Feynman Integral

Synergies Between Particle Physics and Gravitational Waves

Manoj Kumar Mandal

INFN Padova

Fellini Seminar
29th May, 2023

Scattering Amplitudes

Collider Phenomenology

Gravitational Waves

Cosmology

Scattering Amplitude: Connecting Theory and Experiment

Perturbative Expansion of Cross-Section

Sum of Feynman Diagrams
$\underset{\substack{\text { Cross-section } \\ \text { Experiment } \\ \text { Measured in }}}{\substack{\text { Theory }}} \sigma^{0}\left|\mathcal{M}_{N}^{(0)}\right|^{2} d \Phi_{N}$

Scattering Amplitudes

Scattering Amplitude

Scattering Amplitude

$$
\begin{gathered}
\sigma_{N}^{(1)} \approx \int 2 \operatorname{Re}\left(\mathcal{M}_{N}^{(0) *} \mathcal{M}_{N}^{(1)}\right) d \Phi_{N}+\int\left|\mathcal{M}_{N+1}^{(0)}\right|^{2} d \Phi_{N+1} \\
\int\left[\frac{V_{2}}{\epsilon^{2}}+\frac{V_{1}}{\epsilon^{1}}+V_{0}\right] d \phi_{2}
\end{gathered}
$$

Scattering Amplitude

non

NNLO

$$
\sigma_{N}^{(2)} \approx \int 2 \operatorname{Re}\left(\mathcal{M}_{N}^{(0) *} \mathcal{M}_{N}^{(2)}\right) d \Phi_{N}+\int 2 \operatorname{Re}\left(\mathcal{M}_{N+1}^{(0) *} \mathcal{M}_{N+1}^{(1)}\right) d \Phi_{N+1}+\int\left|\mathcal{M}_{N+2}^{(0)}\right|^{2} d \Phi_{N+2}
$$

$$
\int\left[\frac{V V_{4}}{\epsilon^{4}}+\frac{V V_{3}}{\epsilon^{3}}+\frac{V V_{2}}{\epsilon^{2}}+\frac{V V_{1}}{\epsilon^{1}}+V V_{0}\right] d \phi_{2}
$$

$$
\int\left[\frac{R V_{2}}{\epsilon^{2}}+\frac{R V_{1}}{\epsilon^{1}}+R V_{0}\right] d \phi_{3}
$$

$$
\int\left[R R_{0}\right] d \phi_{4}
$$

Loop Integral: An example

One Loop Massless Bubble

$$
I\left(a_{1}, a_{2}\right)=\int \frac{d^{d} k_{1}}{\left.\left(k_{1}^{2}\right)^{a_{1}}\left(k_{1}+p\right)^{2}\right)^{a_{2}}}
$$

$$
\begin{aligned}
D_{1} & =k_{1}^{2} \\
D_{2} & =\left(k_{1}+p\right)^{2}
\end{aligned}
$$

Notion of Loop Integral

Computation of the Loop Amplitude

Generation of the Diagrams via QGRAF

Dirac algebra, Color sum, Trace in the numerators

Reduction to scalar integrals

$$
\mathcal{M}=\sum_{i} a_{i} I_{i} \quad i=\mathcal{O}\left(10^{5}\right)
$$

Integration－By－Parts Identity

Loop and external

 momenta$$
\begin{gathered}
\int_{\alpha=1}^{l} \prod d^{d} k_{\alpha} \frac{\partial}{\partial k_{j, \mu}}\left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)=\int_{\alpha=1}^{l} \prod d^{d} k_{\alpha}\left[\frac{\partial v^{\mu}}{\partial k_{j, \mu}}\left(\frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)-\sum_{j=1}^{N} \frac{a_{j}}{D_{j}} \frac{\partial D_{j}}{\partial k_{j, \mu}}\left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)\right] \\
C_{1} I\left(a_{1}, \cdots a_{N}-1\right)+\cdots+C_{r} I\left(a_{1}+1, \cdots a_{N}\right)=0
\end{gathered}
$$

县 Gives relations between different scalar integrals with different exponents
擞 $1(I+E)$ number of equations
糘 Solve the system symbolically ：Recursion relations
䉿 Solve for specific integer value of the exponents ：Laporta Algorithm

Integration-By-Parts Identity (Example)

