Feynman Integral **Synergies Between Particle Physics and Gravitational Waves**

Manoj Kumar Mandal

Fellini Seminar 29th May, 2023

INFN Padova

G.A. 754496

Scattering Amplitudes

Collider Phenomenology

Gravitational Waves

Scattering Amplitude: Connecting Theory and Experiment

Perturbative Expansion of Cross-Section

$$\sigma = \sigma^{(0)} + lpha_s \sigma^{(1)}$$

Cross-section Measured in Experiment

Scattering Amplitudes

Sum of Feynman Diagrams

$$\mathcal{M}_N^{(0)}|^2 d\Phi_N$$

Theory

Scattering Amplitude

LO

$$\sigma^0 \approx \int |\mathcal{M}_N^{(0)}|^2 d\Phi_N$$

$$= \int 2\text{Re}\left(\mathcal{M}_{N}^{(0)*}\mathcal{M}_{N}^{(1)}\right) d\Phi_{N} + \int |\mathcal{M}_{N+1}^{(0)}|^{2} d\Phi_{N+1}$$

$$\int \left[rac{V_2}{\epsilon^2}+rac{V_1}{\epsilon^1}+V_0
ight]d\phi_2$$

 $[R_0] d\phi_3$

Scattering Amplitude

$$\sigma_N^{(2)} \approx \int 2\text{Re}\left(\mathcal{M}_N^{(0)*}\mathcal{M}_N^{(2)}\right) d\Phi_N + \int 2\text{Re}\left(\mathcal{M}_{N+1}^{(0)*}\mathcal{M}_{N+1}^{(1)}\right) d\Phi_{N+1} + \int |\mathcal{M}_{N+2}^{(0)}|^2 d\Phi_N$$

$$\int \left[\frac{VV_4}{\epsilon^4} + \frac{VV_3}{\epsilon^3} + \frac{VV_2}{\epsilon^2} + \frac{VV_1}{\epsilon^1} + VV_0\right] d\phi_2 \qquad \int \left[\frac{RV_2}{\epsilon^2} + \frac{RV_1}{\epsilon^1} + RV_0\right] d\phi_3 \qquad \int \left[RR_0\right] d\phi_3$$

Loop Integral: An example

 $I(a_1, a_2) = \int \frac{d^d k}{(k_1^2)^{a_1} (k_1^2)^{a_2}}$

One Loop Massless Bubble

$$\frac{k_1}{(1+p)^2}$$

$$D_1 = k_1^2$$
$$D_2 = (k_1 + p)^2$$

Notion of Loop Integral

Loop Momenta

Number of Loops

$$\int \cdots \int d^d k_1 \cdots d^d k_l \frac{\mathcal{N}\left(\{k_i\}, \{p_j\}\right)}{D_1^{a_1} \cdots D_N^{a_N}}$$
Number of Propagator

$$D_i = q_i^2 - m_i^2$$

$$q_i = \sum_j k_j + \sum_m p_m$$

Computation of the Loop Amplitude

$$i = \mathcal{O}(10^5)$$

Integration-By-Parts Identity

$$\int_{\alpha=1}^{l} \prod d^{d}k_{\alpha} \frac{\partial}{\partial k_{j,\mu}} \left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) = \int_{\alpha=1}^{l} \prod d^{d}k_{\alpha} \left[\frac{\partial v^{\mu}}{\partial k_{j,\mu}} \left(\frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) - \sum_{j=1}^{N} \frac{a_{j}}{D_{j}} \frac{\partial D_{j}}{\partial k_{j,\mu}} \left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) \right]$$
$$C_{1} I(a_{1}, \cdots a_{N} - 1) + \cdots + C_{r} I(a_{1} + 1, \cdots a_{N}) = 0$$

Gives relations between different scalar integrals with different exponents

- Solve the system symbolically : Recursion relations
- Solve for specific integer value of the exponents : Laporta Algorithm

LiteRed

Fire, Reduze, Kira,...

