News from the Target Service

Stefano Corradetti

People and organization

Staff:

- Stefano Corradetti
- Matteo Campostrini#
- Sara Cisternino#
- Lorenzo Loriggiola#
- Massimo Loriggiola

Members and collaborators (in the Service meetings):

- Sara Carturan
- Juan Esposito
- Valentino Rigato

Activities

Activities of the service (Production)

- Targets for nuclear physics
- Targets for applications
- ISOL targets
 High-power targets

Collaboration activities

• Characterization of innovative targets

Targets for nuclear physics

Equipment and laboratories (Targets Laboratory)

Rolling mill

Carbon evaporator

Cryogenic dryer

Targets with backing

A 250 μ g/cm² ¹¹B film adhered to a 40 μ g/cm² Al backing is shown in Fig. 1. The difficult evaporation of the B, carried out with e-gun, could create damage to the thin Al film, either due to discharges or due to internal film stresses due to thickness. Careful management of the evaporation parameters limited the damaging effects.

Electron-gun evaporation of ${}^{10}B$ 500 µg/cm² is slow and complex as is adhesion to Au 4 mg/cm² or 1 mg/cm² backing. Numerous tests have been conducted to determine the best evaporation parameters

*Fig.*1 – ¹¹*B* on *AI* for Zagreb Lab. experiment

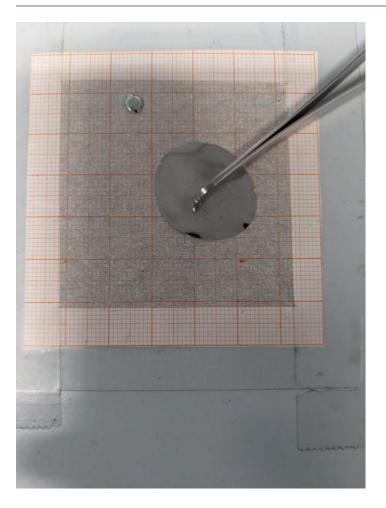
Fig.2 – ¹⁰B on Au PAC 22.72

Targets with backing

⁷LiF 1,5 mg/cm² on C 40 μg/cm² for CERN (under vacuum)

Thorough preparation by thermal evaporation of C backings from 40 μ g/cm², thickness chosen in consultation with the user as a compromise between mechanical stress resistance and elasticity. Subsequently performed massive thermal evaporation of ⁷LiF from 1.5 mg/cm². Adhesion was promoted by adequate heating of the backing.

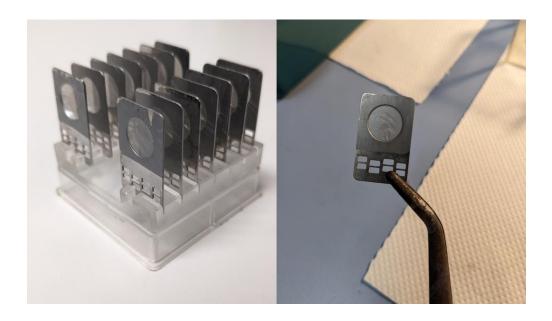
Plunger target



Plunger-type targets consisting of a sandwich film: 40 Ca 0.8 mg/cm² target on Au backing of 4 mg/cm² and then protected with Au 150 µg/cm² to prevent oxidation. Here the peculiarity of working with the size of the plunger target forced us to use a special geometry for sample placement. The shaded areas prevented measurement of the thicknesses with the microbalance, so we had to find other benchmarks such as current intensity, deposition time and sample weights. Metallic 40 Ca is obtained by reduction from 40 CaCO₃ using Zr as the reducing agent. Slight heating of the Au backing improves adhesion.

Au 150 μ g/cm² on ⁴⁰Ca 0,8 mg/cm² on Au 4 mg/cm² plunger target PAC 23.010

Rolled self-supporting target



Many tests have been performed for the melting, distillation and rolling of Zr as an extremely hard and brittle material in the presence of minute amounts of impurities (on the order of ppm). The user required the expensive and unobtainable ⁹⁶Zr isotope in "crystal bar" form, but available in powder form from oxide reduction. With careful control of vacuum, temperature and evaporation "rate" parameters, we melted and distilled natural Zr with e-gun. The photo shows the behavior at press crushing test and rolling. The tests showed a loss of material around 30%.