One Loop Massless Bubble

$$
I\left(a_{1}, a_{2}\right)=\int \frac{d^{d} k_{1}}{\left.\left(k_{1}^{2}\right)^{a_{1}}\left(k_{1}+p\right)^{2}\right)^{a_{2}}}
$$

Integration-By-Parts Identity (Example)

IBP Identity

One Loop Massless Bubble

$$
I\left(a_{1}, a_{2}\right)=\int \frac{d^{d} k_{1}}{\left.\left(k_{1}^{2}\right)^{a_{1}}\left(k_{1}+p\right)^{2}\right)^{a_{2}}}
$$

$$
I\left(a_{1}, a_{2}\right)=\frac{a_{1}+a_{2}-d-1}{p^{2}\left(a_{2}-1\right)} I\left(a_{1}, a_{2}-1\right)+\frac{1}{p^{2}} I\left(a_{1}-1, a_{2}\right)
$$

Loop Amplitude

Reduction of scalar integrals to Master integrals

Compute the Master Integrals

Number of Master Integrals

$$
\mathcal{M}=\sum_{i} c_{i} J_{i} \quad i=\mathcal{O}\left(10^{2}\right)
$$

Integral Decomposition

and

Intersection Theory

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019)
Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019)
Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020)
Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022)
Chestnov, Gasparotto, MKM, Mastrolia, Matsubara-Heo, Munch, Takayama (2022)

Decomposition of Feynman Integral

$$
I=\sum_{i=1}^{\nu} c_{i} J_{i}
$$

Decomposition of Feynman Integral

Intersection Theory and Feynman Integral

Intersection Theory

Feynman Integral

Intersection Theory and Feynman Integral

Feynman Integral decomposition

Intersection Theory
 Feynman Integral

What is the Vector Space?
How to define the scalar product?

Mastrolia, Mizera (2018)

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019)
Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019)
Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020)
Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022)

Intersection Theory

Aomoto, Gelfand, Kita, Cho, Matsumoto, Mimachi, Mizera, Yoshida

$$
I=\int_{\mathscr{C}} z^{b}(1-z)^{c-b}(1-t z)^{-a} \frac{d z}{z}
$$

Multi-valued Function

Intersection Theory

Aomoto, Gelfand, Kita, Cho, Matsumoto, Mimachi, Mizera, Yoshida

$$
I=\int_{\mathscr{C}} z^{b}(1-z)^{c-b}(1-t z)^{-a} \frac{d z}{z}
$$

Multi-valued Function

$$
\langle\varphi| \mathcal{C} \otimes u]
$$

Pairing
$u(\mathbf{z})$ is a multi-valued function
$u(\mathbf{z})$ vanishes on the boundaries of $\mathcal{C}, u(\partial \mathcal{C})=0$

Basics of Intersection Theory

$$
0=\int_{\mathcal{C}} d(u \xi)=\int_{\mathcal{C}}(d u \wedge \xi+u d \xi)=\int_{\mathcal{C}} u\left(\frac{d u}{u} \wedge+d\right) \xi \equiv \int_{\mathcal{C}} u \nabla_{\omega} \xi . \quad \omega \equiv d \log u
$$

Basics of Intersection Theory

$$
0=\int_{\mathcal{C}} d(u \xi)=\int_{\mathcal{C}}(d u \wedge \xi+u d \xi)=\int_{\mathcal{C}} u\left(\frac{d u}{u} \wedge+d\right) \xi \equiv \int_{\mathcal{C}} u \nabla_{\omega} \xi . \quad \omega \equiv d \log u
$$

Equivalence Class

$$
\omega\langle\varphi|: \varphi \sim \varphi+\nabla_{\omega} \xi
$$

$$
\int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\varphi+\nabla_{\omega} \xi\right)
$$

Basics of Intersection Theory

$$
\omega \equiv d \log u
$$

$$
0=\int_{\mathcal{C}} d(u \xi)=\int_{\mathcal{C}}(d u \wedge \xi+u d \xi)=\int_{\mathcal{C}} u\left(\frac{d u}{u} \wedge+d\right) \xi \equiv \int_{\mathcal{C}} u \nabla_{\omega} \xi
$$

Equivalence Class

$$
\omega\langle\varphi|: \varphi \sim \varphi+\nabla_{\omega} \xi
$$

$$
\int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\varphi+\nabla_{\omega} \xi\right)
$$

