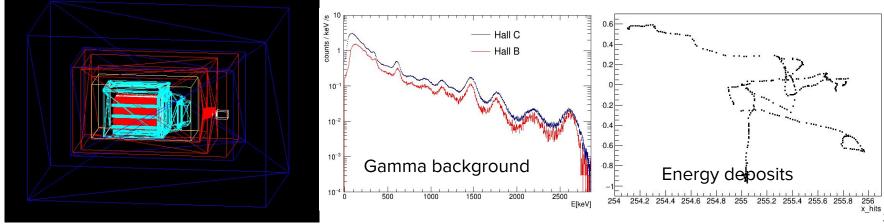


Status of data-MC comparison

Giulia D'Imperio

07/06/23 CYGNO analysis meeting, Coimbra

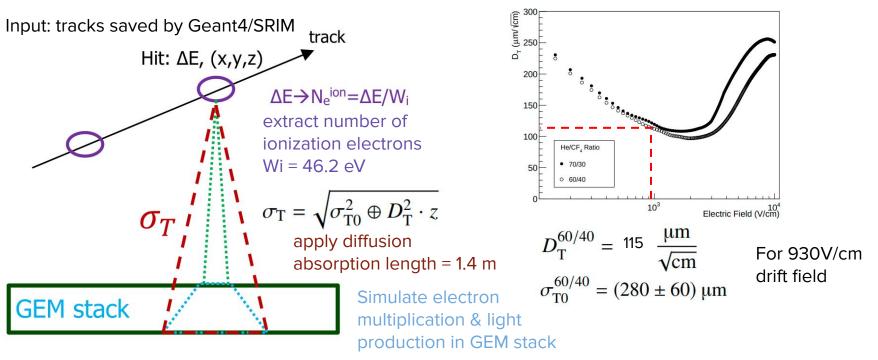
Simulation workflow


- 1. Interactions of ER/NR in the gas → tracks (x,y,z,dE) Geant4 (ER) / SRIM (NR)
- 2. Calculate electron diffusion in CYGNO gas
- 3. Simulation of primary electrons + transport to the GEMS
- 4. Simulation of GEM multiplication with saturation effect
- 5. Simulation of light production
- 6. Simulation of the camera / PMT

detector simulation (digitization)

Garfield

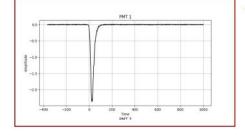
Geant4 simulation

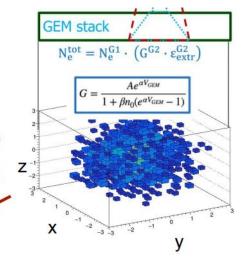

- Input:
 - geometry of the setup and materials
 - radioactivity of materials and surroundings
- Output:
 - energy deposits inside the gas (x,y,z, dE)

Giulia D'Imperio - Analysis meeting Coimbra - 07/06/23

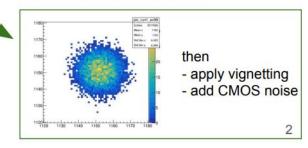
Electrons simulation

Github repository: https://github.com/CYGNUS-RD/digitization


Simulation of photodetectors


P. Meloni

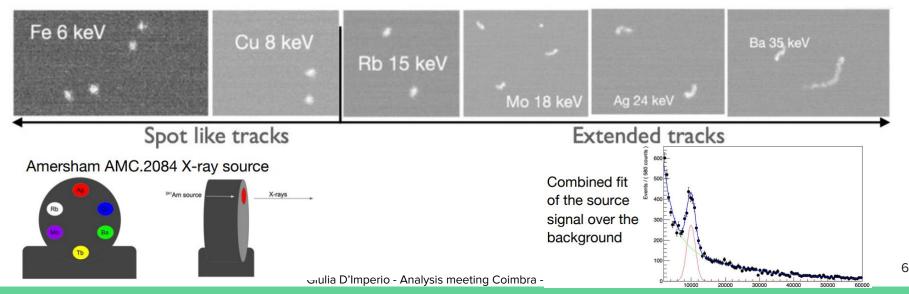
- convert z into t (with drift velocity)
- for each voxel (x,y,t, N) propagate each photon to each PMT
- 4. generate PMT waveforms according to number of hits at given times



