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[] Alkali metals [] Halogens

group [[] Alkaline-earth metals [_] Noble gases

L [[] Transition metals [] Rare-earth elements (21, 39, 57-71) L=
1 e —— and lanthanoid elements (57-71 only) 2

H 2 13 14 15 16 17 | He
3 2 [C] other nonmetals [C] Actinoid elements 5 6 7 8 9 10

Li | Be B C N (o) F | Ne
1 12 13 14 15 16 17 18
Na | Mg | 3 4 5 6 7 8 9 10 11 12| A [ Si| P S | Cl | Ar
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K [Ca|Sc | Ti V |Cr|(Mn|Fe |Co| Ni [ Cu|Zn  Ga|Ge | As | Se | Br | Kr
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Rb|Sr| Y | Zr [Nb | Mo|Tc |Ru | Rh ([Pd |Ag | Cd | In | Sn | Sb | Te | Xe
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Cs| Ba|lLa|Hf | Ta| W |Re|Os | Ir | Pt | Au|Hg | Tl |Pb| Bi [ Po | At | Rn
87 88 89 104 (105 |106 |107 (108 |109 |110 (111 [112 |113 (114 |115 |[116 [117 [118
Fr | Ra|Ac | Rf |Db | Sg | Bh |[Hs ([ Mt | Ds | Rg |Cn |Nh | FI [Mc | Lv | Ts | Og

lanthanoid series 6

actinoid series 7

58 59 60 61 62 63 64 65 66 67 68 69 70 71
Ce | Pr |[Nd ([Pm |Sm | Eu | Gd | Tb ([Dy | Ho | Er | Tm | Yb | Lu

90 91 92 93 94 95 96 97 98 99 100 (101 [102 |103
Th |Pa| U |[Np|Pu | Am |Cm Bk | Cf | Es |Fm | Md | No | Lr
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Big-Bang Nucleosynthesis
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Big-Bang Nucleosynthesis
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Stellar Nucleosynthesis
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Stellar Nucleosynthesis INFN
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S- and r-process Nucleosynthesis
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S- and r-process Nucleosynthesis

[ Akali metals [ Halogens
group [ Akaline-earth metals  [[] Noble gases
! [ Transition metals ] Rare-earth elements (21, 39, 57-71) 18
1 0] Other metal and lanthanoid elements (57-71 only) 2
H| 2 Sl 13 14 15 16 17 | He
3 2 [ other nonmetals [ Actinoid elements 5 G 7 8 9 30
Li | Be B C N (0] F | Ne
1 |12 13 |14 |15 [16 |17 |18
Na|Mg| 3 4 5 6 7 8 9 10 11 12 | Al | Si P S | Cl| Ar
19 |20 |21 [22 A Z
K |Ca|Sc| Ti 151 173
37 [38 [39 |40 Sb —~ O Sb
Rb | Sr | ¥ | Zr 112 112 15 e T TE T o o 22 124
55 |56 |57 |72 Sn - 3— -%— -8— -g——' Sn
Cs | Ba| La | Hf 113 15 [
5 EU* N n " Nuclear reactions
Fr | Ra | Ac | Rf 110 T e s I [~ [116 5
oo [Helelolele [ | (1 )
%, beta decay (B)
58 10 *e e
lanthanoid series 6 Ag| —@
Ce
% N ——@) neutron capture
actinoid series 7 Th ) \_ Y,

Nuclear Physics at EUPRAXIA - CdL Preventivi, July 6th, 2023

INFN

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali di Frascati

10



Solar system abundances
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Figure 1.1: Solar abundance distribution normalised to Silicon at 10°, adapted from Lodders 2003. The
peaks in the distribution show the signatures of the different processes. The first peak around helium results
from the primordial nucleosynthesis. The second peak around iron originates from nuclear statistical
equilibrium and the following double peak structures from neutron capture processes.
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Fusion processes: light elements
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Fusion processes: elements up to Fe INFN
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Logarithm of the relative
energy output (¢) of proton-
proton (PP), CNO and Triple-

o fusion processes at different
temperatures (T). The dashed
line shows the combined
energy generation of the PP
and CNO processes within a
star. At the Sun's core
temperature, the PP process is

more efficient.
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https://en.wikipedia.org/wiki/Logarithm
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https://en.wikipedia.org/wiki/CNO_cycle
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Fusion processes: heavy elements INFN
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Slow neutron capture process (s-process)
(*] Occurs in very old stars over millions of years. Elements
are released into the universe at the end of the star's life.

