PEROV_XRAD project: R&D for radiation detectors based on Organo-Metal Halide Perovskites

Consiglio di Laboratorio 6 July 2023

Marianna Testa (LNF-INFN)

1

- Participants structures:
 - LNF, A. De Santis RL
 - Universita' di Trento TIFPA, Lucio Pancheri RL
 - CNR-NANOTEC
 - Dip. Ingegneria Elettronica di Tor Vergata
 - Dip. Chimica Universita' di Milano
- Collaborazione esterna: ENEA

Organo-Metal Halide Perovskite

2

- **Organo Metal-Halide Perovskites (OMHP)** are a class of hybrid organic-inorganic semiconductor materials with a perovskite unit-cell structure ABX₃ with
 - $A = CH_3NH_3^+, B = metallic cation (Pb^{2+}),$ X= halide anions (Cl⁻, Br⁻, l⁻)
- **Opto-electronic properties combine** advantages from organic and inorganic semiconductors

- Intense R&D in the last decade
 - OMHP are emerging as new generation photovoltaic material
 - promising candidate
 - large area and flexible sensitive photodetectors
 - More recently for radiation detection

Organo-Metal Halide Perovskite properties

OMHPs combine the advantages of inorganic and organic semiconductors.

Organic semiconductors:

- Disordered system
- Localized electronic states
- Hopping transport \Rightarrow low mobility
- Low cost, low temperature processing
- Can be solution processed
- Scalable to large area

Inorganic semiconductors:

- Ordered periodic crystal ⇒ band structure
- Delocalized Bloch states
- band transport ⇒ high mobility
- Usually wafer based technology
- Costly, high temperature processes

		Silicon	CH ₃ NH ₃ Pb(I,Br) ₃
Density		2.33 g/cm ³	4.15 g/cm ³
Band gap (eV)		1.12 (indirect)	1.5-1.6 / 2.24 (direct)
Mobility (cm²/Vs)	electrons	1400	< 70/190
	holes	450	< 160/220
Absorption (cm ⁻¹)		< 104	> 4x10 ⁴
Threshold energy for impact ionization (eV)		1.2	~2 / 2.5 (estimated)
Mean free path (nm)		≤ 100	~100 (theory)

• band gap tunable changing halide (I,Br,Cl)

contain highly mobile defects and have instabilities issues

Many features of interest for visible light detection and Radiation detection

Halide Perovskite for ionizing radiations

• The typical composition of HP contains heavy elements (Cs, Pb, Ag, Bi, Sn, I, Br) with atomic numbers in the range of 47-82, larger in comparison to widely used X-ray absorber - CZTS (max atomic number is 52).

Linear attenuation coefficient as a function of photo energy for several materials including halide perovskite Adapted from (*)

Eager et al.	Adv.	Mater.	2018.	1800691

Material	h^+ effective mass $[m_e]$	e^- effective mass $[m_e]$	$\mu_{\rm h+}[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$	$\mu_{\rm e-}[{\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}]$	
Si ^{b)}	0.54 ^[109]	0.32 ^[110]	500 ^[109]	1500 ^[110]	
GaAs ^{b)}	0.53[113]	0.06 ^[113]	400 ^[113]	8000 ^[113]	
CdTe ^{b)}	0.72[115,116]	0.11[115,116]	100 ^[117]	1100[117]	
CuInS ₂	_{≈5}][120]	0.16 ^[120]	≈20 ^[120]	≈150 ^[120]	
MAPbI ₃	0.26 ^[122, 123]	0.23 ^[122, 123]	≤160 ^[124]	≤70 ^[124]	
MAPbBr3 ^{c)}	0.15 ^[127]	0.25 ^[127]	≤220 ^[128]	≤190 ^[129]	

- (μ x τ) product from 10⁻⁷ to 10⁻² cm²/V
- The typical values of the bulk resistivity for HPs exceed the level of 10⁷ Ohm.cm (300K), good signal/noise ratio

• Self Healing

(*)Wei & Huang, J. Nat Commun 2019, 10, 1066; Del Sordo et al. Sensors 2009, 9, ; H.M. Thirimanne et al. Nature Comm 2018, 9, 2926

PEROV_XRAD: First Goal

- Prototypes of multi-pixel imaging devices
 - three benchmark thickness in the range of O(10)-O(100) mm
 - target detection of charged particles, X-rays and gammas
- Microfluidics technology: already developed in PEROV project
- for PEROV_XRAD:
 - multi pixel
 - higher thickness