σ_{T_0}

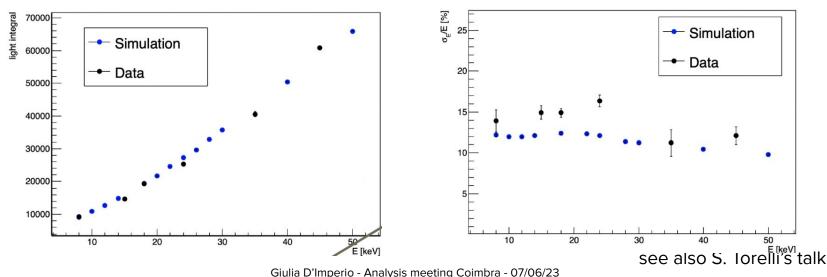
G → saturated gain as a function of V_{GEM} Parameters A, beta optimized using ⁵⁵Fe scan vs V_{GEM} and z n0 is the number of electrons in each voxel

apply electron-photon factor
apply acceptance factor omega
apply photon-counts factor
project along z (drift direction)


After all these steps MC has the same exact format of data and can be processed with reconstruction code

Giulia D'Imperio - Analysis meeting Coimbra - 07/06/23

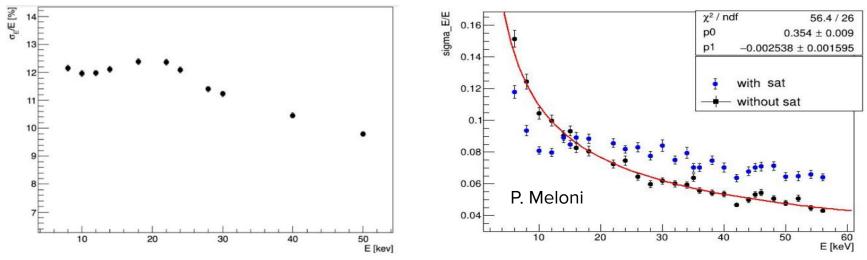
Data/MC comparisons using x-rays source


Study of linearity and energy resolution overground performed with different X-Ray source:

- 55Fe-source for 6 keV;
- Different materials (Cu, Rb, Mo, Ag, Ba, Tb) irradiated by a ²⁴¹Am-source for higher energies; 55Fe on a gypsum (Ca) target for 3.7 keV
- Simulation: ER in LIME at energies corresponding to the x-rays

Energy response and resolution

- Parameters of the digitization, including saturation model tuned for ⁵⁵Fe (6 keV) and freezed
- Digitized MC is reconstructed with the same code used for the data
- Energy response is very well reproduced
- Energy resolution is reasonably reproduced
 - does not follow the expected $^{\sim}1/sqrt(E) \rightarrow saturation$, other effects?



Energy resolution checks without noise

Same plot of previous slide (MC)

- 10000 MC events per energy point
- electronic noise included, reco applied

- 500 MC events per energy point
- NO electronic noise, NO reco, simplified analysis

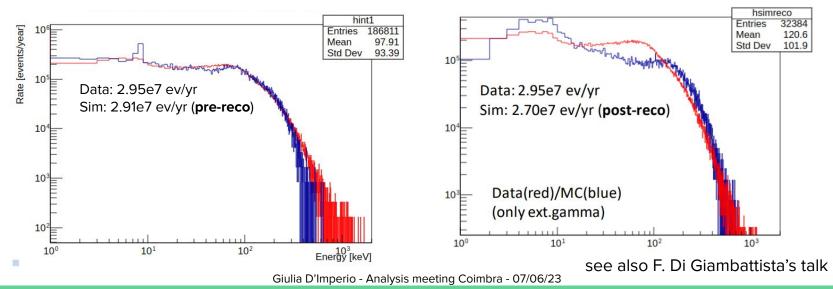
- Shape qualitatively reproduced in simulation without noise (but with saturation)
- Noise probably contributes with an offset

Data/MC comparisons for LIME background

- External background: flux of 0.56 gammas/cm²/s, spectrum from Nal measurements by SABRE
- Internal background: radioactivity of all materials (acrylic box, field cage, cathode, ecc...)
- Data taken with LIME underground (runs 1, 2 and 3)

Summary of LIME rates (ER) in MC(*) and data(**)