Zr pill and Zr 1 mg/cm² for plunger target – PAC 23.011

LNL-Carbon stripper foils

The preparation and assembly of stripper-foils for the XTU Tandem has always been the prerogative of the Targets Laboratory, which sourced and processed locally the films produced in Munich using the Laser Ablation technique. Now the Munich Laboratories have closed this activity so it has become necessary to provide it themselves. We therefore started local production of stripper-foils using the thermal evaporation technique of our carbon evaporator


Support on preparation of sources for accelerators

48Ca pill by 48CaCO3 reduction – PAC 22.81

44Ca XTU-tandem source – pac 23.006

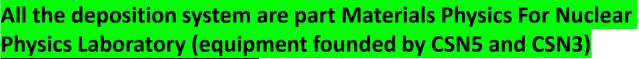
48Ca ECR source – PAC 22.81

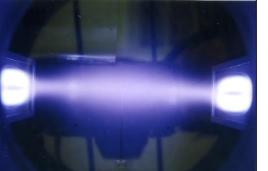
The laboratory provides its expertise on dry oxidation-reduction reactions of metal oxides and carbonates for the preparation of sources for LNL accelerators. In particular, an ECR source of ⁴⁸Ca from ⁴⁸CaCO₃ and a source of ⁴⁴Ca from ⁴⁴CaCO₃ were produced.

Sputtered targets for nuclear physics and astrophysics experiments

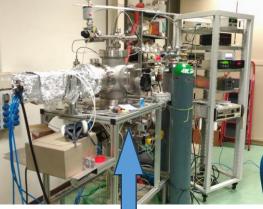
Magnetron and reactive magnetron sputtering technologies are used as complementary techniques to evaporation when nuclear targets require specific compositional or structural characteristics

Characteristics:


- 3 sputtering source (50mmx140mm)
- 2 sputtering source (150mmx230mm)
- Active gettering system
- Optical emission plasma diagnostics for reactive processes
- Different power supply technologies (HiPIMS, DC, pulsed-DC, RF)
- 2 different sample holder

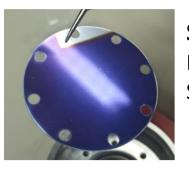

Materials:

Pure materials (Ta, Ti, Zr, Cr, Cu, Nb....)


Compounds:

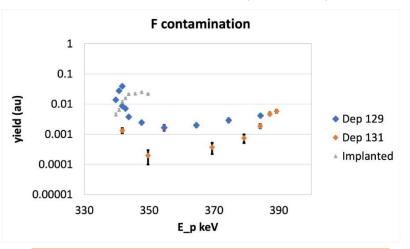
- Oxides (natural O, ¹⁶O, ¹⁷O and ¹⁸O)
- Nitrides (natural N, ¹⁴N, ¹⁵N)
- Hydrides (natural H, D)

2 different sputtering system used for target synthesis and other CSN5 exeriments



Targets for nuclear physics and astrophysics experiments 2023/2024

Sputtered Ta¹⁴N on tantalum backing


LNL Ta¹⁴N targets have been used in the first experiment ${}^{14}N(p,\gamma){}^{15}O$ at Bellotti Facility LNGS 2023 LUNA collaboration Premial project LUNA-MV

Sputtered NaNbO₃ targets for ²³Na(p,α)²⁰Ne LNGS 2023-2024 LUNA collaboration Starting ERC project ELDAR: P.I. Carlo Bruno

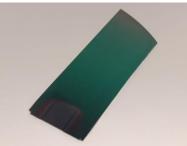
Sputtered Ti^{nat/14}**N targets for** ¹⁴**N(p,γ)**¹⁵**O at LUNA400** LNGS 2023-2024 LUNA collaboration PRIN 2022 project SOCIAL: P.I. Francesca Cavanna Target for astrophysics experiments required high purity materials and very low contaminant (O,C,D,F)

