

Nuclear Physics at EuPRAXIA

Paola Gianotti ^{*} Dario Lattuada^{+°} David Mascali[°] Alberto Mengoni[^] Bharat Mishra[°] Eugenia Naselli[°] Silvia Pisano^{*} Domenico Santonocito[°]

+ Università degli studi di Enna "Kore"
°INFN Laboratori Nazionali del Sud
^ INFN & ENEA Bologna
* INFN Laboratori Nazionali di Frascati

PANDORA Future Experiments

The periodic table of elements

				Alkali n	netals		Halogens													
po	group			Alkaline	e-earth	metals	Noble gases													
Deri	1*			Transiti	ion met	als	Bare-earth elements (21, 39, 57–71)													
1	1			Othor	notale		ar	and lanthanoid elements (57–71 only) 2												
'	H 2 Other metals												13	14	15	16	17	He		
0	3	4		Other r	onmeta	als		ctinoid	element	ts			5	6	7	8	9	10		
2	Li	Be											В	C	N	0	F	Ne		
	11	12	1										13	14	15	16	17	18		
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar		
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		
4	к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
-	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	T	Xe		
~	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
6	Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn		
_	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
1	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og		
	lanthauth	a a l a a a	rice C	58	59	60	61	62	63	64	65	66	67	68	69	70	71]		
	lanthar	lanthanoid series 6			Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
	- et	a a l a a a		90	91	92	93	94	95	96	97	98	99	100	101	102	103	1		
	actin	noia se	nes /	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			

Big-Bang Nucleosynthesis

				Alkali m	netals		Halogens													
ро	group			Alkaline	e-earth	metals	Noble gases													
oeri	1*			Transiti	on met	als	Ra	Rare-earth elements (21, 39, 57–71)												
1	1			Other n	notale		an	nd lantha	anoid el						2					
	н	2			lietais							13	14	15	16	17	He			
2	3	4		Other n	ionmeta	lls		ctinoid (element	IS			5	6	7	8	9	10		
2	Li	Be	B C N O F N														Ne			
~	11	12											13	14	15	16	17	18		
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	P	S	CI	Ar		
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
~	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe		
~	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
0	Cs	Ba	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ТІ	Pb	Bi	Po	At	Rn		
-	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
1	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og		
		^			·			·	·			<u> </u>	·	·		^		<u> </u>		
	1			58	59	60	61	62	63	64	65	66	67	68	69	70	71]		
	iantha	hanoid series 6		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	1		
actinoid series 7				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			

Big-Bang Nucleosynthesis

Stellar Nucleosynthesis

				Alkali n	netals		Halogens														
ро	group			Alkaline	e-earth	metals	Noble gases														
Deri	1*			Transiti	ion met	als	Ra Ra	are-eart	h eleme	nts (21.	39. 57-	-71)						18			
-	1			0.1			an	and lanthanoid elements (57–71 only) 2													
'	н	2		Other n	netals								13	14	15	16	17	He			
	3	4	ן	Other r	nonmeta	als	Ac	ctinoid	elemen	ts			5	6	7	8	9	10			
2	Li	Be											в	С	N	0	F	Ne			
	11	12	1										13	14	15	16	17	18			
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar			
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36			
	к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr			
~	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54			
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe			
~	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86			
b	Cs	Ba	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn			
-	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118			
1	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og			
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	1			
	lanthai	anthanoid series 6			Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				
		a a la ca	7	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1			
	acti	noid se	nes 7	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr				

Stellar Nucleosynthesis

S- and r-process Nucleosynthesis

				Alkali n	netals		Halogens													
В	group			Alkaline	e-earth	metals	Noble gases													
)ei	1.			Transiti	ion met	als	Bare-earth elements (21, 39, 57–71) 18													
4	1]				u.J	and lanthanoid elements (57–71 only)													
1	н	2		Other n	netals		_					13	14	15	16	17	He			
	3	3 4 Other nonmetals						ctinoid	elemen	ts			5	6	7	8	9	10		
2	Li	Be											в	C	N	0	F	Ne		
	11	12	1									13	14	15	16	17	18			
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	P	s	CI	Ar		
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		
4	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
-	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe		
~	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
6	Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Po	At	Rn		
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og		
	le alle a			58	59	60	61	62	63	64	65	66	67	68	69	70	71	1		
	lanthai	nola se	nes 6	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu			
	acti	noid oo	rice 7	90	91	92	93	94	95	96	97	98	99	100	101	102	103]		
actinoid series /				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			

S- and r-process Nucleosynthesis

Solar system abundances

Figure 1.1: Solar abundance distribution normalised to Silicon at 10⁶, adapted from Lodders 2003. The peaks in the distribution show the signatures of the different processes. The first peak around helium results from the primordial nucleosynthesis. The second peak around iron originates from nuclear statistical equilibrium and the following double peak structures from neutron capture processes.