Integration-By-Parts Identity (Example)

One Loop Massless Bubble

$$I(a_1, a_2) = \int \frac{d^d k_1}{(k_1^2)^{a_1} (k_1 + p)^2)^{a_2}}$$

Integration-By-Parts Identity (Example)

I(

One Loop Massless Bubble

$$I(a_1, a_2) = \int \frac{d^d k_1}{(k_1^2)^{a_1} (k_1 + p)^2} d^{a_2} d^{a_2$$

IBP Identity

$$a_1, a_2) = \frac{a_1 + a_2 - d - 1}{p^2(a_2 - 1)} I(a_1, a_2 - 1) + \frac{1}{p^2} I(a_1 - 1)$$

Loop Amplitude

Number of Master Integrals

$$i = \mathcal{O}(10^2)$$

Integral Decomposition

and

Intersection Theory

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020) Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022) Chestnov, Gasparotto, MKM, Mastrolia, Matsubara-Heo, Munch, Takayama (2022)

Decomposition of Feynman Integral

 $I = \sum_{i=1}^{\nu} c_i J_i$

Decomposition of Feynman Integral

$$I = I$$
$$I \cdot J_i$$
$$J_i \cdot J_j = \delta_{ij}$$

Intersection Theory and Feynman Integral

$$I = I \cdot J_i$$
$$J_i \cdot J_j = \delta_{ij}$$

Mastrolia, Mizera (2018)

Intersection Theory and Feynman Integral

Intersection Theory

Feynman Integral

Mastrolia, Mizera (2018) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020) Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022) Chestnov, Gasparotto, MKM, Mastrolia, Matsubara-Heo, Munch, Takayama (2022)

Feynman Integral decomposition

What is the Vector Space?

How to define the scalar product?

Intersection Theory

Aomoto, Gelfand, Kita, Cho, Matsumoto, Mimachi, Mizera, Yoshida

 $I = \int_{\mathscr{C}}^{b} z^{b} (1 - z)^{c}$

Single valued differential form

$$b^{c-b}(1-tz)^{-a}\frac{dz}{z}$$

Multi-valued Function

Intersection Theory

Aomoto, Gelfand, Kita, Cho, Matsumoto, Mimachi, Mizera, Yoshida

$$I = \int_{\mathscr{C}} z^{b} (1-z)^{c-b} (1-tz)^{-a} \frac{dz}{z}$$

 $u(\mathbf{z})$ is a multi-valued function

 $u(\mathbf{z})$ vanishes on the boundaries of \mathcal{C} , $u(\partial \mathcal{C}) = 0$

Single valued differential form

Multi-valued Function

 $\langle arphi | \mathcal{C} \otimes u]$

Pairing

 $I = \int_{\mathcal{C}} u(\mathbf{z}) \, \varphi(\mathbf{z}) \, \text{Twisted Co-cycle}$

$$0 = \int_{\mathcal{C}} d\left(u\,\xi\right) = \int_{\mathcal{C}} \left(du \wedge \xi + u\,d\xi\right) = \int_{\mathcal{C}} d\left(u\,\xi\right) = \int_{\mathcal{C} d\left($$

 $\omega \langle \varphi | : \varphi \sim \varphi + \nabla_{\omega} \xi$ **Equivalence Class**

$$\int_{\mathcal{C}} u \,\varphi = \int_{\mathcal{C}} u \left(\varphi + \nabla_{\omega} \xi\right)$$

22

Equivalence Class

 $\omega \langle \varphi | : \varphi \sim \varphi + \nabla_{\omega} \xi$

Vector Space of n-forms

 $H^n_\omega \equiv \{n \text{-forms } \varphi\}$

 $\int_{\mathcal{C}} u \,\varphi = \int_{\mathcal{C}} u \left(\varphi + \nabla_{\omega} \xi\right)$

$$\varphi_n | \nabla_\omega \varphi_n = 0 \} / \{ \nabla_\omega \varphi_{n-1} \}$$

Twisted Cohomology Group

$$0 = \int_{\mathcal{C}} d\left(u\,\xi\right) = \int_{\mathcal{C}} \left(du \wedge \xi + u\,d\xi\right) = \int_{\mathcal{C} } \left(du \wedge \xi + u\,d\xi\right) = \int_{\mathcal{C} } \left(du \wedge \xi$$

Equivalence Class

$$\omega \langle \varphi | : \varphi \sim \varphi + \nabla_{\omega} \xi$$

Vector Space of n-forms

 $H^n_{\omega} \equiv \{n \text{-forms } \varphi_n\}$

Dual space

$$H^n_{-\omega}$$

$$\int_{\mathcal{C}} u \,\varphi = \int_{\mathcal{C}} u \left(\varphi + \nabla_{\omega} \xi\right)$$

$$|\nabla_{\omega}\varphi_n = 0\} / \{\nabla_{\omega}\varphi_{n-1}\}$$

Twisted Cohomology Group

$$\nabla_{-\omega} = d - \omega \wedge$$

Dimension of the Vector Space: Number of MIs

$$\chi(X) = \sum_{k=0}^{2n} (-1)^k \dim H^k_{\omega}.$$

$$\nu = (-1)^n \chi(X)$$

= $(-1)^n (n+1 - \chi(\mathcal{P}_{\omega}))$
= {number of solutions of $\omega = 0$ }

 $H^{k \neq n}_{\omega}$ vanish.