Fluorine contamination ~10-100 times less than implanted target

(P,γ) Analysis performed by A. Compagnucci @ LNGS LUNA 400 facility

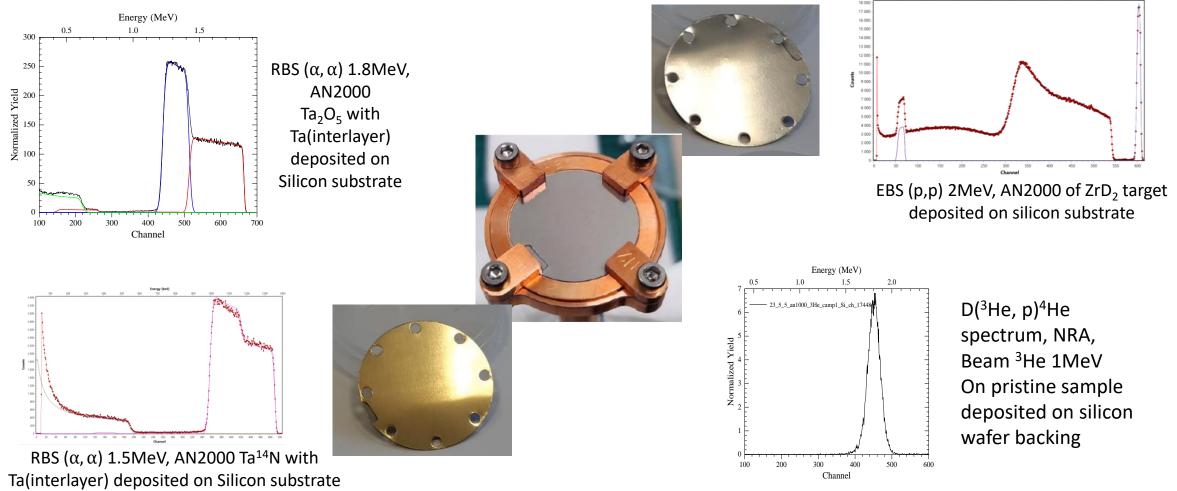
Targets for nuclear physics and astrophysics experiments 2023/2024

Graphite bulk target (1-4mm thick) on Tantalum backing ¹²C+¹²C

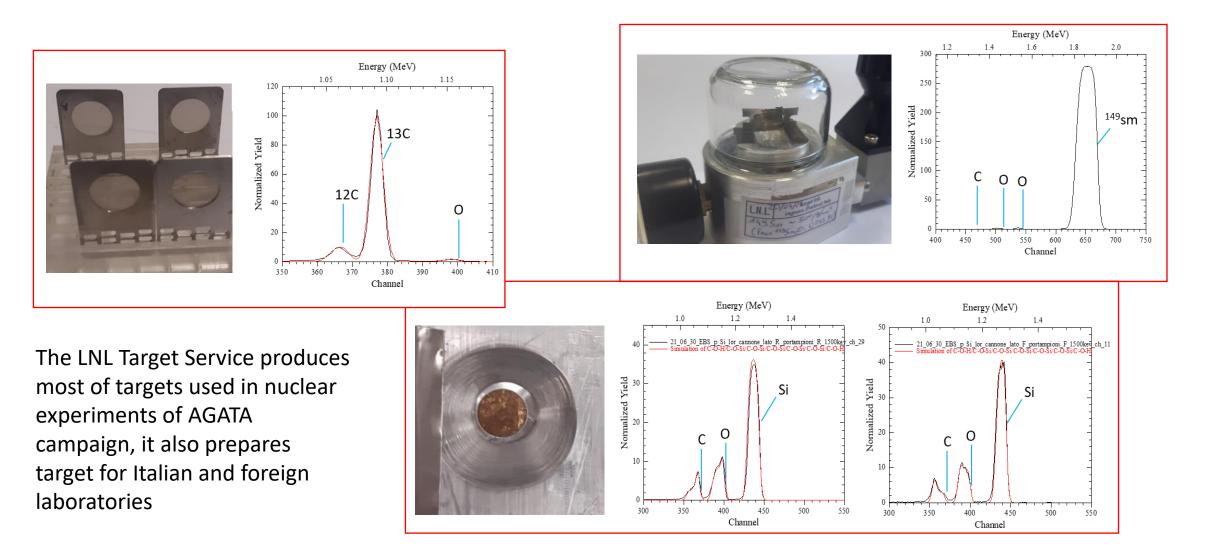

LNGS 2023-2024 LUNA collaboration PRIN 2022 project CaBS: P.I. Gianluca Imbriani Experiment proposed to LNGS PAC 2023: P.I. Federico Ferraro