Fusion processes: light elements

Fusion processes: elements up to Fe

Fusion processes: heavy elements

Slow neutron capture process (s-process)

Occurs in very old stars over millions of years. Elements are released into the universe at the end of the star's life.

world/2018/crash-stars-reveals-origins-heavy-elements

Fusion processes: heavy elements

Rapid neutron capture process (r-process)

Occurs in the debris ejected from a neutron star merger. The whole process takes about 1 second.

Why plasma

Stellar nucleosynthesis proceeds in a hot and dense environment which affects the degree of ionization of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows important variations compared to neutral species

- 1. Electron Capture becomes impossible in fully ionized atoms.
- 2. Bound state β -decay typically marginal can become important.

https://www.frontiersin.org/research-topics/25146/nuclearphysics-and-astrophysics-in-plasma-traps

Stellar nucleosynthesis proceeds in a hot and dense environment which affects the degree of ionization of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows important variations compared to neutral species

- 1. Electron Capture becomes impossible in fully ionized atoms.
- 2. Bound state β -decay typically marginal can become important.

https://www.frontiersin.org/research-topics/25146/nuclearphysics-and-astrophysics-in-plasma-traps **Bound-state** β **-decay** is a nuclear β - decay process in which an electron is created in a previously unoccupied atomic orbital rather than in the continuum.

Stellar nucleosynthesis proceeds in a hot and dense environment which affects the degree of ionization of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows important variations compared to neutral species

- 1. Electron Capture becomes impossible in fully ionized atoms.
- 2. Bound state β -decay typically marginal can become important.

https://www.frontiersin.org/research-topics/25146/nuclearphysics-and-astrophysics-in-plasma-traps **Bound-state** β **-decay** is a nuclear β - decay process in which an electron is created in a previously unoccupied atomic orbital rather than in the continuum.

Y. Litvinov and F. Bosh: Rep. Prog. Phys. 74, 016301 (2011)

Stellar nucleosynthesis proceeds in a hot and dense environment which affects the degree of ionization of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows important variations compared to neutral species

- 1. Electron Capture becomes impossible in fully ionized atoms.
- 2. Bound state β -decay typically marginal can become important.

https://www.frontiersin.org/research-topics/25146/nuclearphysics-and-astrophysics-in-plasma-traps **Bound-state** β **-decay** is a nuclear β - decay process in which an electron is created in a previously unoccupied atomic orbital rather than in the continuum.

Example: Bare ¹⁸⁷Re⁷⁵⁺ ions decay, due to the boundstate beta decay, **becomes 9 orders of magnitude faster than neutral ¹⁸⁷Re atoms with a half-life of 42 Gyr.**

Why laser

Laser-matter interaction

When a high intensity laser pulse (above 10^{18} W/cm²) is focused in a spot of the order of a few microns on a target placed in vacuum, a plasma consisting of electrons and ions is created almost instantaneously.

- Target Normal Sheath Acceleration (TNSA): effective in accelerating protons and light ions → a short laser pulse interacting with the target front surface produces a plasma made of ions and fast electrons.
- **Coulomb Explosion (CE):** optimized for clustered gaseous targets, intensities in the range $10^{18} \div 10^{20}$ W/cm² and $\tau < 200$ fs \rightarrow an explosion may occur due to the intense laser field that, extricating several electrons from the molecule cluster, induces a high level of ionization. Possible also for thin (1-10 nm), solid targets or nano-structured targets

Laser-matter interaction

When a high intensity laser pulse (above 10^{18} W/cm²) is focused in a spot of the order of a few microns on a target placed in vacuum, a plasma consisting of electrons and ions is created almost instantaneously.

• Radiation Pressure Acceleration (RPA), or Laser Piston regime: based on the action of the radiation pressure induced in the interaction of a short laser pulse, of extremely high intensity (above $10^{20} \div 10^{21}$ W/cm^2), with a thin and dense pre-plasma layer created, in front of a target, by the laser-pulse leading edge. The plasma electrons are locally separated from the plasma ions creating a strong accelerating field which efficiently accelerates the ions in the irradiated target area.

Laser-matter interaction

A precise control of the experimental conditions is challenging with high-power lasers → variations observed between experiments performed in conditions which would seem similar at a first glance.

The scaling of the most important characteristics (such as the energy per particle) with laser and target parameters is still unclear to a large extent, despite the large number of investigations performed.

Experiments at the 10² TW regime

Low-density target → one of the most effective way for transferring energy from lasers to a gas target occurs when the molecules in the gas are organized in clusters

If the electromagnetic field is strong enough the cluster atoms are ionized, and a Coulomb Explosion can take place.