Vector Space of n-forms

$$
H_{\omega}^{n} \equiv\left\{n \text {-forms } \varphi_{n} \mid \nabla_{\omega} \varphi_{n}=0\right\} /\left\{\nabla_{\omega} \varphi_{n-1}\right\}
$$

Basics of Intersection Theory

$$
0=\int_{\mathcal{C}} d(u \xi)=\int_{\mathcal{C}}(d u \wedge \xi+u d \xi)=\int_{\mathcal{C}} u\left(\frac{d u}{u} \wedge+d\right) \xi \equiv \int_{\mathcal{C}} u \nabla_{\omega} \xi
$$

$$
\omega \equiv d \log u
$$

$$
\nabla_{\omega} \equiv d+\omega \wedge
$$

Equivalence Class

$$
\omega\langle\varphi|: \varphi \sim \varphi+\nabla_{\omega} \xi
$$

$$
\int_{\mathcal{C}} u \varphi=\int_{\mathcal{C}} u\left(\varphi+\nabla_{\omega} \xi\right)
$$

$$
H_{\omega}^{n} \equiv\left\{n \text {-forms } \varphi_{n} \mid \nabla_{\omega} \varphi_{n}=0\right\} /\left\{\nabla_{\omega} \varphi_{n-1}\right\}
$$

$$
H_{-\omega}^{n} .
$$

$$
\nabla_{-\omega}=d-\omega \wedge
$$

Dimension of the Vector Space: Number of MIs

$$
\chi(X)=\sum_{k=0}^{2 n}(-1)^{k} \operatorname{dim} H_{\omega}^{k} . \quad H_{\omega}^{k \neq n} \text { vanish }
$$

$$
\begin{aligned}
\nu & =(-1)^{n} \chi(X) \\
& =(-1)^{n}\left(n+1-\chi\left(\mathcal{P}_{\omega}\right)\right) \\
& =\{\text { number of solutions of } \omega=0\}
\end{aligned}
$$

Decomposition of differential forms

Number of Linearly independent forms (twisted co-cycle) is ν

Basis	$\left\langle e_{i}\right\|$	$i=1,2, \ldots, \nu$
Dual Basis	$\left\|h_{j}\right\rangle$	$j=1,2, \ldots, \nu$

$$
\begin{array}{ll}
\text { Monomial Basis: } & \left\langle e_{i}\right|=\left\langle\phi_{i}\right| \equiv z^{i-1} d z \\
\text { d-Log Basis: } & \left\langle e_{i}\right|=\left\langle\varphi_{i}\right| \equiv \frac{d z}{z-z_{i}}
\end{array}
$$

$$
\text { Metric Matrix : } \quad \mathbf{C}_{i j}=\left\langle e_{i} \mid h_{j}\right\rangle
$$

Decomposition of differential forms

Number of Linearly independent forms (twisted co-cycle) is ν

$$
\text { Basis } \quad\left\langle e_{i}\right| \quad i=1,2, \ldots, \nu
$$

Dual Basis

$$
\left|h_{j}\right\rangle \quad j=1,2, \ldots, \nu
$$

Monomial Basis: $\quad\left\langle e_{i}\right|=\left\langle\phi_{i}\right| \equiv z^{i-1} d z$
d-Log Basis: $\quad\left\langle e_{i}\right|=\left\langle\varphi_{i}\right| \equiv \frac{d z}{z-z_{i}}$

Metric Matrix :