Neutron U bl |
O nstable nucleus Elcciron

decays in 1-100 years
° Q

o\ / /

i~
r?&c?lrgic, Neutron Repeat...
capiure Potentially
iacteactive 100-100,000 years
nucleus

Picture from https://knowablemagazine.org/article/physical-
world/2018/crash-stars-reveals-origins-heavy-elements
Nuclear Physics at EUPRAXIA - CdL Preventivi, July 6th, 2023 14



Fusion processes: heavy elements INFN
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Rapid neutron capture process (r-process)
O Occurs in the debris ejected from a neutron star merger.
The whole process takes about 1 second.

Decays in 0.01 seconds o T o

Intense neutron Very
capture in a radioactive
short time nucleus

Immediately

Picture from https://knowablemagazine.org/article/physical-
- - Is-origins-h -el
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Why plasma

2z

Nuclear Physics at EUPRAXIA - CdL Preventivi, July 6th, 2023;-—/:3-;’*—;’




Why plasma: 3-decays INFN
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Stellar nucleosynthesis proceeds in a hot and dense
environment which affects the degree of ionization
of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized? e

The beta decay in highly ionized atoms shows
important variations compared to neutral
species

1. Electron Capture becomes impossible in fully
ionized atoms.

2. Bound state f-decay typically marginal can
become important.

https://www.frontiersin.org/research-topics/25146/nuclear-
physics-and-astrophysics-in-plasma-traps
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Why plasma: 3-decays INFN
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Stellar nucleosynthesis proceeds in a hot and dense Bound-state -decay is a nuclear 8- decay process

environment which affects the degree of ionization in which an electron is created in a previously

of the atoms involved in the stellar nucleosynthesis. unoccupied atomic orbital rather than in the
continuum.

What happens when atoms are highly ionized? e

The beta decay in highly ionized atoms shows
important variations compared to neutral
species

1. Electron Capture becomes impossible in fully
ionized atoms.

2. Bound state f-decay typically marginal can
become important.

https://www.frontiersin.org/research-topics /25146 /nuclear-
physics-and-astrophysics-in-plasma-traps
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Why plasma: f-decays

Stellar nucleosynthesis proceeds in a hot and dense
environment which affects the degree of ionization

of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows
important variations compared to neutral

species

1. Electron Capture becomes impossible in fully

ionized atoms.
2. Bound state f-decay typically marginal can
become important.

https://www.frontiersin.org/research-topics /25146 /nuclear-
physics-and-astrophysics-in-plasma-traps
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Bound-state -decay is a nuclear 8- decay process
in which an electron is created in a previously
unoccupied atomic orbital rather than in the

continuum.
s :
e Ve "Ye
* R T R
1
'
M ‘l ~ — 000000000 0000000
!

free B-decay

Y. Litvinov and F. Bosh: Rep. Prog. Phys. 74, 016301 (2011)
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Why plasma: f-decays

Stellar nucleosynthesis proceeds in a hot and dense
environment which affects the degree of ionization
of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows
important variations compared to neutral
species

1. Electron Capture becomes impossible in fully
ionized atoms.

2. Bound state f-decay typically marginal can
become important.

https://www.frontiersin.org/research-topics /25146 /nuclear-
physics-and-astrophysics-in-plasma-traps

Bound-state -decay is a nuclear 8- decay process
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in which an electron is created in a previously
unoccupied atomic orbital rather than in the

continuum.

Example: Bare 187Re’>* ions decay, due to the bound-

state beta decay,

AZ

Sb
Sn
In

Cd

Ag

I »‘I
0
0

VZ

Nuclear Physics at EUPRAXIA - CdL Preventivi, July 6th, 2023

\.

., beta decay (B-)

——@ neutron capture

20

— Sb
- 80
_F++++;' sn A 4
A 79 Z9
——" In
El Nuclear reactions \- =




Why laser
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When a high intensity laser pulse (above 1018 W/cm?) is
focused in a spot of the order of a few microns on a target
placed in vacuum, a plasma consisting of electrons and ions
is created almost instantaneously.

o Target Normal Sheath Acceleration (TNSA): effective
in accelerating protons and light ions — a short laser
pulse interacting with the target front surface produces
a plasma made of ions and fast electrons.

o Coulomb Explosion (CE): optimized for clustered
gaseous targets, intensities in the range 1018 = 102°
W/cm? and 7 < 200 fs — an explosion may occur due to
the intense laser field that, extricating several electrons
from the molecule cluster, induces a high level of
ionization. Possible also for thin (1-10 nm), solid targets
or nano-structured targets

Nuclear Physics at EUPRAXIA - CdL Preventivi, July 6th, 2023 22
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When a high intensity laser pulse (above 1018 W/cm?) is

RPA focused in a spot of the order of a few microns on a target
// | placed in vacuum, a plasma consisting of electrons and ions
x0” is created almost instantaneously.

o Radiation Pressure Acceleration (RPA), or Laser
Piston regime: based on the action of the radiation
pressure induced in the interaction of a short laser
TNSA pulse, of extremely high intensity (above 102° = 102!
W/cm?), with a thin and dense pre-plasma layer
created, in front of a target, by the laser-pulse leading
edge. The plasma electrons are locally separated from
the plasma ions creating a strong accelerating field
which efficiently accelerates the ions in the irradiated

100 target area.