Deuterium fusion process in plasma

$d + d \rightarrow {}^{3}He + n (2.45 \text{ MeV})$

It is a nuclear fusion reaction occurred in the Big-Bang Nuclosynthesis \rightarrow a deuterium nucleus formed from a proton and a neutron fuses with another proton to form a helium-3 nucleus.

It took place right after the hadronization step was over, when there were free p and n that eventually combine to form deuterium.

Indirect measurements of the deuterium burning available (1.5 MeV ÷ 2 keV), also exploiting the so-called Trojan-Horse Method. **However, a full comprehension of possible electron screening effects is crucial.**

Deuterium fusion process in plasma

 $d + d \rightarrow {}^{3}He + n (2.45 \text{ MeV})$

Model-independent determination of the astrophysical ${\bf S}$ factor in laser-induced fusion plasmas

D. Lattuada, M. Barbarino, A. Bonasera, W. Bang, H. J. Quevedo, M. Warren, F. Consoli, R. De Angelis, P. Andreoli, S. Kimura, G. Dyer, A. C. Bernstein, K. Hagel, M. Barbui, K. Schmidt, E. Gaul, M. E. Donovan, J. B. Natowitz, and T. Ditmire Phys. Rev. C **93**, 045808 – Published 19 April 2016

Experimental area: an example

- Proper *time-of-flight paths* must be foreseen for a reliable particle identification
- Neutron detectors must be kept displaced enough from the walls
- Cablings, signal transportation

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

Experiments at the PW regime

High-density target \rightarrow solid, Lu target

Target choice to be optimized in view of the thermalization goal.

https://www.frontiersin.org/articles/10.3389/fphy.2022.72 7718/full

176 Lu physics case 'o

101

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

1=

50

œ

¹⁷⁶Lu physics case

¹⁷⁶Lu: is a very long-lived in laboratory conditions and **in principle might act as a cosmo-chronometer**

- the s-process branching point at ¹⁷⁶Lu is among the most important ones for the understanding of slow neutron captures in the Asymptotic Giant Branch (AGB) phases of low and intermediate mass stars;
- it determines the abundance of ¹⁷⁶Hf, an "s-only" nucleus
- Scenario is complex due to the presence of an isomeric state placed at 122.45 keV with a very short lifetime

Important to investigate the *in-plasma* variations of the half-life

- 1. Once the solid ${}^{176}Lu$ target is hit by a laser pulse with an intensity as high as $10^{21} W/cm^2$, the ionization and the subsequent ion emission takes place
- 2. Lu ions travelling at a velocity of the order of hundreds of keV
- 3. Given the high energy administered by the laser in a short time interval, a local thermal equilibrium can be reached not only by the electrons, but also by the ion clouds, that can reach temperature as high as 10⁸K
- 4. At this temperature, the nuclei may be excited, and the Lu isomeric state ${}^{176,m}Lu$ can be populated
- 5. ¹⁷⁶Lu decays to the H 6⁺ xcited states, whose de-excitation proceeds through three different stops, leading to the subsequent emission of photons with energies equal to E_{γ} = 307, 202 and 88 keV. ^{176,m}Lu, on the other hand, directly decays to the first H fexcited state \rightarrow only the emission of a photon with E_{γ} = 88 keV is observed

- 1. Once the solid ${}^{176}Lu$ target is hit by a laser pulse with an intensity as high as $10^{21} W/cm^2$, the ionization and the subsequent ion emission takes place
- 2. Lu ions travelling at a velocity of the order of hundreds of keV
- 3. Given the high energy administered by the laser in a short time interval, a local thermal equilibrium can be reached not only by the electrons, but also by the ion clouds, that can reach temperature as high as 10⁸K
- 4. At this temperature, the nuclei may be excited, and the Lu isomeric state ${}^{176,m}Lu$ can be populated
- 5. ${}^{176}Lu$ decays to the Hf 6⁺ excited states, whose de-excitation proceeds through three different steps, leading to the subsequent emission of photons with energies equal to E_{γ} = 307, 202 and 88 keV. ${}^{176,m}Lu$, on the other hand, directly decays to the first Hf excited state \rightarrow only the emission of a photon with E_{γ} = 88 keV is observed