$$
\mathbf{C}_{i j}=\left\langle e_{i} \mid h_{j}\right\rangle
$$

$$
\mathbf{M}=\left(\begin{array}{ccccc}
\langle\varphi \mid \psi\rangle & \left\langle\varphi \mid h_{1}\right\rangle & \left\langle\varphi \mid h_{2}\right\rangle & \ldots & \left\langle\varphi \mid h_{\nu}\right\rangle \\
\left\langle e_{1} \mid \psi\right\rangle\left\langle e_{1} \mid h_{1}\right\rangle & \left\langle e_{1} \mid h_{2}\right\rangle & \ldots & \left\langle e_{1} \mid h_{\nu}\right\rangle \\
\left\langle e_{2} \mid \psi\right\rangle\left\langle e_{2} \mid h_{1}\right\rangle & \left\langle e_{2} \mid h_{2}\right\rangle & \ldots & \left\langle e_{2} \mid h_{\nu}\right\rangle \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle e_{\nu} \mid \psi\right\rangle\left\langle e_{\nu} \mid h_{1}\right\rangle & \left\langle e_{\nu} \mid h_{2}\right\rangle & \ldots & \left\langle e_{\nu} \mid h_{\nu}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\langle\varphi \mid \psi\rangle & \mathbf{A}^{\top} \\
\mathbf{B} & \mathbf{C}
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{det} \mathbf{M}=\operatorname{det} \mathbf{C}\left(\langle\varphi \mid \psi\rangle-\mathbf{A}^{\top} \mathbf{C}^{-1} \mathbf{B}\right)=0 \\
&\langle\varphi \mid \psi\rangle=\mathbf{A}^{\top} \mathbf{C}^{-1} \mathbf{B} \\
&=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i} \mid \psi\right\rangle
\end{aligned}
$$

Master Decomposition Formula :

$$
\langle\varphi|=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i}\right|
$$

Factorization of Identity

$$
\begin{gathered}
(i)(-i)=\mathbb{I} \\
\sum_{n}|n\rangle\langle n|=\mathbb{I} \\
\sum_{i, j=1}^{\nu}\left|e_{j}\right\rangle\left(C^{-1}\right)_{i j}\left\langle e_{i}\right|=\mathbb{I}_{c} \\
\sum_{i, j=1}^{\nu}\left|\mathcal{C}_{j}\right\rangle\left(H^{-1}\right)_{i j}\left\langle\mathcal{C}_{i}\right|=\mathbb{I}_{h}
\end{gathered}
$$

Complex Number

Quantum Mechanics

Feynman Integral ?

Decomposition of Uni-variate Integral

Integrals

Number of MIs

$$
I=\sum_{i=1}^{\nu} c_{i} J_{i} \quad J_{i}=\left\langle e_{i} \mid \mathcal{C}\right\rangle
$$

$$
\left\langle e_{i}\right|=\left\langle\phi_{i}\right| \equiv z^{i-1} d z \quad\left\langle e_{i}\right|=\left\langle\varphi_{i}\right| \equiv \frac{d z}{z-z_{i}}
$$

$$
\left.I=\int_{\mathcal{C}} u \varphi=\langle\varphi| \mathcal{C}\right]
$$

$$
\begin{gathered}
\omega \equiv d \log u \\
\nu=\{\text { the number of solutions of } \omega=0\}
\end{gathered}
$$

Computation of Intersection Number

Uni-Variate

$$
\langle\varphi|=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i}\left\langle e_{i}\right| \quad \quad \mathbf{C}_{i j}=\left\langle e_{i} \mid h_{j}\right\rangle
$$

Decomposition of Multi-Variate Integral

Integrals

$$
\left.I=\int_{\mathcal{C}} u \varphi=\langle\varphi| \mathcal{C}\right]
$$

Number of MIs

$$
\omega \equiv d \log u(\mathbf{z})=\sum_{i=1}^{n} \hat{\omega}_{i} d z_{i}
$$

$\nu=$ Number of solutions of the system of equations

$$
\begin{aligned}
\hat{\omega}_{i} & \equiv \partial_{z_{i}} \log u(\mathbf{z})=0, & i=1, \ldots, n \\
I & =\sum_{i=1}^{\nu} c_{i} J_{i} & \left.J_{i}=\left\langle e_{i}\right| \mathcal{C}\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { Choice of Bases } \\
e_{i}(\mathbf{z}) \quad h_{i}(\mathbf{z}) \\
\mathbf{C}_{i j}=\left\langle e_{i} \mid h_{j}\right\rangle \\
\langle\varphi|=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid h_{j}\right\rangle\left(\mathrm{C}^{-1}\right)_{j i}\left\langle e_{i}\right| \\
\text { Metric Matrix } \\
\text { Master Decomposition Formula }
\end{gathered}
$$

Multi-Variate

Computation of Intersection Number

Matsumoto (1998)
Goto (2015)
Fibration Method
Secondary Equation
Matsubara-Heo (2019)
Chestnov, Gasparotto, MKM, Mastrolia, Matsubara-Heo, Munch, Takayama (2022)

Multivariate Differential Equation

Matsumoto (1998)
Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022)

Univariate Intersection Number

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\frac{1}{2 \pi i} \int_{X} \varphi_{L} \wedge \varphi_{R}
$$