Nuclear Physics at EUPRAXIA - CdL Preventivi, July 6th, 2023 23
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Laser-matter interaction

A precise control of the experimental conditions is
challenging with high-power lasers — variations observed
between experiments performed in conditions which would
seem similar at a first glance.

The scaling of the most important characteristics (such as
the energy per particle) with laser and target parameters is
still unclear to a large extent, despite the large number of
investigations performed.

1 10 100
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Low-density target — one of the most effective way for

transferring energy from lasers to a gas target
occurs when the molecules in the gas are organized in

clusters

If the electromagnetic field is strong enough the cluster
atoms are ionized, and a Coulomb Explosion can take place.

25



Deuterium fusion process in plasma
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It is a nuclear fusion reaction occurred in the Big-Bang
Nuclosynthesis — a deuterium nucleus formed from a
proton and a neutron fuses with another proton to form a
helium-3 nucleus.

It took place right after the hadronization step was over,
when there were free p and n that eventually combine to
form deuterium.

Indirect measurements of the deuterium burning
available (1.5 MeV -+ 2 keV), also exploiting the so-called
Trojan-Horse Method. However, a full comprehension
of possible electron screening effects is crucial.



Deuterium fusion process in plasma INFN
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Model-independent determination of the astrophysical S factor in
laser-induced fusion plasmas

D. Lattuada, M. Barbarino, A. Bonasera, W. Bang, H. J. Quevedo, M. Warren, F. Consoli, R. De Angelis, P.
Andreoli, S. Kimura, G. Dyer, A. C. Bernstein, K. Hagel, M. Barbui, K. Schmidt, E. Gaul, M. E. Donovan, J. B.
Natowitz, and T. Ditmire

Phys. Rev. C 93, 045808 — Published 19 April 2016
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Experimental area: an example
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Proton C

3 plastic
Neutron 4 l scintillators
from UT
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Proper time-of-flight paths must be
foreseen for a reliable particle
identification

Neutron detectors must be kept displaced
enough from the walls

Cablings, signal transportation
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Experiments at the PW regime INFN
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1024 —

10'.’3 -

1022 -

1021 -

102 |

1019 -

High-density target — solid, Lu target

Target choice to be optimized in view of the thermalization
goal.

https: //www.frontiersin.org/articles/10.3389 /fphy.2022.72
7718 /full
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176Lu physics case INFN

176 1 /m
_ 1~ Istituto Nazionale di Fisica Nucleare
76 ‘\\ Laboratori Nazionali di Frascati
Lu 7\
176Lu: is a very long-lived in laboratory conditions and in principle 8~ 0.34%, 196.53 keV max
might act as a cosmo-chronometer
—— 8+
o the s-process branching point B~ 99.66%
at 17%Lu is among the most 597.2 keV
important ones for the 4011 ke¥
understanding of slow neutron Hf 176 177 178 |—
captures in the Asymptotic Giant ¥ e
Branch (AGB) phases of low and M \
intermediate mass stars; Lu 175 v \ \
o itdetermines the abundance 36%yr 94\\0% 306.78 keV
of 176Hf, an “s-only” nucleus '
o Scenario is complex due to the Yb —174 176 \ v A4
presence of an isomeric state \ \\
placed at 122.45 keV with a very N N\ 86.57% | 201.82 keV
short lifetime \ oy
13.3%,|,88.35 keV
Important to investigate the in-plasma variations of the half-life LT 0+
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Measurement strategy

Once the solid *7®Lu target is hit by a laser pulse with an intensity as high
as 10?1 W /cm?, the ionization and the subsequent ion emission takes
place

Lu ions travelling at a velocity of the order of hundreds of keV

Given the high energy administered by the laser in a short time interval, a
local thermal equilibrium can be reached not only by the electrons, but
also by the ion clouds, that can reach temperature as high as 108K

At this temperature, the nuclei may be excited, and
the Lu isomeric state *”®™Lu can be populated

INFN
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Laboratori Nazionali di Frascati



Measurement strategy INFN
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Once the solid *7®Lu target is hit by a laser pulse with an intensity as high

A R . N . " 0.347%, 196.3 keV max
as 10?1 W /cm?, the ionization and the subsequent ion emission takes 4

place 8+
Lu ions travelling at a velocity of the order of hundreds of keV ‘ggg 926‘2\/

401.1 keV
Given the high energy administered by the laser in a short time interval, a
local thermal equilibrium can be reached not only by the electrons, but
also by the ion clouds, that can reach temperature as high as 108K /a4

