 <sub>1</sub> <sup>+</sup> | 1659         |
| 2 <sub>2</sub> <sup>+</sup> -> 0 <sub>1</sub> <sup>+</sup> | 1883         |



experimental chamber (a)



## **SLICES possibly coupled with AGATA**

Letter of Intent for AGATA at zero degrees Electron conversion measurements with SLICES and AGATA

N. Marchini<sup>1</sup>, A. Nannini<sup>2</sup>, M. Ottanelli<sup>2</sup>, M. Rocchini<sup>2</sup>, A. Saltarelli<sup>3</sup>, M. Perri<sup>3</sup>,
 G. Benzoni<sup>4</sup>, P. Garrett<sup>5</sup>, A. Goasduff<sup>6</sup>, J. J. Valiente Dobón<sup>6</sup>, K. Hadynska-Klek<sup>7</sup>,
 D. Mengoni<sup>8</sup>, and M. Zielinska<sup>9</sup>



## Thank you for the attention!!!



### SLICES - 68Zn

| Transition                | Energy [keV] |
|---------------------------|--------------|
| $0_2^+ \rightarrow 2_1^+$ | 578          |
| $2_2^+ -> 2_1^+$          | 806          |
| $2_1^+ \rightarrow 0_1^+$ | 1077         |
| $2_3^+ -> 2_1^+$          | 1261         |
| $0_2^+ -> 0_1^+$          | 1659         |
| $2_2^+ \rightarrow 0_1^+$ | 1883         |





experimental chamber (a)



### **Two-Level Mixing**







## **Two-Level Mixing**

As a first step, only the terms up to the second order in  $\beta$  have been considered. In this approximation the expression for the E0 strength becomes:

$$\rho^2(0_2^+ \to 0_1^+) = (\frac{3Z}{4\pi})^2 a^2 (1-a^2) |(\beta_1^2 - \beta_2^2)|^2 = 17$$

 $\beta$  unmixed are linked with the  $\beta(0_1)$  and  $\beta(0_2)$  by the expression:

$$\beta^{2}(0_{1}) = a^{2}\beta_{1}^{2} + b^{2}\beta_{2}^{2} = 0.47$$
$$\beta^{2}(0_{2}) = b^{2}\beta_{1}^{2} - a^{2}\beta_{2}^{2} = 0.51$$
$$a^{2} = 0.1$$
 Small Mixing

### **Two-Level Mixing – Small Mixing**

$$\rho^{2}(0_{2}^{+} \to 0_{1}^{+}) = (\frac{3Z}{4\pi})^{2}a^{2}(1-a^{2})[(\beta_{1}^{2}-\beta_{2}^{2}) + \frac{5\sqrt{5}}{21\sqrt{\pi}}(\beta_{1}^{3}\cos^{3}\gamma_{1}-\beta_{2}^{3}\cos^{3}\gamma_{2})]^{2}$$

