PMTs Status of reconstruction code

Francesco Borra

& the PMT analysis working group: E. Baracchini, M. Folcarelli, E. Kemp, D. Marques, A. Messina, S. Piacentini

CYGNO Analysis Meeting

Coimbra, June 8th 2023

Outline

- Why is needed
- What is measured
- Method
- Calibration procedures
- Performance on Fe
- Integration with reconstruction code
- RUN2 background spectrum

Why is needed

 Integral of the waveform not a good variable for the energy (talks of David & Matteo)

• Necessity of associate **1 to 1** waveform and clusters for a 3D reconstruction

4 3 Δz [cm] 2 1 1550 0 1900 1500 1800 1450 *x* [px] 1400 y [px] 1350

Cherry picked event!

What is measured

 Charge: proportional to the light collected by the PMT.

Charge collected: integral of the waveform divided by the termination resistance:

• **Signal length**: see David and Matteo's talks

Method (1)

Measure *L*₁₋₄

Infer x, y, L

analysis:

Normalization factor

Likelihood: $p(\{x_i\}|\boldsymbol{\theta}) = \prod \mathcal{N}(\{x_i\}|\mu_i(\boldsymbol{\theta})) \longrightarrow \mu_i = \frac{L}{R_i^4}$

Reconstruction performed with a Bayesian

Method (2)

Method (3): spot-like interactions

- Find "majority 2 peak"
- Integrate 50 samples (~0.4cm resolution in *z*)
- Perform the Bayesian fit over the 4 PMTs' charges

Method (4): longer waveforms

Two approach:

- Position focused
- "Energy" focused

ADC sample (1=1.33ns)

Method (4): position focused

- Find peaks of the waveform
- Take majority 2 peaks
- **Open a window** around these peaks of 50 samples
- Fit the slice of the waveform as a spot-like interaction

ADC sample (1=1.33ns)

Method (4): "energy" focused

- Slice the waveform in 50 samples slices
- Fit all the slices of the waveform as a spot-like interaction

• Roughly 6 times slower for background runs

Calibration with the golden dataset

- Matteo's iron golden dataset
 - All waveforms were successfully reconstructed
- *x* and *y* offset is clearly visible

Performances on ⁵⁵Fe (1)

- Waveform cut:
 - Majority2 peaks == 1
 - R<800px (same as picture)
- Fit converged ~ 99.7% for the "Fe" cut

• Cluster cuts:

- sc_rms > 6
- R < 800px
- > 0.152*sc_tgaussigma > 0.3
- 0.152*sc_length < 80</p>
- > sc_width/sc_length > 0.8
- sc_integral > 1000

Performances on ⁵⁵Fe (2): distributions

Performances on ⁵⁵Fe (3)

Closest neighbour (PMT waveform assigned to the closest cluster found)

• Performance:

- ▶ 37% within 1cm
- 73% within 2cm

• To be understood:

- PMT camera coordinate transformation
- Effects of lens distortion (need spots in a wider GEM space)
- Strange behaviour on different source positions

Integration with reconstruction code

- Run the fit **within the** reconstruction code:
 - Time consuming
 - Fit still "on beta"

• Make a **Friend-tree**

• What variables do we want?

RUN2 background spectrum (1)

• "Energy" focused approach

• Cut on negative integrals

RUN2 background spectrum (2)

- Camera cuts: PMT cuts:
 - Fake clusters R < 800
 - ► R<800

- High energy underestimate on PMTs: longer tracks cut
- Why we have more lower energy events?

Conclusion

- Good performance for spot like interactions
- Coordinate conversion not understood yet —> need for proper measurements
- Background seems compatible with the camera one
- Different X-ray sources for energy calibration

actions ood yet —> need for proper

Fe different steps

Fe dataset, distance vs cluster position:

Fe dataset, difference vs cluster position:

