SC magnet study

Ptolemy General Meeting INFN-LNGS Gran Sasso, 27th June 2023

Santiago Sanz, Joseba Bastarrarena, Gustavo Sarmiento (SUPRASYS) Matteo Tropeano, Gianni Grasso (ASG)

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

Location

- SUPRASYS is located in the landmark building of Avenue Lehendakari Aguirre 11, in Bilbao, Spain.
- 15 minutes by car from the Airport.

SUPRASYS S.L.

- VAT: B95890893
- www.suprasys.es
- **a** +34 946 855 837
- **@** admin@suprasys.es
- ♥ Av. Lehendakari Aguirre, 11. Planta 7
 ▷pto.7, E-48014 Bilbao (Spain)

Technology based

Electromagnetic systems

Superconducting, resistive and permanent magnets

• Kickers & septa

Multiphysics analysis

- Thermal, structural, electromagnetics and CFD
- ANSYS[™]
- OPERATM.
- CST Studio[™]
- OpenFOAM®

Cryogenics, Vacuum & Superconductivity

- Cryostat & vacuum chambers
- Cryogenic rotary joints
- Superconducting power applications

- Thermometry
- Magnetic measurements
- Strain gauges measurements
- Control and acquisition systems
- Quench detection and protection

3

SUPRASYS CONFIDENTIAL information shared. Total or partial sharing of the information is not permitted without the agreement of SUPRASYS

Resources

- ANSYS 19.2 Mechanical Maxwell 3D, Ansys Mechanical Enterprise and Emag.
- OPERA Simulation Software 2021
- SolidWorks Professional 2018
- OpenFOAM
- Draftsight 2020
- Simulia CST Studio 2022

Relevant contributions

□ Technical support for QUACO Phase II

- Magnet conceptual and detailed design of a first-of-a-kind magnet for CERN Hi-Lumi LHC Upgrade
- Multiphysics FEM simulations including structural and EM FEM analysis
- Mock-up design and testing (including strain gauges measurements at 77 K)

Relevant contributions

Conceptual design, EM calculations and optimization of accelerator magnets

- Different type of magnets, for example:
- Combined magnets (quad + steerer) magnets
- Steerer magnets
- Quadrupole Permanent magnets
- Pulsed magnets

Relevant contributions (fusion):

Superconducting magnet feasibility study for UKAEA

- Magnetic design.
- Mechanical design.
- Quench analysis.
- Transitory analysis.

DEM studies for ITER

Relevant contributions

Customized Penning ion trap. Universidad de Granada.

Preliminary design by the University of Granada

R&D projects: DONES-EVO

• Design and experimental test for a single bunch extraction system in IFMIF-DONES.

S-Parameters [Magnitude]

R&D projects: HIVOMOT

- Conceptual design of a 2 MW partially SC motor at 2700 rpm for aviation
- EM and quench analysis

Información CONFIDENCIAL compartida por SUPRASYS. No se permite la redifusión total o parcial sin el permiso de SUPRASYS.

PTOLEMY Full-Scale Prototype at LNGS

2.1.	Magnet	
	B field (nominal):	1 T
	Pole Gap:	12 cm
	$N \cdot I$:	96000 Amp-turns
	Iron core cross-section:	$0.6 \times 1.0 \text{ m}^2$
2.2.	Coil	
	8 pairs each pole with 120-turn each running at 50 A as shown below.	
	Total winding length Lavg =	3.712 m.
	Conductor net cross-section:	$120 \times 11 \times 0.83 = 1095.6 \text{ mm}^2$
	Resistance per coil:	0.91 Ohm
	Current density:	$j = 50/(11 \times 0.83) = 5.48 \text{ A/mm}^2$
	Coil cross-section area:	$0.3 \times 0.08 \text{ m}^2$

Direct implementation of SUPRAPOWER concept

• First attempt was to consider cryostat and coils manufactured for SUPRAPOWER project

Suprapower coil

SUPRAPOWER coil is based in a stack of double pancakes, racetrack form, with a mechanical structure.