Univariate Intersection Number

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\frac{1}{2 \pi i} \int_{X} \varphi_{L} \wedge \varphi_{R}
$$

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \varphi_{R}\right)
$$

$$
\nabla_{\omega_{p}} \psi_{p}=\varphi_{L, p}
$$

Univariate Intersection Number

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\frac{1}{2 \pi i} \int_{X} \varphi_{L} \wedge \varphi_{R}
$$

First Order Differential Equation

$$
\nabla_{\omega_{p}} \psi_{p}=\varphi_{L, p}
$$

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle_{\omega}=\sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p}\left(\psi_{p} \varphi_{R}\right)
$$

Laurent Expansion around the poles of ω

$$
\tau \equiv z-p
$$

Known: $\quad \varphi_{L, p}$

$$
\text { Ansatz }: \quad \psi_{p}=\sum_{j=\min }^{\max } \psi_{p}^{(j)} \tau^{j}+\mathcal{O}\left(\tau^{\max +1}\right)
$$

The coefficients are obtained by solving the differential equation

Examples of decomposition

Further Applications

$$
\begin{aligned}
& \text { - .. - - ..-0 }
\end{aligned}
$$

Gravitational Wave Observables

MKM, Mastrolia, Patil, Steinhoff (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)
MKM, Mastrolia, O Silva, Patil, Steinhoff (2023)

GW observations

Masses in the Stellar Graveyard

Tasks

Supplement conventional Analysis
Increase Theoretical Precision
©Perform Gravity phenomenology

Solving two-body problem in GR

Antelis, moreno (2016)

Post-Newtonian (PN)

Numerical Relativity
Post-Minkowskian (PM)

Analytical Approximation Methods

Post-Newtonian (PN)
 $$
\frac{v^{2}}{c^{2}} \sim \frac{G M}{r c^{2}} \ll 1
$$

Post-Minkowskian (PM)

$\frac{G M}{r c^{2}} \ll 1$

Self-Force (SF)

$$
\frac{m_{1}}{m_{2}} \ll 1
$$

Effective One-Body (EOB)

Post-Newtonian Expansion EFT set up

Equations of Motion

$$
\begin{array}{ll}
\dot{r}=\frac{d \mathcal{H}}{d p_{r}} & \dot{p}_{r}=-\frac{d \mathcal{H}}{d r}+\mathcal{F}_{r} \\
\dot{\phi}=\frac{d \mathcal{H}}{d p_{\phi}} & \dot{p}_{\phi}=-\frac{d \mathcal{H}}{d \phi}+\mathcal{F}_{\phi}
\end{array}
$$

Need:

Hamiltonian \mathcal{H}
Radiation Reaction \mathcal{F}

Advantage of QFT techniques

\& Use of Feynman diagrams

© Dimensional regularization

Better to handle spurious divergences

Multi-loop Techniques

$=c_{1}$
 $+c_{2}$

Post-Newtonian Expansion EFT set up

Hierarchy of scales
$r_{\star} \ll r \ll \lambda_{G W}$

Post-Newtonian Expansion EFT set up

Hierarchy of scales
$r_{\star} \ll r \ll \lambda_{G W}$

Tower of EFTs

 Goldberger, Rothstein1. One-Particle EFT for Compact Object
2. EFT of Composite Particle for Binary
3. Effective Theory of Dynamical Multipoles

Post-Newtonian Expansion EFT set up

$$
\begin{aligned}
& S\left[g_{\mu \nu}\right]=-\frac{1}{16 \pi G} \int d^{4} x \sqrt{g} R \\
& S_{p p}\left[g_{\mu \nu}\right]=-m \int d \sigma \sqrt{u^{2}}
\end{aligned}
$$

Post-Newtonian Expansion EFT set up

$$
\begin{aligned}
& S\left[g_{\mu \nu}\right]=-\frac{1}{16 \pi G} \int d^{4} x \sqrt{g} R \\
& S_{p p}\left[g_{\mu \nu}, x_{K}\right]=\sum_{K=1}^{2}-m_{K} \int d \sigma \sqrt{u_{K}^{2}}
\end{aligned}
$$