PEROV_XRAD: First Goal

- Comparison with bulk high purity crystals
- Already developed for PEROV project
- Sensitive to:
 - high energy charged particles
 - Demonstrated at Test Beam at BTF
 - Xray
- LNF Facilities to be used
 - Xray tube (LEMRAP lab)
 - BTF

Perovskite Radiation Hardness: State of Art

Adv. Material 2016 10.1002/adma.201603326

- Solar Cell thin perovskite films
- 68 MeV proton flux 10¹³ p/cm²
- Damage thr. much larger than commercial silicon-cell
- Self-healing of perovskite
 - Displaced atoms migrate in lattice and passivates defects

ACS Appl. Electron. Mater. 2023 10.1021/acsaelm.2c01406

- Bulk Crystal 2×1.5×1 mm³
- 3MeV protons flux of 7.3×10¹³ p/cm² (1MGy)
- Self-healing : performance recovered within hours

Perovskite Radiation Hardness: State of Art

PEROV_XRAD: Second Goal & Synergy

- Second Goal: Study of the eventual presence of self-healing after radiation exposure
- Collaboration with ENEA Frascati
- Granted beam time at PARTREC (NL) within RADNEXT call

- Strong synergies with the funded PRIN project "HyPoSiCX: Hybrid Perovskite on Silicon CMOS X-ray Detectors":
 - the feasibility of a hybrid X-ray detector structure combining a perovskite absorption layer and a CMOS silicon active layer

SYNERGY: X-ray irradiation unit with ISO reference fields

- Medical fluoroscopy tube 40-100 kV, 1 mA, recently established at LEMRAP
- In-beam dose rate up to Gy/h
- In order to have REPRODUCIBLE X spectra, the ISO reference qualities will be implemented. This means:
 - □ Using standardised voltage and filtration (ISO 4037)
 - □ Measuring the Dose in air with a spherical air-filled ion-chamber
 - □ Monitoring real-time the tube output with transmission air-filled air chamber
 - □ Measuring the energy distribution of the beams
- What we have:
- X-ray equipment fully operational
- Filtrations
- A self-built spherical ion-chamber
- What we need:
- Build the transmission chamber
- X-spectrometer CZT 0.5 cm³ from RITEC
- Calibrate the spherical chamber

Financial request for 2024

	Scope	Type of request	Cost
LNF	 Chemicals ArduSipm Calibration ionization chamber Xray spectrometer 	Consumables	13 k
LNF	 Multi-channel analyser and digitalizer 	Equipment	12.6 kE (offer)
LNF	Bologna for calibrationLecce for crystal growth	Travel	2 kE

- Possible variation of ~30%
- For 2025 10 kE expected

FTE

LNF	FTE	Activity
M. Testa (RN)	0.2	Coordination, testing
A. De Santis (RL)	0.3	Testing, Radiation hardness
G. Tinti	0.1	Testing Xrays
C. DiGlulio	0.1	BTF support, analysis from BTF
L. Foggetta	0.2	BTF support, analysis from BTF
N. Di Giovenale	0.1	BTF support, analysis from BTF
A. Russo	0.2	Xray tube characterization in LEMRAP lab

FTE

Associate LNF		FTE	Activity
CNR-NANOTEC	I. Viola	0.3	Crystal growth through microfluidics and dewetting technique, Photo- luminiscuence
CNR-NANOTEC	Mastria, Zizzari Bianco,	Tot 0.3	Crystal growth through microfluidics and dewetting technique
Dip. Ing. Elettr. Tor Vergata	F. Matteocci	0.2	Substrate pattern design and realization, contact deposition
Dip. Ing. Elettr. Tor Vergata	M. Auf der Maur	0.2	Modelling, data analysis
Dip. Chimica Universita' di Milano	S. Rizzato	0.2	Bulk crystal growth
CNR- Soft Matter	S. Sennato	0.1	Morphology, SEM, AFM
ENEA	Antonino Pietropaolo (ENEA)	0.2	Xray tube setup and calibration in LNF LEMRAP lab (Bedogni)

Stima richieste ai servizi 2024

		Activity
SEA	2MU	PCB design and realization, laboratory support, manual wire bonding
Officina	1MU	3D printing for mechanical supports