Thermal and mechanical requirements are guaranteed

SUPRAPOWER coil + Mag_LNGS

- Superconducting coils require a cryostat to keep cryogenic operation conditions.
- Suprapower cryostat plus superconducting coils, occupied more internal space than resistive coils (of ancient design)

Iron pole adaptation is required

- A direct implementation of original cryostat and coils requires iron coils reduction.
- Magnetic performance is analysed with such modification

EM Simulations with reduced iron yoke

- Iron yoke is reduced to leave space for the SUPRAPOWER cryostat and coil
- Iron inside the coil bore is totally saturated
- Magnetic field in the good field region (20 cm x 20 cm x 60 cm) of airgap is 0.5 T.
- SC coil suffers a peak magnetic field in superconductor of 1.2 T

New reduced iron yoke to improve the design

- Keeping Suprapower coils size
- Reducing the effective iron mass

Design with new reduced iron yoke

Good field region 20 cm x 20 cm x 60 cm in the airgap

- This preliminary design keeps the size of the SUPRAPOWER coils
- It is more efficient in terms of iron yoke mass

SUPRAPOWER design adaptation

- New existing MgB₂ tapes and wire with better performance
- SUPRAPOWER design adaptation admits both configurations
- Coils size increased

Wire MRO - MROPI	us	
Overall bare conductor dimensions [mm]	Overall bare conductor dimensions [mm] 3.67 X 0.65 mm	
Overall Area [mm ²]	2,2 mm ²	
Doped MgB ₂ area [mm ² and %]	Doped MgB ₂ area [mm ² and %] 0,26 mm ² - 12%	
Ni area [mm ² and %]	Ni area [mm ² and %] 1,39 mm ² – 63%	
Iron area [mm ² and %]	0,22 mm ² – 10%	
Copper area [mm ² and %]	0,33 mm² – 15%	
Fill Factor [%]	12%	
Minimum bending radius	60 mm	
	900 800 700 600 500 400 300	

ID	Feature	Value	Note
1	Overall copper plated conductor diameter [mm]	1 mm	
2	Overall Area [mm ²]	0.78 mm ²	
3	MgB ₂ area [mm ² and %]	0.09 mm² - 12%	
4	Monel area [mm ² and %]	0.36 mm ² – 46%	
5	Nickel area [mm ² and %]	0.12 mm ² – 15%	
6	Niobium area [mm ² and %]	0.10 mm ² – 13%	
7	Copper area [mm ² and %]	0.11 mm ² – 14%	
8	Copper plated conductor Fill Factor [%]	12%	
9	Twist pitch [mm]	85	Clockwise
11	Minimum bending radius [mm]	100	Corresponding to a Ic value degradation of 2% with respect to a non-bent sample.
12	Maximum allowable strain [%] at room temperature.	0.28	Same as above
11	Number of filaments	37	

MgB₂ @20 K

SUPRAPOWER design adaptation

Tape design (MRO class)

Preliminar designs considering MRO tape and wire resulting:

- both superconductors are implemented in two quite similar coils
- Performance is compatible with requeriments
- There is room to enhance the magnetic flux density in the airgap, above 1 T

Coil design	MRO Tape with 7 DPs	Wire design
Operating current	95 A	120 A
Magnetic field in the airgap	1 T	1 T
Peak magnetic field in superconductor	0.61 T	0.52 T
H coil	53 mm	170 mm
W coil	26 mm	3.72 mm
Turns	560	436
Total length	2 km	1.6 km

Efficient cryostat adaptation into existing iron yoke

Only small modification in the poles

Conclusions

- Original design in SUPRAPOWER obliges a modification of the iron yoke that inabilities to reach 1 T in the airgap
- Reducing the iron yoke, is possible to achieve specification
- A comparison between new class MgB₂ superconductors has been done, obtaining two possible conceptual design, compatible with requirements (1 T in the good field region)
- Both designs offer the potentiality of enhance the magnetic flux in airgap
- Further improvement is possibly by optimizing the iron yoke size

Future works

- SUPRAPOWER design adaptation for an optimized configuration
 - EM optimization
 - Engineering design adaptation
- Material supply and manufacturing
- Assembly
- Testing
 - Factory
 - Final site

Thank you for your attention!

SUPRASYS

Santiago Sanz Castillo Director de Tecnología y Cofundador CTO & Cofounder <u>santiago.sanz@suprasys.es</u> T +34 946 85 58 37 M +34 647 40 36 80 <u>www.suprasys.es</u> Avda. Lehendakari Aguirre, 11, 7º Dpto. 7

48014 Bilbao (Spain)

Gustavo Sarmiento Muñoz

Director General y Cofundador CEO & Cofounder gustavo.sarmiento@suprasys.es T +34 946 85 58 37 M +34 668 71 33 34 www.suprasys.es Avda. Lehendakari Aguirre, 11, 7º Dpto. 7 48014 Bilbao (Spain)