- 1. Once the solid ${}^{176}Lu$ target is hit by a laser pulse with an intensity as high as $10^{21} W/cm^2$, the ionization and the subsequent ion emission takes place
- 2. Lu ions travelling at a velocity of the order of hundreds of keV
- 3. Given the high energy administered by the laser in a short time interval, a local thermal equilibrium can be reached not only by the electrons, but also by the ion clouds, that can reach temperature as high as 10⁸K
- 4. At this temperature, the nuclei may be excited, and the Lu isomeric state ${}^{176,m}Lu$ can be populated
- 5. ¹⁷⁶Lu decays to the Hf 6⁺ excited states, whose de-excitation proceeds through three different steps, leading to the subsequent emission of photons with energies equal to E_{γ} = 307, 202 and 88 keV. ^{176,m}Lu, on the other hand, directly decays to the first Hf excited state \rightarrow only the emission of a photon with E_{γ} = 88 keV is observed

- 1. Once the solid ${}^{176}Lu$ target is hit by a laser pulse with an intensity as high as $10^{21} W/cm^2$, the ionization and the subsequent ion emission takes place
- 2. Lu ions travelling at a velocity of the order of hundreds of keV
- 3. Given the high energy administered by the laser in a short time interval, a $_{100}$ local thermal equilibrium can be reached not only by the electrons, but also by the ion clouds, that can reach temperature as high as 10^8 K⁸⁰
- 4. At this temperature, the nuclei may be excited, and the Lu isomeric state ${}^{176,m}Lu$ can be populated
- 5. ${}^{176}Lu$ decays to the Hf 6⁺ excited states, whose de-excitation proceeds through three different steps, leading to the subsequent emission of photons with energies equal to E_{γ} = 307, 202 and 88 keV. ${}^{176,m}Lu$, on the other hand, directly decays to the first Hf excited state \rightarrow only the emission of a photon with E_{γ} = 88 keV is observed

Possible experimental setup for β -decay

- 1. A PW laser pulse is sent to a solid target containing the radio-isotope under investigation.
- 2. The plasma is created and a forward emission of the thermalized excited nuclei takes place.
- 3. The nuclei travel and eventually decay in flight, populating daughter nuclei in excited states.
- 4. The flight path, and then the distance between the target and a suitable stopper, must be optimized in order to guarantee a proper time window for the decay measurement ($\sim 1\mu s$).
- 5. This poses limits on the half-life range that can be explored.
- 6. The gamma emitted in the decay process may be detected through a dedicated detection system.

Projections for a 10 Hz repetition rate

Number of decays as a function of laser time

Conclusions

- Possible physics program with hundreds of TW lasers: study of fusion processes in plasma, only barely explored at the moment in stellar-like conditions → few seminal measurements available (*e.g., Lattuada et al.*), to be confirmed with higher statistics.
- **2. Possible physics program with hundreds of TW lasers**: also other fusion processes can be explored (*e.g.*, ${}^{12}C$ burning, crucial for the field of nuclear astrophysics)
- **3.** Possible physics program with PW lasers: first-time *in-plasma* measurement of the ${}^{176}Lu$ $t_{1/2} \rightarrow$ implications for the understanding of the heavy-element production through *s*-processes
- 4. Natural evolution of PANDORA@CSN3 physics program
- 5. Possible dedicated detector R&D program (e.g., for timing)

backup

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

CSN3 Fisica Nucleare

Projections for a 10 Hz repetition rate

Total number of decays Number of decays per shot 10 10^{7} 10 0' 10 10 10⁵ 10 10⁴ 10 10 10^{3} 10^{2} 10² 10 10 1 1 1 1 1 1 1 $10 \ 10^2 \ 10^3 \ 10^4$ $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$ 10⁵ 10⁻¹ 10² 10^{3} 10^{4} 10⁶ 1 10 laser time (s) at 10 Hz repetition rate half life (days)

Number of decays as a function of half lives

Number of decays as a function of laser time (for $\tau = 3$ years)

Projections for a 10 Hz repetition rate

Total number of decays 10⁸ Time window = 10^1 ns 10⁷ 10⁶ Time window = 10^2 ns 10⁵ Time window = 10^3 ns 10⁴ 10³ 10² 10 10⁻¹ 10⁻² 10² 10^{3} 10⁵ 10⁴ 10^{6} 10 10 laser time (s) at 10 Hz repetition rate

Number of decays as a function of laser time

How to measure ¹⁷⁶Lu $t_{1/2}$ in plasma?

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

The PANDORA experiment

Build a plasma trap where ion species are confined in a magnetic field and a plasma is created with:

- Electron density: $10^{12} \div 10^{14} \ cm^{-3}$
- \circ Electron temperature: 0.1 \div 100 keV
- Ion density: $10^{11} cm^{-3} \rightarrow$ relies on the radiactive isotope concentration in plasma

$$\frac{dN}{dt} = \lambda n_i V \to \int_0^{T_{meas}} dN = \int_0^{T_{meas}} \lambda n_i V \, dN$$

 $N(T_{meas}) = \lambda n_i V T_{meas}$

HPGe y detectors Array SDD detector **Radial X-ray** Horn antenna for **Pin-hole Camera** InterferoPolarimetry Axial X-ray Pin-hole Camera RF 2-pin probe Fiber for optical spectroscopy

 $n_i V$: density and plasma volume, constant \rightarrow to be measured using multiple diagnostic tools

How to measure ¹⁷⁶Lu $t_{1/2}$ in plasma?