At this temperature, the nuclei may be excited, and

. . 94.0% | 306.78 keV
the Lu isomeric state *”®™Lu can be populated

_ N
1761u decays to the Hf 6" excited states, whose de-excitation 4+
proceeds through three different steps, leading to the subsequent 88.5% | 201.82 keV
(13;1611:‘:510n of photons with energies equal to E,,= 307, 202 and 88 keV. oy
""Lu, on the other hand, directly decays to the first Hf excited state 13.3% | 88.35 keV

— only the emission of a photon with E,, = 88 keV is observed 787 0+



Measurement strategy

Once the solid *7®Lu target is hit by a laser pulse with an intensity as high
as 10?1 W /cm?, the ionization and the subsequent ion emission takes
place

Lu ions travelling at a velocity of the order of hundreds of keV

Given the high energy administered by the laser in a short time interval, a
local thermal equilibrium can be reached not only by the electrons, but
also by the ion clouds, that can reach temperature as high as 108K

At this temperature, the nuclei may be excited, and
the Lu isomeric state *”®™Lu can be populated

1761u decays to the Hf 6" excited states, whose de-excitation

proceeds through three different steps, leading to the subsequent
emission of photons with energies equal to E,= 307, 202 and 88 keV.

176m 41, on the other hand, directly decays to the first Hf excited state

— only the emission of a photon with E,, = 88 keV is observed
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g~ 99.66%
597.2 keV
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401.1 keV

/ 6+

94.0% | 306.78 keV

——— 4+

86.5% | 201.82 keV
N 24
13.3% 88.38rev
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Measurement strategy INFN
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Once the solid *7®Lu target is hit by a laser pulse with an intensity as high

as 10?1 W /cm?, the ionization and the subsequent ion emission takes - .
Lu De-excitation energies
place -
140 - Entries 10000
Lu ions travelling at a velocity of the order of hundreds of keV - ’;Z’ it 38727408
120/~ O 1
B p1 87.99 = 0.05
Given the high energy administered by the laser in a short time interval, a o0 p2 9.719 = 0.081
local thermal equilibrium can be reached not only by the electrons, but - p3 12.43 = 0.62
also by the ion clouds, that can reach temperature as high as 108K *F o 18D
y ) p 8 : p5 9.314 = 0.346
60— p6 12.46 = 0.61
At this temperature, the nuclei may be excited, and o p7 3004 = 0.4
: : 176,m 0 P8 10.01+ 0.37
the Lu isomeric state ~*™""Lu can be populated - \
20—
- IJ. [N S

OO

50 100 150 200 250 300 350 400
E_vy (keV)

1761u decays to the Hf 6" excited states, whose de-excitation

proceeds through three different steps, leading to the subsequent

emission of photons with energies equal to E,= 307, 202 and 88 keV.

176m 744, on the other hand, directly decays to the first Hf excited state

— only the emission of a photon with E,, = 88 keV is observed



Possible experimental setup for f-decay INFN
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' " 1. A PW laser pulse is sent to a solid target containing the

radio-isotope under investigation.

2. The plasma is created and a forward emission of the
»d MCP thermalized excited nuclei takes place.

1 m of flight path 3. The nuclei travel and eventually decay in flight, populating
daughter nuclei in excited states.

4. The flight path, and then the distance between the target and
a suitable stopper, must be optimized in order to guarantee a

Gamma i h
proper time window for the decay measurement (~ 1us).

detector
array

5. This poses limits on the half-life range that can be explored.

6. The gamma emitted in the decay process may be detected
through a dedicated detection system.
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Conclusions INFN

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali di Frascati

Possible physics program with hundreds of TW lasers: study of fusion processes in plasma,
only barely explored at the moment in stellar-like conditions — few seminal measurements
available (e.g., Lattuada et al.), to be confirmed with higher statistics.

Possible physics program with hundreds of TW lasers: also other fusion processes can be
explored (e.g., 12¢ burning, crucial for the field of nuclear astrophysics)

Possible physics program with PW lasers: first-time in-plasma measurement of the 176Lu
t1, — implications for the understanding of the heavy-element production through s-processes

Natural evolution of PANDORA@CSN3 physics program

Possible dedicated detector R&D program (e.g., for timing)
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backup
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Projections for a 10 Hz repetition rate INFN
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Number of decays as a function of half lives Number of decays as a function of laser time (for T = 3 years
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Projections for a 10 Hz repetition rate INFN
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Number of decays as a function of laser time
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How to measure '7°Lu t1/ in plasma? INFN
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The PANDORA eXp eriment Laboratori Nazionali di Frascati

