

sCMOS Pedestal Studies

Prepared by: Rafael A Nobrega with Bernardo D Almeida and Igor F Pains

Three setups have been used:

- (1)
 - Orca Flash
 - Orca Fusion
 - Teledyne BSI (HDR and CMS modes)
- (2)
 - Orca Fusion
- (3)
 - Thorit
 - Orca Fusion BT
 - Orca Quest

NOISE + IRON 30 ms exposure time Air Cooling

NOISE + NRAD + IRON Varying exposure time Water Cooling VGEM scanning (0.3 to 6 keV) (10 ms)

30 ms exposure time

Measurements - RMS noise

Measurements - Fake clusters

30 ms exposure time

Threshold scanning to select a threshold value per sensor \rightarrow best SNR

Table 4. Expected rate per image of fake clusters with energies higher than 0.5, 1, 2 and 3 keV.

Energy (keV)	Flash 0.4	Fusion 1.1	BSI _{HDR 1.0}	BSI _{CMS 1.3}
> 0.5	$(1.7 \pm 0.3) \times 10^{-1}$	$(3.9 \pm 1.3) \times 10^{-7}$	$(3.0\pm 0.5) \times 10^{-1}$	$(2.0\pm 0.3) \times 10^{-3}$
> 1.0	$(7.9 \pm 1.5) \times 10^{-4}$	$(1.6 \pm 0.7) \times 10^{-11}$	$(3.8 \pm 0.7) \times 10^{-4}$	$(3.1 \pm 0.6) \times 10^{-7}$
> 2.0	$(4.1 \pm 1.0) \times 10^{-8}$	$(9.8 \pm 5.4) \times 10^{-18}$	$(3.1 \pm 0.7) \times 10^{-8}$	$(1.2 \pm 0.3) \times 10^{-12}$
> 3.0	$(1.2 \pm 0.3) \times 10^{-9}$	$(1.7 \pm 1.1) \times 10^{-22}$	$(2.3 \pm 0.6) \times 10^{-11}$	$(8.8 \pm 2.8) imes 10^{-17}$

Measurements - Fake clusters 30 ms exposure time

However, energy distribution is less sensitive to threshold

Exposure times \rightarrow 100, 1k, 10k ms

MEAN comparison (WC \rightarrow -17 °C)

11

WATER Vs. AIR COOLING

RMS noise SUMMARY

mean of the RMS HISTOGRAMS

EXP. TIME	FUSION WC	FUSION AC
100 ms	3.53	3.61
1000 ms	4.76	5.52
10000 ms	9.95	13.18

- Pedestal for different exposure times (10, 30, 100, 300, 1k, 3k, 10k ms)
- Detection efficiency (VGEM scanning \rightarrow 0.3 keV to 6 keV)
 - Quest sensor under analysis

Pedestal-Mean and RMS - FUSION BT

Histogram (Mean)Image Histogram STD Map 100 Exposure Times: Mean = 100.02Mean = 2.80 100 Mean = 3.06 Mean = 100.05Mean = 3.67 10, 30, 100, 300, 1k, 3k, Mean = 100.23Mean = 100.46 Mean = 4.2910k ms Mean = 4.62Mean = 100.27 10^{-1} Mean = 100.39 Mean = 5.39 10^{-1} Mean = 7.35 Mean = 101.87 The STD almost 10^{-2} doubled(5.39) in 3k ms 10^{-2} Density 10-3 Density The Mean still around 10-100 ADC. 10^{-4} 10^{-4} 10-3 10-5 200 50 150 250 300 350 400 20 100 40 60 80 100 15 Mean (ADC count) RMS (ADC count)

Stochastic Image Analysis - Orca Fusion BT 15440

Stochastic Image Analysis - Orca Fusion BT 15440

Pedestal-Mean and RMS - QUEST

Stochastic Image Analysis - Orca Quest 15550

sensor less sensitive to exposure time

Stochastic Image Analysis - Orca Quest 15550

edges less affected

Stochastic Image Analysis - Thorit 11440

Min 2.80 | Max 7.35

Min 2.36 | Max 4.09

Min 3.48 | Max 49.28

Min 100.02 | Max 101.87

Min 199.49 | Max 201.50

Min 100.30 | Max 1174.98

Measurement of efficiency for different VGEM values \rightarrow 0.3 to 6 keV

- Datasets:
 - NRAD
 - IRON SOURCE
- Two approaches (cross-checking):
 - Based on cuts over different features and subtraction IRON NRAD
 - Based on fits applied on NRAD and IRON datasets

all these features have been selected and used to improve SNR (different cuts for different energies)

Orca Quest										
Energy	Slimness	sc_nhits >	sc_nhits <	sc_rms >	sc_rms <	sc_size >	sc_size <	sc_tgaussamp >	sc_tgaussamp <	sc_lgaussamp >
6 keV	0.4	200	800	7	20	500	1500	500	1800	500
5 keV	0.38	200	800	7	20	500	1500	500	1800	500
4 keV	0.4	200	700	7	20	400	1400	400	1600	500
3 keV	0.45	200	700	6	16	400	1300	400	1600	400
2 keV	0.55	150	600	6	15	400	1200	300	1200	300
1 keV	0.8	100	500	5	12	300	1000	200	800	200
0.5 keV	0.5	50	300	4	10	200	800	50	500	100
0.3 keV	0.25	25	200	4	9	100	500	50	300	50

FINAL HISTOGRAM \rightarrow 0.3 keV example

Cuts + Subtraction (IRON - NRAD)

26

Cut based Efficiency - # of clusters

The lower the energy the greater the # of iron spots ??????????????

Number of background clusters varies from an acquisition to another **??** (...in average)

And about the number of iron spots ??

Doing the same measurement but using a different method

Difference between background components

We have checked that this difference becomes negligible after the cuts

just another example - 6 keV

NRAD tracks affect iron spot clustering

simulated iron spots added to a real NRAD image

Efficiency Measurement - Iron losses 1 keV

NRAD tracks become weaker, affecting less iron spot clustering

simulated iron spots added to a real NRAD image

The idea is to estimate the percentage of iron loss by including simulated iron spots in NRAD images to correct those curves...

Thanks!

Measurements - Iron calibration (LEMON)

Fusion has the smallest RMS noise and tail

Border effect

- Flash \rightarrow 4 borders
- Fusion \rightarrow 2 borders
- $BSI \rightarrow asymmetric$

WATER Vs. AIR COOLING

All pixels are affected, but more strongly at the edges

38