The PANDORA experiment

Build a plasma trap where ion species are confined in a magnetic field and a plasma is created with:

- Electron density: $10^{12} \div 10^{14} \ cm^{-3}$
- Electron temperature: 0.1 ÷ 100 keV
- Ion density: $10^{11} cm^{-3} \rightarrow$ relies on the radiactive isotope concentration in plasma

 $\circ~$ Ion temperature: \sim 1 e \rightarrow Ions are cold: no access to the excited states

$$\frac{dN}{dt} = \lambda n_i V \to \int_0^{T_{meas}} dN = \int_0^{T_{meas}} \lambda n_i V \, dN$$

$$N(T_{meas}) = \lambda n_i V T_{meas}$$

 $n_i V$: density and plasma volume, constant \rightarrow to be measured using multiple diagnostic tools

¹⁷⁶Lu: lifetime vs. T – theoretical predictions

PANDORA: only ground state will be studied \rightarrow T too low to investigate variation on the isomeric state

How to measure ¹⁷⁶Lu $t_{1/2}$ in plasma?

Scaling results to stellar environment

Build a plasma trap where ion species are confined in a magnetic field and a plasma is created with:

- Electron density: $10^{12} \div 10^{14} \ cm^{-3}$
- Electron temperature: 0.1 ÷ 100 keV
- Ion density: $10^{11} cm^{-3} \rightarrow$ relies on the radiactive isotope concentration in plasma

$$\frac{dN}{dt} = \lambda n_i V \to \int_0^{T_{meas}} dN = \int_0^{T_{meas}} \lambda n_i V \, dN$$

$$N(T_{meas}) = \lambda n_i V T_{meas}$$

 $n_i V$: density and plasma volume, constant \rightarrow to be measured using multiple diagnostic tools

T_e = 0.1-100 keV in a lab. Magnetoplasma

Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

Variation with T_e stronger than with $\rho_e \rightarrow$ "stellar effect" can be modelled by ECR (*Electron Cyclotron Resonance*) plasma

Why to use laser-induced plasma

Build a plasma trap where ion species are confined in a magnet : field and a plasma is created with:

- Electron density: $10^{12} \div 10^{14}$ cm
- Electron temperature: 0.1 ÷ 100
- Ion density: 10¹¹ cm⁻³ → relies on the radiactive isotope concentration in plane

$$\frac{dN}{dt} = \lambda n_i V \rightarrow \int_0^{T_{meas}} dN = \int_0^{T_{meas}} \lambda n_i V \, dN$$

$$N(T_{meas}) = \lambda n_i V T_{meas}$$

Why to use laser-induced plasma

Build a plasma trap where ion species are confined a magnet c field and a plasma is created with:

- Electron density: $10^{12} \div 10^{14}$ cm
- Electron temperature: 0.1 ÷ 100
- Ion density: $10^{11} cm^{-3} \rightarrow re^{-1}$ on the radiactive isotope concentration in planet

$$\frac{dN}{dt} = \lambda n_i V \rightarrow \int_0^{T_{meas}} dN = \int_0^{T_{meas}} \lambda n_i V \, dN$$

$$N(T_{meas}) = \lambda n_i V T_{meas}$$

Simulations by B. Mishra et al.: thanks, Bharat!

Exploring the onset of a (Full) Local Thermal Equilibrium:

- \circ Typical lifetime of nuclear excited states $\sim 10^{-15}$ s
- Assuming an excited state for, *e.g.*, ¹⁷⁶Lu*, around 122.45 keV
- Considering n_e=<q>n_i= 10²⁷ m⁻³ (a typical stars interior density), at T_e=T_i=6.68 keV, the excited level lifetime is already exactly the same of the excitation rate, meaning that this level can be populated and it is in thermal equilibrium in the assumed laser-induced plasma lifetime (order of ps or tens of ps)
- Calculation also rescaled to a more realistic expected density of a real laser-induced plasma scenario (n=e=n_i= 10²⁵ m⁻³) → the required plasma temperature to get the thermal equilibrium goes to around 37.5 keV. This value seems to be however absolutely achievable in the foreseen laboratory scenario, confirming that the decay from excited states is in principle feasible.