Build a plasma trap where ion species are confined in AR SRS SN

a magnetic field and a plasma is created with:

o Electron density: 101% = 10 ¢cm =3

o Electron temperature: 0.1 - 100 keV

o Ion density: 101! cm™3 - relies on the radiactive
isotope concentration in plasma

o lon temperature: ~ 1 e — Ions are cold: no access to
the excited states

‘;_’tv = AV - [ dN = [ An,V dN

N (Tmeas) = /lni VTneas

n;V: density and plasma volume, constant — to be measured using
multiple diagnostic tools
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How to measure '7°Lu t1/ in plasma? INFN

Istituto Nazionale di Fisica Nucleare

The PANDORA eXp eriment Laboratori Nazionali di Frascati

176Lu: lifetime vs. T - theoretical predictions

Build a plasma trap where ion species are confined in KT [eV]
a magnetic field and a plasma is created with: stz p2 L - _—
- 12 . 114 (7993 16410 L .
o Electron density: 10™“ - 10" cm .
o Electron temperature: 0.1 - 100 keV 10408 | EGrdareof i
o Ion density: 101! cm™3 - relies on the radiactive s magnitude!!
isotope concentration in plasma = :
= v
o lon temperature: ~ 1 e — lons are cold: no access to 10000 ¥
the excited states 100 b
dN T T 1y -
bt }{nV N f meas dN - f meas }{nV dN terreTs$'|8a7I
dt L 0 0 l 0.01 TY-LTE pops :
T 10 100 1000
T6 -
_ N Courtesy of A. Mengoni
N(Thmeas) = AniVTeas Takahashi et al. 1987, Phys Rev C 36, 1522
n;V: density and plasma volume, constant — to be measured using PANDORA: only ground state will be studied — T too
multiple diagnostic tools low to investigate variation on the isomeric state
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How to measure '7°Lu t1/ in plasma? INFN
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Scaling results to stellar environment raboratort Nazionall df fraseat

94 94
Build a plasma trap where ion species are confined in tz NP = Mo (yrs) logtt,
a magnetic field and a plasma is created with:

o Electron density: 101% = 10 ¢cm =3

o Ion density: 101! cm™3 - relies on the radiactive

isotope concentration in plasma

dN T T:
W — A,V > [[mees gN = [T 1.V dN
dt 0 0 0
10 T (keV)
p, (cm?) °
N(Tmeas) — AniVTmeaS T, = 0.1-100 keV in a lab. Magnetoplasma

_ _ Variation with T, stronger than with p. — “stellar
n;V: density and plasma volume, constant — to be measured using effect” can be modelled by ECR (Electron Cyclotron
multiple diagnostic tools Resonance) plasma
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Why to use laser-induced plasma INFN
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Why to use laser-induced plasma INFN

Simulations by B. Mishra et al.: thanks, Bharat!

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali di Frascati

Exploring the onset of a (Full) Local Thermal Equilibrium:

@)

Typical lifetime of nuclear excited states ~ 107> s
Assuming an excited state for, e.g., 1’°Lu*, around 122.45 keV
Considering n_e=<q>n_i= 1027 m~3 (a typical stars interior
density), at T_e=T_i=6.68 keV, the excited level lifetime is
already exactly the same of the excitation rate, meaning that
this level can be populated and it is in thermal
equilibrium in the assumed laser-induced plasma
lifetime (order of ps or tens of ps)

Calculation also rescaled to a more realistic expected density
of a real laser-induced plasma scenario (n=e=n_i= 102> m~3)
— the required plasma temperature to get the thermal
equilibrium goes to around 37.5 keV. This value seems to
be however absolutely achievable in the

foreseen laboratory scenario, confirming that the decay
from excited states is in principle feasible.
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Fusion processes: light elements
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Relative Probability

Maxwell-Blotzmann

Distribution
o exp(-E/KT)

KT E,

Gamow Peak

\

Tunneling Through

Coulomb Barrier
a exp(-b/E'?)

Energy
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s-process endpoint

AZ

Po
Bi

Pb

INFN
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201

Chart representing the final part of the s-process. Red
horizontal lines with a circle in their right ends

represent neutron captures; blue arrows pointing up-left
represent beta decays; green arrows pointing down-left
represent alpha decays; cyan/light-green arrows pointing
down-right represent electron captures.
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Decay scheme for lutetium INFN
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+
I i F..’_”.L_“*_“.__J 6.29 Mev
175 Lu
71 x

’ 1

T T
Bm B
3.68 h 0.127 Mev

357 x100y
0.596 Mev

0.290 Mev

0.088 Mev
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Deuterium fusion process in plasma INFN

d+d - °>He+n (2.45 MeV)

The deuterium gas is kept at a low temperature, close to
the critical temperature where gas and liquid phase
coexist.

The adiabatic expansion through a supersonic nozzle in
the reaction chamber induces the clusterization of the D
molecules, which are then irradiated by a laser pulse.
Most of the pulse energy is absorbed by the clusters,
causing the escape of the electrons and the formation of
a plasma.