	External	Internal	Shield	Tot MC	data
	Rate Hz	Rate Hz	Rate Hz	Rate Hz	Rate Hz
No shield (run 1)	35.83	0.23	0.00	36.15	35
4 cm Cu (run 2)	0.84	0.23	0.02	1.09	3.5
10 cm Cu (run 3)	0.06	0.23	0.02	0.31	1.3
Full (water+Cu)	0.02	0.23	0.02	0.26	-

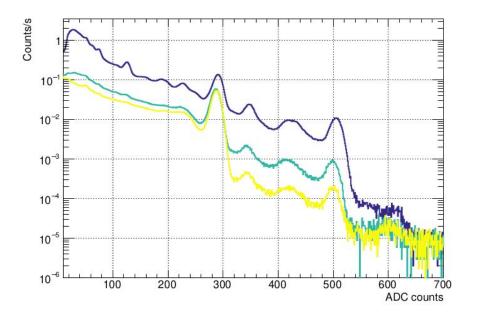

(*) Geant4 rates form <u>this presentation</u>. No digitization + reconstruction, only "MC truth" (**) from <u>this summary</u>. Rates measured with PMTs, no dead time correction

Giulia D'Imperio - Analysis meeting Coimbra - 07/06/23

Comparison of energy spectra (LIME run 2)

Comparison of energy spectra:

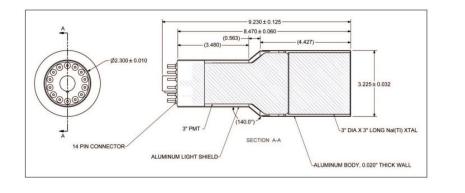
- Data of LIME run 2 are processed with official reconstruction code
- Left: MC truth (no digi+reco), Right: MC truth + digi + reco (same code as data)
- Rates for data are obtained counting reconstructed tracks and considering data taking time (no dead time correction)

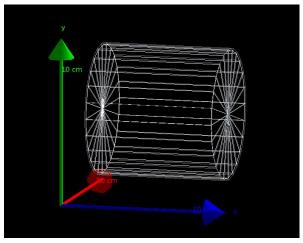

10

Data/MC comparisons using Nal detector

- To make a meaningful comparison of rates between data and MC:
 - take into account dead time in data
 - validate Monte Carlo
- MC validation
 - validate the "input" of the simulation
 - → previous measurements with Nal suggest difference of factor ~2 in gamma background between LNGS Halls
 - validate the simulation code

Nal data (3" crystal)

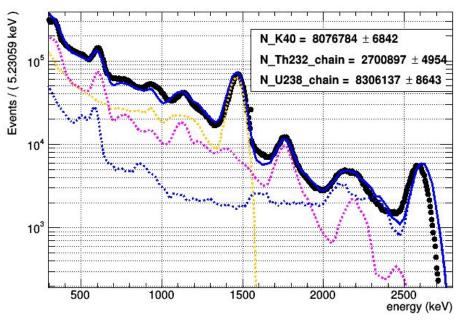

- Direct measurements with Nal in LIME experimental area
- Raw data without shield (blue), 4 cm Cu shield (green), and 10 cm Cu shield (yellow)



- Previous measurements by SABRE made with a Nal larger detector (4"x 4" x 16")
- Difficult to compare directly these spectra (and rates) with previous Nal or LIME MC because:
 - → different detectors
 - non-negligible internal background component, especially when we compare shielded spectra
- → need a MC simulation of the Nal

Simulation of Nal crystal

• 3"x3"cylindrical crystal with 0.5 mm Aluminum case



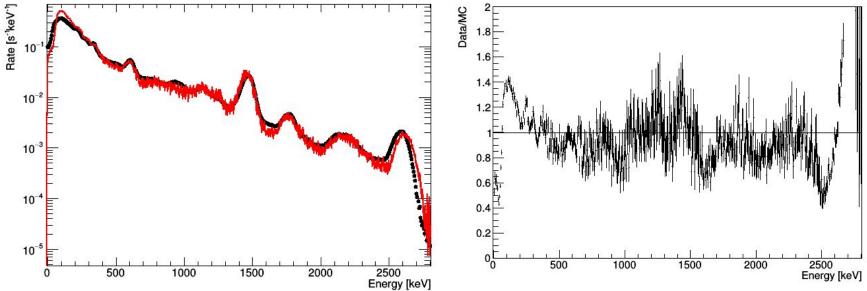
• Simulate decay of ⁴⁰K, ²³⁸U chain and ²³²Th chain (gamma emitters)

