Study of bound states in Tritium decay

PTOLEMY collaboration meeting 26-27 June

Overview

• Qualitative confirmation of TRIMS experimental data

• Deeper study of β and ³*He* spectrum in PTOLEMY

• Excited ³*He* bound states

A counting problem

[PTOLEMY - PRD 2022, 2203.11228]

How to solve?

- First ingredient: change the physics!
- Trims deals with molecular **T2**, not graphene (same as Katrin)

How to solve?

- Second ingredient: look at all energies
- Trims collected data coming from the whole β spectrum, not just the endpoint!

- Yes! Ok but... why?
 - 1) Differential rates are suppressed when particles have momentum such that $\lambda p \gg 1$
 - 2) Number of configurations for bound events increases as we depart from endpoint regions

Let's see...

1) Differential rates are suppressed when particles have momentum such that $\lambda p \gg 1$.

It's the λ appearing in $\Psi(x) \propto e^{-\frac{x^2}{2\lambda^2}}$

$$d\Gamma \propto e^{-\frac{\lambda^2}{2}|\overrightarrow{p_\beta} + \overrightarrow{p_\nu}|^2}$$

$$d\Gamma \propto e^{-\lambda^2 |\overrightarrow{p_{\beta}} + \overrightarrow{p_{\nu}} + \overrightarrow{p_{He}}|^2}$$

- But if rates are suppressed when momenta increase, why don't we get the same suppression in ν endpoint region?
- Fixed the kinetic energy K_p : greater M \implies higher $|\vec{p}|$

$$(|\vec{p}| = \sqrt{2MK_p} \text{ in non relativistic case })$$

• Need to look at how big λp really is:

$$K_{\beta}^{end} \sim 18.6 \text{ keV} \implies p_{\beta} \simeq 139 \text{ keV} \implies \lambda p_{\beta} \simeq 5.9$$

 $K_{\nu}^{end} \sim 18.6 \text{ keV} \implies p_{\nu} \simeq 18.6 \text{ keV} \implies \lambda p_{\nu} \simeq 0.8$
 \implies Bound events are more likely when K_{β} is smaller
and energy is given to $E_{\nu} \sim p_{\nu}$

2) Number of configurations for bound events increases as we depart from endpoint regions

Now $Q \simeq 18.6 \text{ keV}$ can be distributed over both β and ν

Counting problem solved!

• Final results:

Looking at Ptolemy endpoint region we had: $\Omega \simeq 10^{-7}$ Improving calculations we get: \longleftrightarrow Trims data: $\Omega \simeq 0.3$ $\Omega \simeq 2.3$

We did NOT expect them to be the same, because we considered rates only for specific transitions. But they are ~ same order

Back to Ptolemy physics

• The same behaviour of the differential rates is found considering the Ptolemy case:

Helium spectrum

• Same process, but from Helium point of view!

• How to study bound ³*He* vibrational modes?

• In the past, we considered the bound ³*He* to be in the ground state of the binding potential

...what about excited states?

• After the decay, ³*He* could be still bound, but with enough energy to jump over higher levels!

[PTOLEMY - PRD 2022, 2203.11228]

What's next?

- 1) Study of potential along graphene layer
- 2) Phonons vibrational modes
- 3) Fullerenes

To better characterize bound ${}^{3}He$ wavefunction

Thank you for your attention!