Updates on TESs for PTOLEMY project (PTL-TESs)

<u>H. Garrone</u>^{1,2}, C. Pepe^{1,2}, E. Monticone¹, M. Rajteri¹, Fiona Alder

www.inrim.it

INRiM facilities for TESs

Fabrication

Thermal evaporation of Au ,Ti. Depositions in rapid sequence.

ADR cryostat

2

Remarks

Electro-Thermal Feedback recall

Principle and useful formulas

Superconducting transition

Irwin K. D., Appl. Phys. Lett. 66 1998 (1995)

H. Garrone - Updates on TESs for PTOLEMY project (PTL-TESs)

Proximity effect without wiring

$$T_{\rm C} = T_{\rm C0} \left[\frac{d_{\rm s}}{1.13 \, d_0 \left(1 + \frac{d_{\rm s} n_{\rm s}}{d_{\rm n} n_{\rm n}} \right)} t \right]^{\frac{d_{\rm n} n_{\rm n}}{d_{\rm s} n_{\rm s}}}$$

 n_n , $n_s \equiv$ electron state densities, $\lambda_F \equiv$ Fermi wavelength, $T_{C0} \equiv$ intrinsic critical temperature, $s_n \equiv$ normal layer conductivity, t \equiv transmission coefficient.

$$d_0^{-1} = \frac{\pi}{2} k_{\rm B} T_{\rm C0} n_{\rm S} \lambda_{\rm F}^2$$

Proximity effect - wiring 1

Proximity effect - wiring 2

Proximity effect - wiring 3

of the TES implies a wider transition and, therefore, a worse energy resolution.

 $\Delta T_c = T_{cW} - T_{cTES}$

9

H. Garrone - Updates on TESs for PTOLEMY project (PTL-TESs)

T_{cTES}

Proximity effect due to the wiring

Ridder, M. L., et al. "Study of TES Detector Transition Curve to Optimize the Pixel Design for Frequency-Division Multiplexing Readout." *Journal of Low Temperature Physics* 199 (2020): 962-967.

Saturates @ L ~ $100 \mu m$

Edge effects: overhangs

REF:

Nagayoshi, K., et al. "Lateral Inverse Proximity Effect in Ti/Au Transition Edge Sensors." *Journal of Low Temperature Physics* (2022): 1-8.

Saturates @ W ~ $30 \ \mu m$

Recent design modification attempts

T_C non-uniformity in the TES:

- Edge effect (overhangs);
- Proximity effect due to the wiring.

Design solution attempts:

- Wiring of *titanium* instead of *niobium*: Pro: lower wiring T_C may reduce the transition width. Con: a lower energy gap between wiring and TES could reduce the energy resolution?
- Ring of gold that surrounds the edges of the TES: Pros: Reduction of the edge effect, Ti of the TES protected from oxidation. Con: Increased fabrication complexity due to a major number of steps.

TES structure with ring

14

Results table for sample 1 (Lito10)

Only for TESs 60x60 and 100x100

Blanket

TES

Results table for sample 2 (PTL1)

Results table for sample 3 (PTL3)

Sample name	chip	Area[µm]	T _c [mK]	δT _c [mK]	
PTL3 Ti: 15 nm Au: 30 nm Wiring: Ti	A	10x10	105.2	9.25	As sample
		20x20	100	3.5	
		60x60	97.8	1.95	
		100x100	104	1	
	В	20x20	91.5	1.3	
		100x100	93	1.3	
	С	10x10	69.4	5.3	
		20x20	68.3	1.7	
		60x60	96.5	1.8	
	F	20x20	88.4	0.9	
		60x60	87	1.3	
		100x100	88.7	1.6	

e 2

sample 1 and sample 2 : comparisons

19

Best result (sample 3 F20)

Sample 3

VS

Old good result (no ring)

Other good results (sample 2 A20 - B60)

Recent design modification attempts

T_C non-uniformity in the TES:

- Edge effect (overhangs);
- Proximity effect due to the wiring.

Design solution attempts:

- X
- Wiring of *titanium* instead of *niobium*:

Pro: lower wiring T_C may reduce the transition width. Con: a lower energy gap between wiring and TES could reduce the energy resolution? –

 Ring of gold that surrounds the edges of the TES: Pros: Reduction of the edge effect, Ti of the TES protected from oxidation. Con: Increased fabrication complexity due to a major number of steps. We noticed a reduction in the amplitude of the signal generated by photons detected by the <u>TES.</u>

Adhesion of the gold

Low adhesion of the gold to the SiN substrate. Detachment the glue could remove even the gold. Solution: from rings to bars.

Conclusions?

Conclusion: proximazed wiring

Remarks from SRON's X-ray TESs in B-fields

<u>Superconducting GroundPlane</u> (SGP) can mitigate B field effects of several tens of µT

REF:

de Wit, Martin, et al. "Mitigation of the Magnetic Field Susceptibility of Transition-Edge Sensors Using a Superconducting Groundplane." *Physical Review Applied* 18.2 (2022): 024066.

The end for now

That' all for now.

Thank you for the attention!

28

Sample 2 (PTL1) annealed

Sample name	chip	Area[µm]	T _c [mK]	δΤ _c [mK]	
PTL1 Ti: 15 nm Au: 20 nm Wiring: Ti After annealing process @ 130°C for 2 hours	А	10x10	118	2.5	- No Ring
		20x20	No Tc		
	В	10x10	116	5	I: 1 μm Ο: 2 μm
		20x20	120	3	
	С	10x10	89	2] I: 2 μm Ο: 3 μm
		20x20	107	3	

New mask for faster measurements

The new mask will allow:

- Faster transition measurements. Since almost all the TESs can be bonded in series easily.
- Faster fiber coupling. Since the mask is already divided into 9 rectangle, each of them contains 2 TESs.

30

*Not the final design

H. Garrone - Updates on TESs for PTOLEMY project (PTL-TESs)

Photoresist cylinder for TES-fiber coupling

Near future implementation. Hollow cylinder in photoresist that will:

- 1. serve to help in fiber alignment,
- 2. reduce the amount of glue under the fiber,
- partially support the fiber in the next operations.

REF: Ma, Pei-Sa, Hong-Fan Zhang, and Xingxiang Zhou. "Fiber-sensor alignment based on surface microstructures." *Optics Express* 31.1 (2023): 737-744.

Results table for PTL2

Sample name	chip	TES	T _c [mK]	∆T _c [mK]
PTL2 Ti: 15 nm	A	T10	140.8	10.9
		T20	107.4	3.1
		Т60	161.7	1.4
	В	T10	122.2	24.9
Au: 30 nm		Т20	98.4	10.7
winng. H	С	Т60	133	6.4
	F	Т20	130.5	9.4
		T100	99.4	1.8

Old best result

34