Fit data with simulated spectra (rock sphere)

- Use dataset outside shielding (in LIME control room), ~6 days livetime
- Fit range from 300 keV to 2800 keV

Floating	Parameter	FinalValue +/- E	rror
N	N_K40 Th232 chain	8.0768e+06 +/- 2.7009e+06 +/-	
-	N_U238_chain	8.3061e+06 +/-	8.64e+03

Corresponding activities in the LNGS rocks

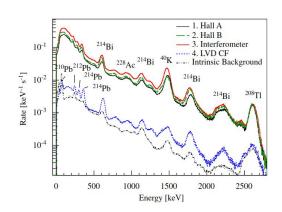

- ⁴⁰K → 93.5 Bq/kg
- ²³⁸U → 7.9 Bq/kg
- ²³²Th → 4.1 Bq/kg

Counting gammas entering the hall

- 40 K 0.21 gammas/cm²/s
- ²³⁸U → 0.25 gammas/cm2/s
- 232 Th 0.12 gammas/cm²/s
- Total 0.58 gammas/cm²/s

Data/MC comparison

- Comparison on the full range (fit range [300-2800] keV)
- Agreement is quite good, considering statistics uncertainty of MC



Giulia D'Imperio - Analysis meeting Coimbra - 07/06/23

Comparison with literature

M. Haffke et al. / Nuclear Instruments and Methods in Physics Research A 643 (2011) 36–4138 https://doi.org/10.1016/j.nima.2011.04.027

Nal(TI) cylindrical detector 3", very similar to our detector

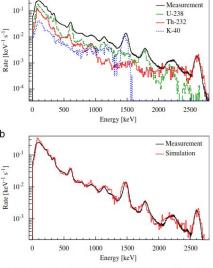


Fig. 3. Gamma spectrum of LNGS hall A (location 1). Top: measured data and the individual contributions of 2³⁸U, ²²²Th, and ⁴⁰K from of a Monte Carlo simulation of the setup. Bottom: measured data and Monte Carlo sum spectrum agree very well over a very large energy range. Table 1

Gamma flux below 3000 keV, measured at several LNGS underground locations with a 3 in. Nal(Tl) detector.

Location	Time	Flux $(s^{-1} cm^{-2})$	
1. Hall A	3 d	(0.28 ± 0.02)	
2. Hall B	3 d	(0.33 ± 0.33)	
3. Interferometer tunnel (XENON building)	2 d	(0.42 ± 0.06)	
4. LVD Core Facility	10 d	(0.005 ± 0.001)	

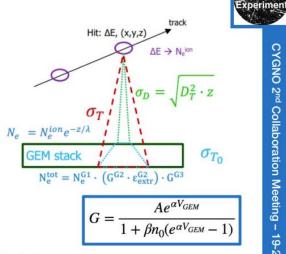
Table 2

Gamma activities of the primordial isotopes (in Bq/kg) as determined from measurements with a 3 in. Nal(Tl) detector.

Location	²³⁸ U	²³² Th	⁴⁰ K
1. Hall A	11.7 ± 3.9	14.8 ± 2.8	62 ± 14
2. Hall B	19.6 ± 4.9	13.2 ± 2.7	52 ± 10
3. Interferometer	37.8 ± 7.3	10.9 ± 2.8	206 ± 37
4. LVD CF	1.2 ± 0.4	$\textbf{0.34} \pm \textbf{0.07}$	1.04 ± 0.32
Concrete (floor) ^a	26 ± 5	8 ± 2	170 ± 27
Concrete (wall) ^a	15 ± 2	3.8 ± 0.8	42 ± 6

^a These concrete samples taken from the interferometer tunnel were screened in a HPGe detector in order to directly measure the radioactive contamination. They are to be compared to the Nal(TI) results for location 3. *interferometer*.