Aomoto (1975)

Decomposition of differential forms

Number of Linearly independent forms (twisted co-cycle) is $\,
u$

Basis	$\langle e_i $	$i=1,2,\ldots, u$
Dual Basis	$ h_{j} angle$	$j=1,2,\ldots, u$

Monomial Basis :
$$\langle e_i | = \langle \phi_i | \equiv z^{i-1} dz$$

d-Log Basis : $\langle e_i | = \langle \varphi_i | \equiv \frac{dz}{z - z_i}$

Metric Matrix :

$$\mathbf{C}_{ij} = \langle e_i | h_j \rangle$$

Decomposition of differential forms

Number of Linearly independent forms (twisted co-cycle) is ~ u

Basis	$\langle e_i $	$i=1,2,\ldots, u$					
Dual Basis	$ h_{j} angle$	$j=1,2,\ldots, u$					

Monomial Basis :
$$\langle e_i | = \langle \phi_i | \equiv z^{i-1} dz$$

d-Log Basis : $\langle e_i | = \langle \varphi_i | \equiv \frac{dz}{z - z_i}$

Metric Matrix :

$$\mathbf{C}_{ij} = \langle e_i | h_j \rangle$$

Master Decomposition Formula :

$$\mathbf{M} = \begin{pmatrix} \langle \varphi | \psi \rangle & \langle \varphi | h_1 \rangle & \langle \varphi | h_2 \rangle & \dots & \langle \varphi | h_\nu \rangle \\ \langle e_1 | \psi \rangle & \langle e_1 | h_1 \rangle & \langle e_1 | h_2 \rangle & \dots & \langle e_1 | h_\nu \rangle \\ \langle e_2 | \psi \rangle & \langle e_2 | h_1 \rangle & \langle e_2 | h_2 \rangle & \dots & \langle e_2 | h_\nu \rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \langle e_\nu | \psi \rangle & \langle e_\nu | h_1 \rangle & \langle e_\nu | h_2 \rangle & \dots & \langle e_\nu | h_\nu \rangle \end{pmatrix} \equiv \begin{pmatrix} \langle \varphi | \psi \rangle & \mathbf{A}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{C} \end{pmatrix}$$

$$\det \mathbf{M} = \det \mathbf{C} \left(\langle \varphi | \psi \rangle - \mathbf{A}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B} \right) = 0$$
$$\langle \varphi | \psi \rangle = \mathbf{A}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}$$
$$= \sum_{i,j=1}^{\nu} \langle \varphi | h_j \rangle (\mathbf{C}^{-1})_{ji} \langle e_i | \psi \rangle$$

$$\langle \varphi | = \sum_{i,j=1}^{\nu} \langle \varphi | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji} \langle e_j \rangle$$

Factorization of Identity

$$(-i) = \mathbb{I}$$

 $n \rangle \langle n | = \mathbb{I}$

$$\left| \int_{ij} \left\langle \mathcal{C}_i \right| = \mathbb{I}_c$$
 $I^{-1} \left|_{ij} \left\langle \mathcal{C}_i \right| = \mathbb{I}_h$

Complex Number

Quantum Mechanics

Feynman Integral ?

Decomposition of Uni-variate Integral

Integrals

$$I = \int_{\mathcal{C}} u \varphi =$$

$$\omega \equiv a$$

Number of MIs

 $\nu = \{\text{the number of solutions of } \omega = 0\}$

$$I = \sum_{i=1}^{\nu} c_i J_i$$

Choice of Bases / MIs

$$\langle e_i | \equiv \langle \phi_i | \equiv z^{i-1} dz$$

Master Decomposition Formula

$$\langle \varphi | = \sum_{i,j=1}^{\nu} \langle \varphi | h_j$$

Mastrolia, Mizera (2018) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019)

 $= \langle \varphi | \mathcal{C}]$

 $d\log u$

- - $J_i = \langle e_i | \mathcal{C}]$

Matsumoto (1998)