Hierarchy of scales
$r_{\star} \ll r \ll \lambda_{G W}$

Tower of EFTs

2. EFT of Composite Particle for Binary
potential gravitons $H_{\mu \nu}$ with scaling $\left(k_{0}, \mathbf{k}\right) \sim(v / r, 1 / r)$
radiation gravitons $h_{\mu \nu}$ with scaling $\left(k_{0}, \mathbf{k}\right) \sim(v / r, v / r)$

EFT at the orbital scale: Conservative Dynamics

$$
e^{i S_{e f f}\left[x_{K}\right]}=\int \mathcal{D} \bar{h}_{\mu \nu} \int \mathcal{D} H_{\mu \nu} \exp \left\{i S[\eta+\bar{h}+H]+i \sum_{K=1}^{2} S_{p p}\left[x_{K}(t), \eta+\bar{h}+H\right]\right\}
$$

Effective Action for Dynamical Multipoles

$$
\begin{aligned}
& \int \mathcal{D} H \exp \left\{i S[\eta+H, h=0]+i S_{p p}\left[x_{K}, \eta+H, h=0\right]\right\}=e^{i S_{e f f}\left[h=0, x_{K}\right]}=e^{i \int d t \mathcal{L}_{e f f}}
\end{aligned}
$$

Potential for the 2-body system

$$
\mathcal{V}_{\text {eff }}=\mathbf{i} \lim _{d \rightarrow 3} \int_{\mathbf{p}} e^{\mathbf{i p} \cdot\left(\mathbf{x}_{(1)}-\mathbf{x}_{(2)}\right)}
$$

(2)

Key Observation

Status of PN Results

Levi, McLeod, Steinhoff, Teng, Von Hippel,..
Kim, Levi, Yin (2021)
Kim, Levi, Yin (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)
Levi, Yin (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)

1PN [Einstein, Infeld, Hoffman '38].
2PN [Ohta et al., '73].
3PN [Jaranowski, Schaefer, '97; Damour, Jaranowski, Schaefer, '97; Blanchet, Faye, '00; Damour, Jaranowski, Schaefer, '01]
4PN [Damour, Jaranowski, Schäfer, Bernard, Blanchet, Bohe, Faye, Marsat, Marchand, Foffa, Sturani, Mastrolia, Sturm, Porto, Rothstein...]
5PN [Foffa, Mastrolia, Sturani, Sturm, Bodabilla, '19; Blümlein, Maier, Marquard, '19; Bini, Damour, Geralico, '19; Blümlein, Maier, Marquard, '19; Almeida, Foffa, Sturani, '22;]

Status of PN Results

Levi, McLeod, Steinhoff, Teng, Von Hippel,..
Kim, Levi, Yin (2021)
Kim, Levi, Yin (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)
Levi, Yin (2022)
MKM, Mastrolia, Patil, Steinhoff (2022)
Brunello, MKM, Mastrolia, Patil (W.I.P)

1PN [Einstein, Infeld, Hoffman '38].
2PN [Ohta et al., '73].
3PN [Jaranowski, Schaefer, '97; Damour, Jaranowski, Schaefer, '97; Blanchet, Faye, '00; Damour, Jaranowski, Schaefer, '01]
4PN [Damour, Jaranowski, Schäfer, Bernard, Blanchet, Bohe, Faye, Marsat, Marchand, Foffa, Sturani, Mastrolia, Sturm, Porto, Rothstein...]
5PN [Foffa, Mastrolia, Sturani, Sturm, Bodabilla, '19; Blümlein, Maier, Marquard, '19; Bini, Damour, Geralico, '19; Blümlein, Maier, Marquard, '19; Almeida, Foffa, Sturani, '22;]

EFT of Spinning Objects

$S_{\mathrm{EH}}=-\frac{c^{4}}{16 \pi G_{N}} \int d^{4} x \sqrt{g} R\left[g_{\mu \nu}\right]+\frac{c^{4}}{32 \pi G_{N}} \int d^{4} x \sqrt{g} g_{\mu \nu} \Gamma^{\mu} \Gamma^{\nu}$

$$
\Omega_{(a)}^{\mu \nu}=\Lambda_{(a) A}^{\mu} \frac{d \Lambda_{(a)}^{A \nu}}{d \tau}
$$