Giulia D'Imperio - Analysis meeting Coimbra - 07/06/23


Summary and conclusions

- Simulation of ER tracks and digitization of images (validated with x-rays data)
 - very good agreement in the energy response
 - reasonable agreement in the energy resolution
 - other shape variables (track length, density..) could be studied more systematically
 - recently PMT simulations has been integrated in the code → to be validated
- Simulation of NR not covered in this summary because at the moment we have no data to make validation (AmBe data taking with LIME @LNGS foreseen this year)
- **LIME background** simulations with Geant4 completed, now proceeding with full digitization + reconstruction
 - preliminary data/MC comparisons for LIME Run2 look promising
 - Run 3 data can be used to validate internal background
- **Simulations of the Nal detector** allow to deconvolve the gamma spectrum and give a more precise input for LIME simulations.

Extra slides

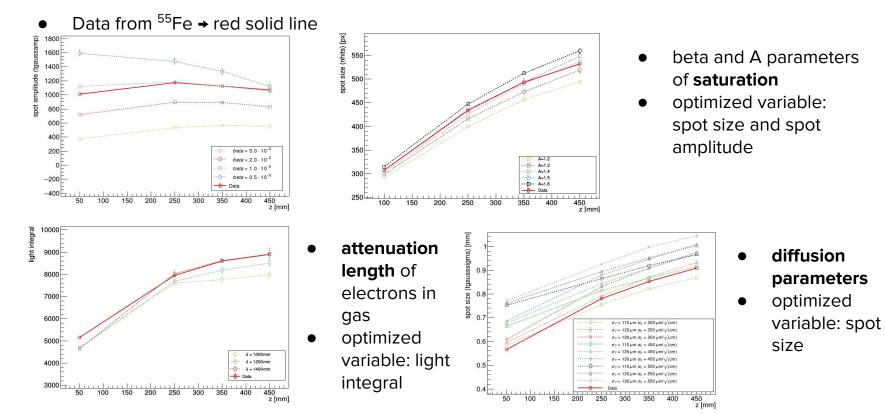
Simulation parameters

W_i	46.2 ev/pair	Effective ionization potential
G	$G = 0.0347 \cdot e^{0.0209 \cdot HV}$	Single GEM gain
E	$\varepsilon = 0.873 \cdot e^{-0.002 \cdot HV}$	Single GEM Extraction efficiency
k	0.07 ph/e	Ligth yield
Ω	$\frac{1}{(4(\delta+1)a)^2} = 1.19 \cdot 10^{-4}$	Sensor optical acceptance (LIME)
8	$\left(\frac{image\ size}{sensor\ size}\right) = \left(\frac{346\ mm}{14.976\ mm}\right)$	For ORCA Fusion on LIME
а	0.95	aperture

CZGN

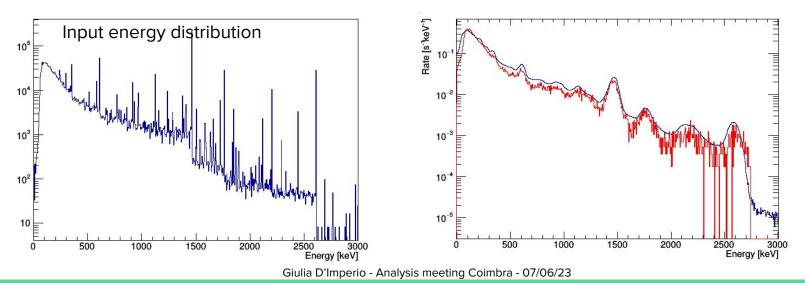
CYGNO 2nd Collaboration Meeting - 19-20 December 2022, Rome

5


Gas related parameters were checked/tuned with data

σ_{0T}	350 µm		λ	1 m	Absorption lenght
σ_{0L}	260 µm		β	10 ⁻⁵	Saturation parameters
σ_T	110 $\mu m/\sqrt{cm}$	Diffusion parameters	A	1	
σ_L	100 $\mu m/\sqrt{cm}$		$\Delta x, y_{vox}$	0.13 mm	
			Δz_{vox}	0.1 mm	

NFN


F.Petrucci – Summary of detector response simulation

Optimization of digitization parameters

Closure test

- Generate gammas according to the true energy distribution
- Isotropic generation from a spherical surface of R=21 cm (10⁷ events)
- Normalized to 0.58 gammas/cm²/s, Nflu \rightarrow only gammas entering the sphere
 - → t_eq = Nflu/(Flux Area) = 1084 sec
 - \rightarrow MC rate is in agreement with data within 15%