The high level of electrostatic fields reached in it
produces the so-called Coulomb Explosion — emission
of hot deuterium ions (with kinetic energy in the range
tens-hundreds keV) that can fuse with ions coming from
the explosion of other clusters.

High laser repetition rate and coarse granularity for
the PID arrays to identify the fusion reaction products

Nuclear Physics at EUPRAXIA -

CdL Preventivi, July 6th, 2023

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali di Frascati

D, gas tank

Supersonic _r;lrug‘zzle (high backing pressu

az1s J0ds weaq Jaser]

= <

High power
laser pulse

o Most of the laser pulse energy is

absorbed by the atomic cluster

o Clusters get ionized and

experience Coulomb Explosion

o DD fusion occurs, producing 2.45

MeV neutrons

51



Experimental area: an example

Neutron 2 3 plastic
Neutron 1 scintillators
from UT

Neutron 3

~1m

Laser beam
direction

Faraday

cup ‘
Proton A Proton B
Proton C

3 plastic
Neutron 4 l scintillators
from UT
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Proper time-of-flight paths must be
foreseen for a reliable particle
identification

Neutron detectors must be kept displaced
enough from the walls

Cablings, signal transportation
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Why plasma: fusion processes INFN

ELECTRON SCREENING AND THERMONUCLEAR
REACTIONS E. E. SALPETER 1954

010

Li (p,a) “He @ -

ENERGY E (keV)

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali di Frascati

Relatively small enhancements due to electron screening
could cause significant errors in the extrapolation to
lower energies, if the cross-section curve is forced to
follow the trend of the enhanced cross sections without
correcting for screening.

J ‘
Se Ll BaRe
E Ec N NUCLEUS ELECTRON
% N CLOUD  The effect of the electron
= N / SHIELDED shielding on an incident
O A NUCLEUS projectile is to increase
g NN the penetrability through
= \\ the barrier and thus also
@) S~ the cross section
= ~
- ~~
3 P

EL PROJECTILE .

0 R, Re¢
DISTANCE r
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Main nucleosynthesis path INFN
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Figure 1.6: The s-process path. If a beta unstable isotope is reached, it decays back to the next stable
isotope. Stable isotopes are marked grey, and unstable isotopes white.

= 60, .. 61, .. 62, ..
Ni Ni Ni Ni
|yprocess =P o i e
| ar 57 58 59 60 61
Co Co Co Co Co
r-process 3 -decay
56 57 58 59
Fe Fe Fe Fe }(n,,)
- o-decay

i Figure 1.5: Overview of the main nucleosynthesis paths along the chart of nuclides. In orange the fusion
contribution (chapter 1.2.3), in green the s-process path, in blue the r-process path (page 24) and in grey
the rp- and y processes (page 24). The s process and the y process are secondary processes, which depend
on certain seed isotopes, whereas fusion, the r process and the rp process are primary processes, which
are not dependent on prior nucleosynthesis. Adapted from Glorius 2013.

fusion 4
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Branching points and s-only isotopes INFN

BRANCHING POINTS

Branching points are isotopes or isomers on the s-process path, which undergo a -decay on the
same timescale as a neutron capture. This leads to a branching in the s-process path where some
of the mass flow follows the -decay branch and the rest of the mass flow the neutron capture
path (figure 1.10).

F-decay

85
() Sr

o-decay

rp | #Rb BEREEEE\ *°Rb | “Rb \ **Rb

82Kr 83Kr 84Kr 85Kr 86Kr 87Kr

Figure 1.10: Branching point 83Kr along the s-process path. $3Kr has a half-life of about 10 years, which
would make it an excellent probe for s-process conditions, if all reaction channels would be known to
good precision. Stable isotopes are marked grey, and unstable isotopes white.

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali di Frascati

THE s-ONLY ISOTOPES

The s-only isotopes are isotopes, which are created almost solely by the s process and are shielded
from other processes. These isotopes are often considered when comparing observations to sim-
ulations (figure 1.11).