Fusion processes: light elements

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

s-process endpoint

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

Decay scheme for lutetium

Cosmogenic origin of elements

H			Big Ban fusi	Big Bang fusion			Dying low-mass stars		Exploding massive stars			lumar Io stal	n syntl ble iso	hesis otopes	5		He
Li 3	Be		Cos	Cosmic			Merging		Exploding			B 5	C 6	N 7	O 8	F 9	Ne 10
Na 11	Mg 12		ray fissi	ion		stars		dwarfs				AI 13	Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga ³¹	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	•	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra	م		Co	Dr	Nd	Dm	Sm		Gd	Th	Dv	Ho		Tm	Vh	
5555555555	55555555555		57	58	59	60	61	62	63	64	65	66	67	6 8	69	70	ЦЦ 71
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

Deuterium fusion process in plasma

$d + d \rightarrow {}^{3}He + n (2.45 \text{ MeV})$

- 1. The deuterium gas is kept at a low temperature, close to the critical temperature **where gas and liquid phase coexist**.
- 2. The adiabatic expansion through a supersonic nozzle in the reaction chamber induces the clusterization of the D molecules, which are then irradiated by a laser pulse.
- 3. Most of the pulse energy is absorbed by the clusters, causing the escape of the electrons and the formation of a plasma.
- 4. The high level of electrostatic fields reached in it produces the so-called Coulomb Explosion → emission of hot deuterium ions (with kinetic energy in the range tens-hundreds keV) that can fuse with ions coming from the explosion of other clusters.
- 5. High laser repetition rate and coarse granularity for the PID arrays to identify the fusion reaction products

uclear fusion from laser-cluster interaction

Experimental area: an example

- Proper *time-of-flight paths* must be foreseen for a reliable particle identification
- Neutron detectors must be kept displaced enough from the walls
- Cablings, signal transportation

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

Why plasma: fusion processes

ELECTRON SCREENING AND THERMONUCLEAR REACTIONS E. E. SALPETER 1954

Relatively small enhancements due to electron screening could cause significant errors in the extrapolation to lower energies, if the cross-section curve is forced to follow the trend of the enhanced cross sections without correcting for screening.

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

Main nucleosynthesis path

Figure 1.5: Overview of the main nucleosynthesis paths along the chart of nuclides. In orange the fusion contribution (chapter 1.2.3), in green the *s*-process path, in blue the *r*-process path (page 24) and in grey the rp- and γ processes (page 24). The *s* process and the γ process are secondary processes, which depend on certain seed isotopes, whereas fusion, the *r* process and the *rp* process are primary processes, which are not dependent on prior nucleosynthesis. Adapted from Glorius 2013.

Branching points and s-only isotopes

BRANCHING POINTS

Branching points are isotopes or isomers on the *s*-process path, which undergo a β -decay on the same timescale as a neutron capture. This leads to a branching in the *s*-process path where some of the mass flow follows the β -decay branch and the rest of the mass flow the neutron capture path (figure 1.10).

THE S-ONLY ISOTOPES

The *s*-only isotopes are isotopes, which are created almost solely by the *s* process and are shielded from other processes. These isotopes are often considered when comparing observations to simulations (figure 1.11).

Figure 1.10: Branching point ⁸⁵Kr along the *s*-process path. ⁸⁵Kr has a half-life of about 10 years, which would make it an excellent probe for *s*-process conditions, if all reaction channels would be known to good precision. Stable isotopes are marked grey, and unstable isotopes white.

7-.7.

¹⁷⁶Lu level scheme

FIG. 6. Partial level scheme of ¹⁷⁶Lu. Spin and parity assignments of the $\frac{3}{2}^{*}[411]$, $\frac{7}{2}^{-}[523]$, $\frac{5}{2}^{*}[402]$, and $\frac{9}{2}^{-}[514]$ proton orbitals coupled to the $\frac{7}{2}^{-}[514]$ neutron orbital in ¹⁷⁶Lu. The assignments for the $K^{\P} = 0^{+} \frac{7}{2}^{-}[523] - \frac{7}{2}^{-}[514]$ band are considered as tentative. Assignments for a $K^{\P} = 2^{-}$ vibrational band are included and the unassigned levels populated in the (t, α) reaction are shown on the extreme right. Gamma transitions assigned were taken from unassigned transitions of Ref. 1. All levels shown are populated in the (t, α) reaction.

The Decay Scheme of Natural Lutetium 176

JAMES R. ARNOLD AND THOMAS SUGIHARA* Institute for Nuclear Studies, University of Chicago, Chicago, Illinois (Received February 26, 1953)

THE nuclide lutetium 176 is of particular interest for two related reasons; first, that it is the central member of one of the four known triads of naturally occurring adjacent isobars, and second, that its spin of at least 7 units¹ is the highest known. Flammersfeld has reported a decay scheme for this nuclide,² in which both K capture and β -decay appear, the ratio of the branches being $K/\beta^-=2$. The observed gamma-ray was placed in the K branch, and its energy fixed at 0.260 Mev.

