Computational time reconstruction code

Summary

\square Study computational time on reconstruction code:

- Computational time test on CLOUD and LNGS
\square Added to the reco file the time consumption of some pieces of the code:
$\square \quad$ Clustering time per image;
\square Variables calculation time per image;
- Total time of the run.
- Close look at the Variables calculation:
- Grouping the variables in 13 categories;
\square Adding category by category to measure the time of execution;
\square Deeper study on the most time-consuming category.
$\square \quad$ Evaluate reconstruction computational time for Run2 e Run3.
\square Conclusions

Computational time test on CLOUD and LNGS

We have tested the reconstruction algorithm in terms of computational time using the HTCondor queues on the so-called CLOUD and also on the LNGS batch system (cygno-custom), both of them using SingleCore mode:

- Run1-4320 (Fe55) and 400 images;
- Using Autumn22 tag;

And as you can see the computational time is comparable.

All the analysis in the next slides were done using both environments.

Added to the reco file the time consumption of some pieces of the code:

- Clustering time per image;
\square Variables calculation time per image;
\square Fill Camera variables time per image;
- Fill Cluster variables time per image;Total time of the run.

Example:

Using the following configuration:

- Run1 LIME underground number: 4320 (Fe 25 cm far from GEMs)
- Reconstruction branch: Autumn22
- Processed at: HTCondor Cloud
- Number of Threads: 1 (Single core)

The resulted computational time is:

- Average computational time per image:

\circ	DBSCAN:	c.a. 16 s
\circ	Variables:	c.a 25 s
\circ	Total time:	c.a 42 s

- Average computational time entire run (~400 images):

Total time:
292.86 ± 5.6 minutes

Close look at the variables calculation

The reconstruction algorithm was tested (using the same run) for all the different kind of categories listed in Table. The categories were being added one by one to study the trend of the computational time.

The result can be seen below:

variable	description	category
run		0
event	event number	
pedestal_run	run number used for pedestal subtraction	
t_DBSCAN		
t variables		
cmos_integral	integral counts of the full CMOS sensor	1
cmos_mean	average counts of the full CMOS sensor	
cmos_rms	RMS of the counts of the full CMOS sensor	
nSc	Number of clusters found in the image	2
sc_integral	uncalibrated integral of counts of all the pixels in the cluster	
sc_size	number of pixels of the cluster, without zero-suppression	3
sc_nhits	number of pixels of the cluster above zero-suppression threshold	
sc_rms		4
sc_length	length of the major axis of the cluster	5
sc_width	length of the minor axis of the cluster	6
sc_xmax	x position of the rightmost pixel of the cluster	7
sc_xmin	x position of the leftmost pixel of the cluster	
sc_y max	y position of the topmost pixel of the cluster	
sc ymin	y position of the bottommost pixel of the cluster	
sc_xmean	x position of the cluster energy baricenter	8
sc ymean	position of the cluster energy baricenter	
sc_theta	polar angle inclination of the major-axis of the cluster	9
sc_Ifullirms	full RMS of the cluster along the major axis	10
sc_tfullrms	full RMS of the cluster along the minor axis	
sc_longrms	truncated RMS of the cluster along the major axis	11
sc_latrms	truncated RMS of the cluster along the minor axis	
sc_tgaussamp	amplitude of the Gaussian transverse profile	12
sc_tgaussmean	mean position of the Gaussian transverse profile	
sc_tgausssigma	standard deviation of the Gaussian transverse profile	
sc_tchi2	chi-squared of the Gaussian fit to the transverse profile	
Sc_tstatus	status of the Gaussian fit to the transverse profile	
sc_lgaussamp	amplitude of the Gaussian longitudinal profile	
sc_lgaussmean	mean position of the Gaussian longitudinal profile	
sc_lgausssigma	standard deviation of the Gaussian longitudinal profile	
sc_lchi2	chi-squared of the Gaussian fit to the longitudinal profile	
sc_lstatus	status of the Gaussian fit to the longitudinal profile	
sc_lp0amplitude	mplitude of the main peak of the longitudinal cluster profile	13
sc_lp0prominence	prominence main peak wrt the baseline along the long. cluster profile	
sc_lp 0 fwhm	FWHM main peak of the long. cluster profile	
sc_lp0mean	mean position main peak wrt the start of the cluster of long. cluster profile	
sc_tp0fwhm	FWHM main peak of the transverse cluster profile	
Table 5.1: Variables calculated in the full reconstruction code grouped in different categories.		