Backup

PEROV: Overview of CH₃PbBr₃ crystal growth

Technology and Thickness	Pro	Contra
Film 300 nm thickness	 large area small transit time due to low thickness flexible substrate 	 polycristalline grain boundaries large variability between samples
Micro channels 2-6 microns realized	 large flexibility in dimension moderate area pixelization flexible substrate Deposited directly on substrate 	 need high optimization of parameters (pressure, temperature)
Single crystals Up 0.5 cm realized	 ideal for single crystal large dimension, up to O(1) cm³ low defects 	 No scalability to large area systems Need to be cut mechanically for low thickness

Film-based devices: application for radiation detection

- Film devices can be used in combination with a scintillator (eg LYSO)
- Film not suitabble if sensitivity to single photon required (SiPM have gain ~10⁶)
- If large areas need to be covered, light intesity is high and timing performance not stringent, films are good candidate

Micro-wires on patterned substrate

Microfluidics-assisted technique to realize a controlled growth of OMHP single crystals, in the form of microwires, directly on a conductive patterned substrates W x L x H = 150 μ m x 500 μ m x 6(2) μ m

18

Xray diffraction

SEM

b)

Large Single crystal

- Dimensions up to 1.0 x 1.5 cm² and up to 0.5 cm thick down to 300 µm by cutting the crystals along one of the {100}cubic planes
- Device realized with Indium Tin Oxide / CH₃NH₃PbBr₃ / Au
- Stable response measured
- Due to large thickness, suited for radiation detection (X-rays, charged particles)

G. Tinti (LNF)

Charged particles detection

- Test Beam performed with electrons of 400 MeV at Beam Test Facility at LNF
- Bunch of 10 ns, 3.5 mm width
- Beam multiplicity from 1 to 1000 measured from downadstream calibrated calorimeter
- Sensitivity down to single particle

- Observed cosmics rays passying through the crystal
- Similar response as single electrons, as expected (MIP)

Deposited patent 102023000012477

With help of G. Papalino, G. Felici. A. Paoloni (LNF) $_{20}$

Perovksite on CMOS for ionizing detection

- Goal: the feasibility of a hybrid X-ray detector structure combining a perovskite absorption layer and a CMOS silicon active layer
 - Principle: X-ray-generated electrons in the perovskite layer are transferred to silicon and collected by low-capacitance sensing diffusions coupled to in-pixel readout electronics
- The CMOS chips with an area of the order of 1cm² are available from ARCADIA INFN project

- On going activity:
 - Test on deposition of perovskite microchannels through microfluidics technique on CMOS substrates with aluminium pads, used as passive substrates

Figure 1. Simplified cross section of the proposed hybrid detector

PRIN 2022 project granted

HyPoSiCX = Hybrid Perovskite on Silicon CMOS X-ray Detectors L.Pancheri, M. Testa, I.Viola

Perovksite on CMOS: Microfluidic-assisted growth

- High <u>crystalline quality</u> of each single crystal (SC);
- **Controlled SC <u>dimensions</u>** from 500 nm up to 200 μm;
- High <u>aspect ratios</u> for large area devices;
- Growth directly on the device interface;
- Tunability of precursor composition;
- Flexibility in the SC shapes.

Confocal z-stack on a single crystal grown on the chip pad. Dotted lines indicate pad's position.

Electronic/Optical Properties

Material	h ⁺ effective mass [m _e]	e [–] effective mass $[m_e]$	μ_{h+} [cm ² V ⁻¹ s ⁻¹]	$\mu_{\rm e-}[{\rm cm^2V^{-1}s^{-1}}]$
Si ^{b)}	0.54 ^[109]	0.32[110]	500 ^[109]	1500[110]
GaAs ^{b)}	0.53[113]	0.06 ^[113]	400 ^[113]	8000 ^[113]
CdTe ^{b)}	0.72 ^[115,116]	0.11[115,116]	100 ^[117]	1100 ^[117]
CuInS ₂	_⇔ [120]	0.16 ^[120]	≈20 ^[120]	≈150 ^[120]
MAPbI ₃	0.26 ^[122, 123]	0.23 ^[122, 123]	≤160 ^[124]	≤70 ^[124]
MAPbBr3 ^{c)}	0.15 ^[127]	0.25 ^[127]	≤220 ^[128]	≤ 1 90 ^[129]

Egger et al. Adv. Mater. 2018, 1800691

Electronic properties are aligned with conventional semiconductors and much better than typical solution process organic semiconductors.