$$
S_{\mathrm{pp}}=\sum_{a=1,2} \int d \tau\left(-m_{(a)} c \sqrt{u_{(a)}^{2}}-\frac{1}{2} S_{(a) \mu \nu} \Omega_{(a)}^{\mu \nu}-\frac{S_{(a) \mu \nu} u_{(a)}^{\nu}}{u_{(a)}^{2}} \frac{d u_{(a)}^{\mu}}{d \tau}+\mathcal{L}_{(a)}^{(R)}+\mathcal{L}_{(a)}^{\left(R^{2}\right)}+\ldots\right)
$$

$$
\begin{aligned}
& \mathcal{L}_{(a)}^{(R)}=-\frac{1}{2 m_{(a)}}\left(C_{\mathrm{ES}^{2}}^{(0)}\right)_{(a)} \frac{E_{\mu \nu}}{u_{(a)}}\left[S_{(a)}^{\mu} S_{(a)}^{\nu}\right]_{\mathrm{STF}}+\ldots \\
& \mathcal{L}_{(a)}^{\left(R^{2}, S^{0}\right)}=\frac{1}{2}\left(C_{\mathrm{E}^{2}}^{(2)}\right)_{(a)} \frac{G_{N}^{2} m_{(a)}}{c^{5}} \frac{E_{\mu \nu} E^{\mu \nu}}{u_{(a)}^{3}} S_{(a)}^{2}+\ldots \\
& \mathcal{L}_{(a)}^{\left(R^{2}, S^{2}\right)}=\frac{1}{2}\left(C_{\mathrm{E}^{2} \mathrm{~S}^{2}}^{(0)}\right)_{(a)} \frac{G_{N}^{2} m_{(a)}}{c^{5}} \frac{E_{\mu \alpha} E_{\nu}{ }^{\alpha}}{u_{(a)}^{3}}\left[S_{(a)}^{\mu} S_{(a)}^{\nu}\right]_{\mathrm{STF}}+\ldots
\end{aligned}
$$

$$
S_{(a) \mu \nu}=-2 \frac{\partial L_{\mathrm{pp}}}{\partial \Omega_{(a)}^{\mu \nu}}
$$

Computational Algorithm : Towards Automation

\square Automated in-house codes

Aim to publish the code in future

Diagrams for Spinning Binaries

\mathbf{S}^{0}				
Order	Diagrams	Loops	Diagrams	
0PN	1	0	1	
1PN	4	1	1	
		0	3	
2PN	21	2	5	
		1	10	
		0	6	
3 PN	130	3	8	
		2	75	
		1	38	

(a) Non-spinning sector

Order	Diagrams	Loops	Diagrams
LO	2	0	2
NLO	13	1	8
		0	5
$\mathrm{~N}^{2} \mathrm{LO}$	100	2	56
		1	36
		0	8
$\mathrm{~N}^{3} \mathrm{LO}$	894	3	288
		2	495
		1	100
		0	11

(b) Spin-orbit sector

S^{2}

Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	7	1	3
		0	4
$\mathrm{~N}^{2} \mathrm{LO}$	58	2	27
		1	24
		0	7
$\mathrm{~N}^{3} \mathrm{LO}$	553	3	125
		2	342
		1	76
		0	10

(a) Spin1-Spin2 and Spin1 ${ }^{2}\left(\operatorname{Spin} 2^{2}\right)$ sector

Order	Loops	Diagrams
LO	1	1

(c) E^{2} sector

MKM, Mastrolia, Patil, Steinhoff (2022)

MKM, Mastrolia, Patil, Steinhoff (2022)

Order	Diagrams	Loops	Diagrams
LO	1	0	1
NLO	4	1	1
		0	3
$\mathrm{~N}^{2} \mathrm{LO}$	25	2	7
		1	12
		0	6
$\mathrm{~N}^{3} \mathrm{LO}$	168	3	15
		2	101
		1	43
		0	9

(b) ES^{2} sector

Order	Loops	Diagrams
LO	1	1

(d) $E^{2} S^{2}$ sector

$$
\begin{aligned}
\mathcal{L}\left(x_{a}, \dot{x}_{a}, \ddot{x}_{a}, \ldots S_{a}, \dot{S}_{a}, \ddot{S}_{a}, \ldots\right) & =-\mathbf{i} \lim _{d \rightarrow 3} \int_{\mathbf{p}} e^{\mathbf{i} \mathbf{p} \cdot\left(\mathbf{x}_{(1)}-\mathbf{x}_{(2)}\right)} \\
& =-\mathbf{i} \lim _{d \rightarrow 3} \int_{\mathbf{p}} e^{\mathbf{i} \mathbf{p} \cdot\left(\mathbf{x}_{(1)}-\mathbf{x}_{(2)}\right)}
\end{aligned}
$$