Deeper study on the most time-consuming category

Having a close look at the algorithm we saw that the function "DynamicsProfileBins" was taking most of the time.

In an attempt to improve the computational time we have optimized the function using numpy arrays. The output of the "DynamicsProfileBins" function was not changed!

Case with a big track (Run 4320 Image 9):

Function	Computational Time [s]
DynamicsProfileBins "Original"	86,1864
DynamicsProfileBins "Arrays"	0,4801
Factor	179,53

With this new function we could almost zeroed the variable calculation contribution.

Evaluate reconstruction computational time for
 Run1 $_{(4320)}$ Run2 $_{(9877)}$ e Run3 $_{(17408)}$
 Run1 using Autumn22e Run2 e 3 using Winter23

Comparison between Run 1, 2 and 3

Comparison between Run 1, 2 and 3

Evaluating Run3 ${ }_{(17408)}$ with and without the optimization

> As we can see in this new implementation is capable of decrease the computational time even for the Run3.

Conclusions

We have two main contributions for the computational time: DDBSCAN + Variables Calculation:

- The first increase with the amount of clusters found per image;
- And the second with the size of the clusters, but with the 'numpyrized' function we could almost zeroed this contribution.

Apart from that we saw that even for Run3 (the last populated one by now) the reconstruction algorithm is in average over 7 seconds per image (but some images could take up to 40 seconds).

BACKUP

Evaluate reconstruction computational time for
 Run1 $_{(4320)}$ Run2 $_{(9877)}$ e Run3 $_{(17408)}$
 Run1 using Autumn22e Run2 e 3 using Winter23

Comparison between Run 1, 2 and 3

Comparison between Run 1, 2 and 3

Dynamics Profile

```
def dynamicProfileBins(hits,coord='x',relError=0.1):
    minPixels = max(1,1/relError/relError)
    print('minPixels: %f' % minPixels)
    index = 0 if coord=='x' else 1
    xmin=min([h[index] for h in hits])
    print('xmin: %f' % xmin)
    xmax=max([h[index] for h in hits])
    print('xmax: %f' % xmax)
    x=int(xmin)
    print('x: %f' % x)
    xedges=[x]
    integral=0
    while x<int(xmax):
        if integral<minPixels:
            somma = sum([int(h[index])==int(x) for h in hits])
            integral += somma
            print('x: %f' % int(x))
            print('counts: %f' % somma)
            print('integral: %f' % integral)
        else:
            print('Saved x: %f' % x)
            xedges.append(x)
            integral=0
        x+=1
    xedges.append(int(xmax))
    return xedges
```

def dynamicProfileBins_v2(hits,coord='x',relError=0.1): import numpy as $n p$
$\operatorname{minPixels}=\max (1,1 /$ relError/relError $)$
index = 0 if coord=='x' else 1
h = hits.T[index].astype(int)
xmin=min(h)
$x \max =\max (\mathrm{h})$
$x=x$ in
xedges=[x]
integral=0
xunique, xcounts $=n p$.unique(h,return_counts=True) if xmin>=0:
xrange $=$ list(range($0, x m a x+1)$)
$c \quad=n p . z e r o s(l e n(x r a n g e), d t y p e=i n t)$
c [xunique] = xcounts
$c=c[x \min :-1]$
else:
xrange $=$ list $($ range $(0,(x m a x+1)-x m i n))$
$c \quad=n p . z e r o s(l e n(x r a n g e)$, dtype $=i n t)$
$c[$ xunique-xmin] $=$ xcounts
for ind, x in enumerate(range(xmin, xmax)):
if integral<minPixels:
integral += c[ind]
else:
\#print('Saved x: \%f' \% x)
xedges.append (x)
integral=0
xedges.append (xmax)
return xedges

Tempo Dynamics V1 x Dynamics V2 in one image

Dynamics V1 Total	86,1864
seconds	
Dynamics V2 Total	0,4801 seconds
Factor	179,53 times

Number of clusters vs computational time

