

Studies of the response stability as a function of the time and gas humidity, density and pressure

> Rita Antonietti Coimbra, Jun 7 2023

Outline

- Studies of the response stability with data taken at
 - LNF as function of :
 - Time;
 - Pressure;
 - LNGS;
 - Run1 as function of:
 - Pressure;
 - Gas flow;
 - Run3 as function:
 - Pressure;
 - Humidity

LNF

- Data are reconstructed using DBSCAN
- The ⁵⁵Fe peak in the integral distribution is fitted with exp + exp + Cruijff function and the mean defines the iron peak

- The ⁵⁵Fe peak of each run are normalized to the first run
- The normalised $^{55}\mathrm{Fe}$ peak is plotted in function of the pressure and a linear fit is performed
- The light yield decreases of about 0.6% per millibar

LNGS - Run1

- The $^{55}\mathrm{Fe}$ source is placed 25cm far from the GEMs
- HV = 420 V
- Expoure Time = 0.3 s
- Cut suggested by Emanuele are apllied:
 - sc_integral > 1500
 - 0.15*sc_length< 50
 - $sc_rms > 6$
 - sc_tgausssigma/sc_lgausssigma > 0.6
 - sc_tgausssigma/sc_lgausssigma < 1.1</p>
 - R<900
- The integral distribution is fitted with the Cruijff function
- The data are taken with different gas flows:
 - 1 l/h
 - 3 l/h
 - 10 l/h
 - 20 l/h

- The LY decreases increasing the pressure
- The number of ⁵⁵Fe cluster is costant
- light yield decrease of about 0.7% per millibar

10 l/h cut clu

Std Dev x 47.05

Std Dev y 0.07679

132

5649

2.124 5

-2.5

2

1.5

0.5

run

Entries

Mean x

Mean y

There are three different region with gas flow 20 l/h

20 2 l/h cut

41

5138

7793

15.18

0.8

0.6

0.4

0.2

41

0.9051

0.9675

0.001927

0.06373

220 / 26

1.5

0.5

9.653 ± 5.711

 -9.592 ± 6.309

513.4

121.8/35

 -7.806 ± 5.74

4.79e+04 ± 2.949e+04

run cut

pres 20_2 l/h norm_cut

Entries

Mean x

Mean y

Std Dev x

Std Dev y

Lime pressure cut [Bar]

 χ^2 / ndf

p0

p1

Entries

Mean x

Mean v

Std Dev x

Std Dev y

χ² / ndf

p0

p1

- The LY decreases increasing the pressure
- The number of ⁵⁵Fe cluster is costant
- light yield decrease of about 0.7%, 0.9% and 0.4% per millibar

LNGS - Run3

- Runs taken in exam: [17400 20415]
- Period: [05 May 2023 25 May 2023]
- HV = 440 V
- Exposure time = 0.3 s

The daily calibration data with the 55 Fe source are skiped (where the source is placed every time at different distance from the GEMs)

In some of the runs the $^{55}\mathrm{Fe}$ source is placed 25 cm far from the GEMs and the peak is fitted

The **green region** is defined after the signal of the ⁵⁵Fe source in order to check a "safe" region

In the **green region** I defined:

- LY -> the average between 15k and 150 k
- Sc_int_post -> the number of cluster with intenity between 15k and 150k

Number of cluster and LY vs run number

The number of cluster and the LY is not costant

13

Number of cluster and LY vs humidity

Increasing the humidity -> the LY and the number of cluster decreases

The **red region** is defined where there is the signal of the 55 Fe source

In the **red region** I defined:

- Sc_int -> the number of cluster before the ⁵⁵Fe peak between 1k - 3k in order to check the background stability
- ⁵⁵Fe peak -> the mean of the Cruijff function fit

15

Number of cluster

The number of cluster increases increasing the humidity

Focus on region between 1k and 3k

-> The number of cluster betwenn 1k and 3k is increased

Watching the position of the cluster...the number of cluster increased increasing the humidity

Run 17400

Run 19650

⁵⁵Fe peak

The cut are applied to the integral distribution and the ⁵⁵Fe peak is fitted by the Cruijff function

10

Comparison between ⁵⁵Fe peak and LY

The ⁵⁵Fe peak seems to follow the behaviour of the LY It could be a variable to check

Conclusions

- At LNF and Run1 the light yield decreases of about 0.6% per millibar;
- From the Run1 the minimum gas flow is 3 l/h;
- In Run3 the action of the humidity is studied and it increases the backgroud;
- In Run3 the LY increases, increasing the LY, differently than the Run1;