Tritium encapsulation within fullerite, calculations

Valentina Tozzini Guido Menichetti Istituto Nanoscienze – CNR, NEST–SNS, Pisa (NANO) Physics Dept, University of Pisa (Italy)

Collaborators:

Zacharias Fthenakis Luca Bellucci

NANO, Pisa NANO, Pisa

Outline

- ✓ Interaction of T with graphenes
- ✓ Our focus: hollow encapsulated fullerenes
- ✓ Nanotubes
- ✓ Fullerenes

Why graphene-based systems as tritium support?

✓ By chemical binding Tritium can be stored in

✓ But: chemical bonding creates problems for the

Graphene related materials are very light, resistant and porous and can in principle store a large amount of tritium

system	Binding strength	Env conditions	density
Vacuum, T ₂	Very strong $(\kappa \sim 9 \text{ eV}/\text{Å}^2)$	Any	Up to 0.21 g/cm ³
Vacuum, T_2^*	Less strong $(\kappa \sim 2 \text{ eV}/\text{Å}^2)$	Electronic excited state	
Vacuum, T	null	T ~0.3 K, B ~10 T	$\sim 0.5 \text{ g/m}^3$ =. 0.5µg/cm ³
T:graphene	Less strong ($\kappa \sim 1.5\text{-}4~\text{eV/Å}^2)$	Any	Up to 1.7 μ g/cm ² ~0.17g/cm ³ (graphAne)
T@fullerite	Weak	Any; No B	Up to ~0.0036 g/cm ³ = 3.6 mg/cm³
T@nanotube	Weak along the axis	Any weak B	Up to $\sim 0.02 \text{g/cm}^3 = 20 \text{ mg/cm}^3$

ATOMIC form

detection resolution

Encapsulated hollow graphenes: nanotubes and fullerenes

- ✓ Can encapsulate T
- Can be compacted in bundles (tubes) or in crystal (fullerite) to achieve quite high T density
- Nanotubes: T dimerization can be avoided, with the aid of small magnetic fields

Encapsulated fullerenes in fullerite

 Within crystal, the spin of encapsulated T can alter the relative stability of the bound/unbound state Isolated fullerene: During binding, the spin state of the system changes

Encapsulated fullerenes in fullerite

✓ ...

Project Title

Title	Structural, Electronic and magnetic properties of Tritium Encapsulated fullerite for high energy and quantum computing applications	
Acronym	SETE	
Project category	Scalable computing: Scientific use cases that require higly parallel jobs on large scale HPC architectures	

The evaluation requires HPC resources for a full multiscale approach. Obtained an ISCRA-C @CINECA for 240K GPUcore hours (Tozzini-Menichetti) to

- Evaluate the relative stability of bound-unbound states within the crystal, for different occupation
- Evaluate the effect if spin interactions on the profile
- Study the vibrational properties of the system at different temperatures
- Evaluate excited states profiles and energy loss spectra
- Study the possibility of explointing the resonance with coherent vibrational states

Summary

- Small nanotubes can store large amount of T, which could be kept in atomic form, almost free along the tube axis (with the aid of a weak magnetic field)
- T in fullerite can spontaneously live in atomic form in fullerite
- ✓ Its stability can be modulated by the intrinsic spin interaction
- The interplay with the vibrational resonances is also under study
- ✓ Within the same protocol also other system could be studied, such as nanoporous graphenes with encapsulated T or T@C60
- ✓ The study is currently in the course under a just granted HPC project SETE