FIG. 3. A partial level scheme of 176 Lu, showing the positions and decays of the ground state and isomer at 122.9 keV. The equilibration of these two levels could be achieved by way of a level of intermediate spin, as illustrated in the figure.

Drip lines

PHYSICAL REVIEW C

VOLUME 44, NUMBER 6

DECEMBER 1991

¹⁷⁶Lu: An unreliable *s*-process chronometer

K. T. Lesko, E. B. Norman, R-M. Larimer, and B. Sur

Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 and Center for Particle Astrophysics, University of California, Berkeley, California 94720

C. B. Beausang*

Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (Received 17 October 1990)

A level scheme of ¹⁷⁶Lu up to ~ 1400 keV excitation energy is deduced from a $\gamma - \gamma$ coincidence experiment and previously published particle transfer data. 170 γ -ray transitions are placed between 85 levels. We identify 27 previously unknown levels and 131 previously unknown transitions in ¹⁷⁶Lu. With this γ -ray data we place the energy of the isomer at 122.9 keV. A level at 838.5 keV ($J^{\pi}=5^{-}$, $t_{1/2} < 10$ ns) is found to decay with substantial strength to both the ground state (7⁻, 4.08×10¹⁰ yr) and the 122.9 keV isomer (1⁻, 3.7 hr). The presence of this level guarantees the thermal equilibrium of ¹⁷⁶Lu^{g,m} for $T \ge 3 \times 10^8$ K and therefore during s-process nucleosynthesis. The resulting temperature sensitivity of its effective half-life rules out the use of ¹⁷⁶Lu as an s-process chronometer. The use of ¹⁷⁶Lu to determine s-process temperatures is discussed.

¹⁷⁶Lu is one of the few naturally occurring radio nucleos that have survived from the era of nucleosynthesis. Its present isotopic abundance [1] is 2.6% and its half-life is 4.08×10^{10} yr [2].

¹⁷⁶Lu branch in the s-process

Why plasma: β-decays

 β -decay in stellar environment: in a stellar plasma, ions are embedded in a cloud of charges, both positive and negative. These charges create EM fields which act as perturbation to the atomic/ionic levels leading to corrections of Q values which affects the decay rates.

Bound-state β **-decay** is a nuclear β - decay process in which an electron is created in a previously unoccupied atomic orbital rather than in the continuum.

For fully ionized atoms (bare nuclei), it is possible for electrons to fail to escape the atom, and to be emitted from the nucleus into lowlying atomic bound states (orbitals). This cannot occur for neutral atoms with low-lying bound states which are already filled by electrons.

https://www.frontiersin.org/research-topics/25146/nuclear-physics-and-astrophysics-in-plasma-traps

Why plasma: β-decays

 β -decay in stellar environment: in a stellar plasma, ions are embedded in a cloud of charges, both positive and negative. These charges create EM fields which act as perturbation to the atomic/ionic levels leading to corrections of Q values which affects the decay rates.

Bound-state β **-decay** is a nuclear β - decay process in which an electron is created in a previously unoccupied atomic orbital rather than in the continuum.

For fully ionized atoms (bare nuclei), it is possible for electrons to fail to escape the atom, and to be emitted from the nucleus into lowlying atomic bound states (orbitals). This cannot occur for neutral atoms with low-lying bound states which are already filled by electrons.

https://www.frontiersin.org/research-topics/25146/nuclear-physics-and-astrophysics-in-plasma-traps

Cosmo-chronometer or stellar thermometer?

¹⁷⁶Lu is one of the few naturally occurring radio nucleos that have survived from the era of nucleosynthesis. Its present isotopic abundance [1] is 2.6% and its half-life is 4.08×10^{10} yr [2].

Cosmo-chronometer or stellar thermometer?

¹⁷⁶Lu is one of the few naturally occurring radio nucleos that have survived from the era of nucleosynthesis. Its present isotopic abundance [1] is 2.6% and its half-life is 4.08×10^{10} yr [2].

Cosmo-chronometer or stellar thermometer?

¹⁷⁶Lu is one of the few naturally occurring radio nuclides that have survived from the era of nucleosynthesis. Its present isotopic abundance [1] is 2.6% and its half-life is 4.08×10^{10} yr [2].