132B 1338 1348 1358 1368 137B

a a a a a a

131CS 132CS 133CS 134Cs 135Cs 1360S

7 -decay
180y, 1Bly 182y N\ 18y | 134y )>_(;,”f)

e
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176Lu level scheme INFN
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FIG. 6. Partial level scheme of "Lu., Spin and parity assignments of the 1’[411], 1‘ [523], 5* [4021, and {7 [514] pro-
ton orbitals coupled to the % [514] neutron orbital in ®Lu. The assignments for the K = (' ;" [523] — [514] band are
considered as tentative. Assignments for a K ¥=2" vibrational band are included and the unassigned levels populated in
the (¢, «) reaction are shown on the extreme right. Gamma transitions assigned were taken from unassigned transi-
tions of Ref. 1. All levels shown are populated in the (f, «) reaction.
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176Lu physics case

‘The Decay Scheme of Natural Lutetium 176

JAMES R. ARNoLD AND THOMAS SUGIHARA*
Institute for Nuclear Studies, University of Chicago, Chicago, Illinois
(Received February 26, 1953)

HE nuclide lutetium 176 is of particular interest for two
related reasons; first, that it is the central member of one
of the four known triads of naturally occurring adjacent isobars,
and second, that its spin of at least 7 units! is the highest known.
Flammersfeld has reported a decay scheme for this nuclide,? in
which both K capture and B-decay appear, the ratio of the
branches being K/B~=2. The observed gamma-ray was placed
in the K branch, and its energy fixed at 0.260 Mev.
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FIG. 3. A partial level scheme of '"Lu, showing the posi-
tions and decays of the ground state and isomer at 122.9 keV.
The equilibration of these two levels could be achieved by way
of a level of intermediate spin, as illustrated in the figure.
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PHYSICAL REVIEW C VOLUME 44, NUMBER 6 DECEMBER 1991

176Lu: An unreliable s-process chronometer

K. T. Lesko, E. B. Norman, R-M. Larimer, and B. Sur
Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720
and Center for Particle Astrophysics, University of California, Berkeley, California 94720

C. B. Beausang*
Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720
(Received 17 October 1990)

A level scheme of '®Lu up to ~ 1400 keV excitation energy is deduced from a y-y coincidence experi-
ment and previously published particle transfer data. 170 y-ray transitions are placed between 85 levels.
We identify 27 previously unknown levels and 131 previously unknown transitions in '"®Lu. With this
y-ray data we place the energy of the isomer at 122.9 keV. A level at 838.5 keV (J"=57,1,,, <10 ns) is
found to decay with substantial strength to both the ground state (7, 4.08 X 10'° yr) and the 122.9 keV
isomer (17, 3.7 hr). The presence of this level guarantees the thermal equilibrium of *Lu®™ for
T>3X10° K and therefore during s-process nucleosynthesis. The resulting temperature sensitivity of its
effective half-life rules out the use of '"®Lu as an s-process chronometer. The use of '"Lu to determine
s-process temperatures is discussed.
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7Lu is one of the few naturally occurring radio nu-
clides that have survived from the era of nucleosynthesis.
Its present isotopic abundance [1] is 2.6% and its half-life

176Lu physics case

is 4.08 <10 yr [2].
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Figure 1. s-process path in the rare earth element mass region. s-only process nuclides '7°Yb, '7*Lu and ' "®Hf are shielded from r-process contributions
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176Lu branch in the s-process INFN
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Figure 1. s-process path in the rare earth element mass region. s-only process nuclides '’°Yb, '7*Lu and ' *Hf are shielded from r-process contributions
by '7°Er and '7Yb respectively. The s-process branches at '’®Lu if a significant population of the 3.68 h isomeric state occurs.
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Why plasma: 3-decays INFN
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B-decay in stellar environment: in a stellar plasma, ions are embedded in a cloud of charges, both positive and
negative. These charges create EM fields which act as perturbation to the atomic/ionic levels leading to corrections
of Q values which affects the decay rates.

Bound-state -decay is a nuclear - decay
process in which an electron is created in a
previously unoccupied atomic orbital rather
than in the continuum.

For fully ionized atoms (bare nuclei), it is
possible for electrons to fail to escape the atom,
and to be emitted from the nucleus into low-
lying atomic bound states (orbitals). This cannot
occur for neutral atoms with low-lying bound
states which are already filled by electrons.

https://www.frontiersin.org/research-topics /25146 /nuclear-physics-and-astrophysics-in-plasma-traps
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B-decay in stellar environment: in a stellar plasma, ions are embedded in a cloud of charges, both positive and
negative. These charges create EM fields which act as perturbation to the atomic/ionic levels leading to corrections
of Q values which affects the decay rates.

Bound-state -decay is a nuclear - decay
process in which an electron is created in a
previously unoccupied atomic orbital rather
than in the continuum.

For fully ionized atoms (bare nuclei), it is
possible for electrons to fail to escape the atom,
and to be emitted from the nucleus into low-
lying atomic bound states (orbitals). This cannot
occur for neutral atoms with low-lying bound
states which are already filled by electrons.