Prepared using diamond wire saw from high purity graphite bar

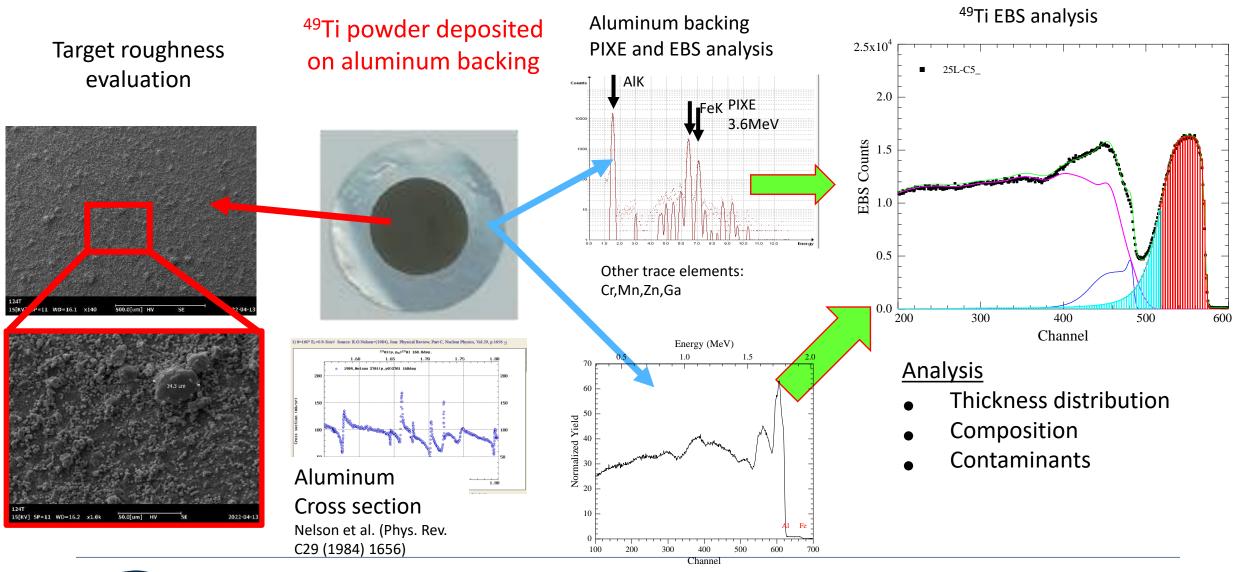
Sputtered ZrD₂ on Tantalum backing ²H(p,γ)³He reaction above 300 keV Experiment at Felseskeller Laboratory (Dresden) P.I. Eliana Masha



Sputtered Ta₂¹⁸O₅ on Tantalum backing using plunger configuration TBD Experiment proposed for next AGATA campaign P.I. Giovanna Benzoni


IBA characterization @ AN2000/CN [Target for Astrophysics]

IBA is an essential tool for deposition process development, and it drives Nuclear target manufacturing with PVD techniques



IBA characterization @ AN2000/CN [target for nuclear physics]

IBA characterization @ AN2000/CN [target for radioisotope cross section measurement]

INFN Istituto Nazionale di Fisica Nuclear LABORATORI NAZIONALI DI LEGNARO

Targets request for 2023/2024 experiments

ALL THESE TARGETS ARE SYNTETIZED IN THE "MATERIALS PHYSICS FOR NUCLEAR PHYSICS LABORATORY "

LUNA collaboration:

- Complete N° 25 targets of Ta¹⁴N deposited on tantalum backing, FIRST EXPERIMENT at Bellotti facility (LNGS) for ¹⁴N(p,γ)¹⁵O [MUR Progetto premiale]
- > N° 25-30 targets of NaNbO₃ for LUNA400 (LNGS) experiment ²³Na(p,α)²⁰Ne [ERC]
 - Target production ongoing
- > N° 25 target of TiN for LUNA400 (LNGS) ¹⁴N(p, γ)¹⁵O experiment, planned in 2024 [PRIN]
 - First batch under preparation (test planned November 2023)
 - > Final batch (2024)
- N° 50 target preparation Carbon disk on Tantalum backing for ¹²C+¹²C experiment [PRIN]
 - Target production ongoing

Other experiments

- > N° 15 of ZrD_2 , ²H(p, γ)³He reaction, Felsenkeller Laboratory (Dresden) [2024]
- TaN for 14N-pg-AN2000 planned experiment 2023 (complete)
- > N° 20 of Ta¹⁵N, ¹⁵N(α , γ)¹⁹F / ¹⁴N(α , γ)¹⁸F reaction, Felsenkeller Laboratory (Dresden) [2024]
- > $Ta_2^{18}O_5$ proposed experiment AGATA-LNL (TBD 2024)

Thank you!