Dimensional Regularization $\mathrm{d}=3+\epsilon$
\% IBP Decomposition

$$
\longrightarrow
$$

(a) $M_{1,1}$

(a) $M_{2,1}$

(b) $M_{2,2}$

(a) $M_{3,1}$

Binding Energy for Spin-Orbit Coupling

GW cycles before merger

Tidal Effects

- NS features a number of oscillation modes
* The dominant mode is known as f-mode, which is the lowest frequency surface gravity waves
* The frequency depend only on the mean density of the star and not on the Equation of State of the NS
© The f-modes dynamical tides are important as it significantly affect the inference of the equations of state of NS

Dynamical Electric Tides at 2 PN

$$
\mathcal{L}_{\mathrm{DT}}=\frac{z}{4 \lambda \omega_{f}^{2}}\left[\frac{c^{2}}{z^{2}} \frac{\mathrm{~d} Q_{\mu \nu}}{\mathrm{d} \tau} \frac{\mathrm{~d} Q^{\mu \nu}}{\mathrm{d} \tau}-\omega_{f}^{2} Q_{\mu \nu} Q^{\mu \nu}\right]-\frac{z}{2} E_{\mu \nu} Q^{\mu \nu}
$$

Adiabatic limit: $\quad \omega_{f} \rightarrow \infty$
$Q_{\mu \nu}=-\lambda E_{\mu \nu}$
Tidal deformability

Binding Energy

$$
\begin{aligned}
E_{\mathrm{AT}}\left(x, \widetilde{\lambda}_{(a)}\right)= & -x^{6}\left(9 \widetilde{\lambda}_{(+)}\right)+x^{7}\left[\left(\frac{33}{4} \nu-\frac{121}{8}\right) \tilde{\lambda}_{(+)}-\left(\frac{55}{8}\right) \delta \widetilde{\lambda}_{(-)}\right] \\
& +x^{8}\left[\left(-\frac{91}{16} \nu^{2}+\frac{2717}{42} \nu-\frac{20865}{224}\right) \widetilde{\lambda}_{(+)}+\left(\frac{715}{48} \nu-\frac{11583}{224}\right) \delta \widetilde{\lambda}_{(-)}\right]
\end{aligned}
$$

Scattering Angle

$$
\begin{aligned}
\frac{\chi_{\mathrm{AT}}}{\Gamma} & =\frac{1}{M b^{4}}\left[\lambda_{(+)} \delta \lambda_{(-)}\right] \cdot\left\{\pi\left(\frac{G_{N} M}{v^{2} b}\right)^{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left\{\frac{45}{16}+\frac{135}{32}\left(\frac{v^{2}}{c^{2}}\right)+\frac{1575}{256}\left(\frac{v^{4}}{c^{4}}\right)\right\}\right. \\
& +\left(\frac{G_{N} M}{v^{2} b}\right)^{3}\left\{48\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
732 / 5 \\
12
\end{array}\right]\left(\frac{v^{2}}{c^{2}}\right)+\frac{3}{35}\left[\begin{array}{c}
3073 \\
593
\end{array}\right]\left(\frac{v^{4}}{c^{4}}\right)\right\} \\
& \left.+\pi\left(\frac{G_{N} M}{v^{2} b}\right)^{4}\left\{\frac{315}{8}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{315}{64}\left[\begin{array}{c}
51-2 \nu \\
5
\end{array}\right]\left(\frac{v^{2}}{c^{2}}\right)+\frac{15}{128}\left[\begin{array}{c}
5331-274 \nu \\
1383
\end{array}\right]\left(\frac{v^{4}}{c^{4}}\right)\right\}\right\}
\end{aligned}
$$

Conclusion

■ Novel Algebraic Property Unveiled

- The algebra of Feynman Integrals is controlled by intersection numbers
[Intersection Numbers: Scalar Product/Projection between Feynman Integrals

V Useful for both Physics and Mathematics

I- Applications to GW phenomenology

IV progress in understanding spin effects / tidal effects for the compact binaries

I A number of observables e.g binding energy, scattering angle has been computed to high precision

Outlook

Outlook

Thank You