-7 https://www.frontiersin.org/research-topics/25146 /nuclear-physics-and-astrophysics-in-plasma-traps
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7Lu is one of the few naturally occurring radio nu-
clides that have survived from the era of nucleosynthesis.
Its present isotopic abundance [1] is 2.6% and its half-life

176Lu physics case

Cosmo-chronometer or stellar thermometer?

is 4.08 <10 yr [2].
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Figure 1. s-process path in the rare earth element mass region. s-only process nuclides '7°Yb, '7*Lu and ' "®Hf are shielded from r-process contributions
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7Lu is one of the few naturally occurring radio nu-
clides that have survived from the era of nucleosynthesis.
Its present isotopic abundance [1] is 2.6% and its half-life

176Lu physics case

Cosmo-chronometer or stellar thermometer?

is 4.08 <10 yr [2].
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176Lu physics case INFN

176 Lum Istituto Nazionale di Fisica Nucleare
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176 . . . Py
Lu 1s one of the few naturally occurring radio nu- 7

clides that have survived from the era of nucleosynthesis. 8 0.34%, 196.3 keV max
Its present isotopic abundance [1] is 2.6% and its half-life
is 4.08 <10 yr [2].
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PHYSICAL REVIEW C VOLUME 44, NUMBER 6 DECEMBER 1991

76Lu: An unreliable s-process chronometer

K. T. Lesko, E. B. Norman, R-M. Larimer, and B. Sur
Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 \
and Center for Particle Astrophysics, University of California, Berkeley, California 94720 88 keV \

i

C. B. Beausang*
Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 94\. O % 3 O 6 .7 8 keV
(Received 17 October 1990) \

A level scheme of " Lu up to ~ 1400 keV excitation energy is deduced from a y-y coincidence experi- '
ment and previously published particle transfer data. 170 y-ray transitions are placed between 85 levels. VN
We identify 27 previously unknown levels and 131 previously unknown transitions in '"*Lu. With this 4+
y-ray data we place the energy of the isomer at 122.9 keV. A level at 838.5 keV (J"=57,1,,, <10 ns) is \
found to decay with substantial strength to both the ground state (77, 4.08 X 10'° yr) and the 122.9 keV \
isomer (17, 3.7 hr). The presence of this level guarantees the thermal equilibrium of '"Lu®™ for 86.5 % 201.82 keV
T>3X10° K and therefore during s-process nucleosynthesis. The resulting temperature sensitivity of its !
effective half-life rules out the use of '"®Lu as an s-process chronometer. The use of '"*Lu to determine 7

s-process temperatures is discussed. 1 3 ] 3 % b 8 8 ‘ 3 5 keV
176Hf O +
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The onset of the LTE INFN
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(Local Thermal Equilibrium})

o E necessario dissipare I'energia per avere termalizzazione

o We are assuming a typical lifetime of nuclear excited states to be in the order of fs (a few 10”-15 sec).
We are using a typical reaction rate estimate according to the well-known formula R=1_XNto, where
[_X is the in-plasma total photon flux in s”*-1, N_t is a surface “target” density term, that in a plasma
represents the radius averaged density in an assumed spherical plasma plume, and o is the interaction
cross-section. Assuming an excited state for, e.g., 176Lu* around 122.45 keV, and considering
n_e=<q>n_i=10"27 m-3 (a typical stars interior density), at T_e=T_i=6.68 keV the excited level lifetime
is already exactly the same of the excitation rate, meaning that this level can be populated and it is in
thermal equilibrium in the assumed laser-induced plasma lifetime (order of ps or tens of ps).

This calculation has been also rescaled to a more realistic expected density of a real laser-induced
plasma scenario, assuming n=e=n_i=10"25 m-3. In this case, the required plasma temperature to get
the thermal equilibrium goes to around 37.5 keV. This value seems to be however

absolutely achievable in the foreseen laboratory scenario, confirming that the decay from excited
states is in principle feasible.
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Why plasma: f-decays

Stellar nucleosynthesis proceeds in a hot and dense
environment which affects the degree of ionization
of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows
important variations compared to neutral
species

1. Electron Capture becomes impossible in fully
ionized atoms.

2. Bound state f-decay typically marginal can
become important.

https://www.frontiersin.org/research-topics /25146 /nuclear-
physics-and-astrophysics-in-plasma-traps
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Bound-state -decay is a nuclear 8- decay process
in which an electron is created in a previously
unoccupied atomic orbital rather than in the

continuum.
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Bound-state -decay is a nuclear 8- decay process
in which an electron is created in a previously
unoccupied atomic orbital rather than in the

continuum.
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Why plasma: f-decays
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Stellar plasma environment (p, T) can play a major role in modifying the rates at the branching point in
s-process nucleosynthesis. Temperature dependent variations evaluated in the seminal work of Takahashi and Yokoi.
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Stellar plasma environment (p, T) can play a major role in modifying the rates at the branching point in
s-process nucleosynthesis. Temperature dependent variations evaluated in the seminal work of Takahashi and Yokoi.
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Scaling results to stellar environment INFN
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Experimental area: an example
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Experiments at the PW regime INFN
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