PHYSICAL REVIEW C

VOLUME 44, NUMBER 6

DECEMBER 1991

¹⁷⁶Lu: An unreliable s-process chronometer

K. T. Lesko, E. B. Norman, R-M. Larimer, and B. Sur Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 and Center for Particle Astrophysics, University of California, Berkeley, California 94720

C. B. Beausang*

Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (Received 17 October 1990)

A level scheme of ¹⁷⁶Lu up to ~1400 keV excitation energy is deduced from a γ - γ coincidence experiment and previously published particle transfer data. 170 γ -ray transitions are placed between 85 levels. We identify 27 previously unknown levels and 131 previously unknown transitions in ¹⁷⁶Lu. With this γ -ray data we place the energy of the isomer at 122.9 keV. A level at 838.5 keV ($J^{\pi}=5^{-}$, $t_{1/2}$ < 10 ns) is found to decay with substantial strength to both the ground state $(7^-, 4.08 \times 10^{10} \text{ yr})$ and the 122.9 keV isomer $(1^{-}, 3.7 \text{ hr})$. The presence of this level guarantees the thermal equilibrium of $1^{76}Lu^{g,m}$ for $T \ge 3 \times 10^8$ K and therefore during s-process nucleosynthesis. The resulting temperature sensitivity of its effective half-life rules out the use of ¹⁷⁶Lu as an s-process chronometer. The use of ¹⁷⁶Lu to determine s-process temperatures is discussed.

The onset of the LTE (Local Thermal Equilibrium)

- È necessario dissipare l'energia per avere termalizzazione
- We are assuming a typical lifetime of nuclear excited states to be in the order of fs (a few 10^-15 sec). We are using a typical reaction rate estimate according to the well-known formula R=I_XNt σ , where I_X is the in-plasma total photon flux in s^-1, N_t is a surface "target" density term, that in a plasma represents the radius averaged density in an assumed spherical plasma plume, and σ is the interaction cross-section. Assuming an excited state for, e.g., 176Lu*, around 122.45 keV, and considering n_e=<q>n_i=10^27 m-3 (a typical stars interior density), at T_e=T_i=6.68 keV the excited level lifetime is already exactly the same of the excitation rate, meaning that this level can be populated and it is in thermal equilibrium in the assumed laser-induced plasma lifetime (order of ps or tens of ps). This calculation has been also rescaled to a more realistic expected density of a real laser-induced plasma scenario, assuming n=e=n_i=10^25 m-3. In this case, the required plasma temperature to get the thermal equilibrium goes to around 37.5 keV. This value seems to be however absolutely achievable in the foreseen laboratory scenario, confirming that the decay from excited states is in principle feasible.

Stellar nucleosynthesis proceeds in a hot and dense environment which affects the degree of ionization of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows important variations compared to neutral species

- 1. Electron Capture becomes impossible in fully ionized atoms.
- 2. Bound state β -decay typically marginal can become important.

https://www.frontiersin.org/research-topics/25146/nuclearphysics-and-astrophysics-in-plasma-traps **Bound-state** β **-decay** is a nuclear β - decay process in which an electron is created in a previously unoccupied atomic orbital rather than in the continuum.

Stellar nucleosynthesis proceeds in a hot and dense environment which affects the degree of ionization of the atoms involved in the stellar nucleosynthesis.

What happens when atoms are highly ionized?

The beta decay in highly ionized atoms shows important variations compared to neutral species

- 1. Electron Capture becomes impossible in fully ionized atoms.
- 2. Bound state β -decay typically marginal can become important.

https://www.frontiersin.org/research-topics/25146/nuclearphysics-and-astrophysics-in-plasma-traps **Bound-state** β **-decay** is a nuclear β - decay process in which an electron is created in a previously unoccupied atomic orbital rather than in the continuum.

Stellar plasma environment (ρ , T) can play a major role in modifying the rates at the branching point in s-process nucleosynthesis. *Temperature dependent variations evaluated in the seminal work of Takahashi and Yoko*i.

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

Stellar plasma environment (ρ , T) can play a major role in modifying the rates at the branching point in s-process nucleosynthesis. *Temperature dependent variations evaluated in the seminal work of Takahashi and Yoko*i.

Scaling results to stellar environment

Once measured the variation, it can be compared to Takahashi-Yokoi theory (without LTE hypothesis)

Adapt to stellar atmosphere assuming n_e and T_e leading to ions in LTE population

 $\begin{array}{l} \mbox{Variation with T_e stronger than} \\ \mbox{with ρ_e so "stellar effect" can be} \\ \mbox{modelled in ECR plasmas} \end{array}$

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

Experiments at the PW regime

High-density target \rightarrow solid, Lu target

Target choice to be optimized in view of the thermalization goal

Possible choice: non-isotopic cuboids of metallic bulk material (*e.g.*, natural Lu) coated with a layer of at least 200-300 µm of isotopic enriched material

https://www.frontiersin.org/articles/10.3389/fphy.2022.72 7718/full

Nuclear Physics at EuPRAXIA - CdL Preventivi, July 6th, 2023

CSN3 Fisica Nucleare