Computation of Intersection Number

Uni-Variate

$$\langle e_i | \equiv \langle \varphi_i | \equiv \frac{dz}{z - z_i}$$

 $\left(\mathbf{C}^{-1}\right)_{ji}\left\langle e_{i}
ight|$

Metric Matrix

 $\mathbf{C}_{ij} = \langle e_i | h_j \rangle$

Decomposition of Multi-Variate Integral

Integrals

$$I = \int_{\mathcal{C}} u \, \varphi = \langle \varphi | \mathcal{C}]$$

Number of MIs

$$\omega \equiv d \log u(\mathbf{z}) = \sum_{i=1}^{n} \hat{\omega}_i \, dz_i$$

 $\nu =$ Number of solutions of the system of equations

$$\hat{\omega}_i \equiv \partial_{z_i} \log u(\mathbf{z}) = 0, \qquad i = 1, \dots, n$$

$$I = \sum_{i=1}^{\nu} c_i J_i \qquad \qquad J_i = \langle e_i | \mathcal{C}]$$

Choice of Bases

$$e_i(\mathbf{z})$$
 $h_i(\mathbf{z})$

$$\mathbf{C}_{ij} = \langle e_i | h_j \rangle$$
$$\langle \varphi | = \sum_{i,j=1}^{\nu} \langle \varphi | h_j \rangle \ (\mathbf{C}^{-1})_{ji} \ \langle e_i |$$

Metric Matrix

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019) Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2020)

Computation of Intersection Number

Multi-Variate

Master Decomposition Formula

Computation of Intersection Number

Fibration Method

Matsumoto (1998) Goto (2015) Mizera (2019) Frellesvig, Gasparotto, Laporta, MKM, Mastrolia, Mattiazzi, Mizera (2019) Wienzierl (2020) Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2020) Caron-Huot, Pokraka (2021)

Secondary Equation

Matsubara-Heo (2019)

Chestnov, Gasparotto, MKM, Mastrolia, Matsubara-Heo, Munch, Takayama (2022)

Multivariate Differential Equation

Matsumoto (1998) Chestnov, Frellesvig, Gasparotto, MKM, Mastrolia (2022)

Univariate Intersection Number

Matsumoto, Mizera

 $\langle \varphi_L | \varphi_R \rangle = \frac{1}{2\pi i} \int_X \varphi_L \wedge \varphi_R$

Univariate Intersection Number

Matsumoto, Mizera

 $\left\langle \varphi_L | \varphi_R \right\rangle = \frac{1}{2\pi i} \int_X \varphi_L \wedge \varphi_R$

 $\langle \varphi_L | \varphi_R \rangle_{\omega} = \sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p} \left(\psi_p \, \varphi_R \right)$

$$\psi_p = \varphi_{L,p}$$

First Order Differential Equation

Univariate Intersection Number

 $\langle \varphi_L | \varphi_R \rangle = \frac{1}{2\pi i} \int_X \varphi_L \wedge \varphi_R$

 $\langle \varphi_L | \varphi_R \rangle_{\omega} = \sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p} \left(\psi_p \, \varphi_R \right)$

Matsumoto, Mizera

First Order Differential Equation

$$\nabla_{\omega_p}\psi_p = \varphi_{L,p}$$

Laurent Expansion around the poles of $\,\omega$

 $\tau \equiv z - p$

Known: $arphi_{L,p}$

Ansatz:
$$\psi_p = \sum_{j=\min}^{\max} \psi_p^{(j)} \tau^j + \mathcal{O}\left(\tau^{\max+1}\right)$$

The coefficients are obtained by solving the differential equation

Examples of decomposition

$(c_{1}, c_{2}, c_{3}) = \left(\left\langle \square | \square \right\rangle \left\langle \square | \Diamond \rangle \left\langle \square | \Diamond \rangle \right\rangle \left\langle \square | \Diamond \rangle \right\rangle \left\langle \square | \Diamond \rangle \left\langle \square | \Diamond \rangle \right\rangle \left\langle \square | \Diamond \rangle \left\langle \square | \Diamond \rangle \right\rangle \left\langle \square | \Diamond \rangle \right\rangle \left\langle \square | \Diamond \rangle \left\langle \square | \Diamond \rangle \right\rangle \left\langle \square | \Diamond \rangle \right\rangle \left\langle \square | \Box \rangle \left\langle \square | \Box \rangle \left\langle \square | \Box \rangle \right\rangle \left\langle \square | \Box \rangle \left\langle \square | \Box \rangle \right\rangle \left\langle \square | \Box \rangle \left\langle \square | \Box \rangle \right\rangle \left\langle \square | \Box \rangle \right\rangle \left\langle \square | \Box \rangle \left\langle \square \rangle \left\langle \square | \Box \rangle \left\langle \square \rangle \right\rangle \left\langle \square \rangle \left\langle \square \rangle \left\langle \square \rangle \right\rangle \left\langle \square \rangle \left\langle \square \rangle \left\langle \square \rangle \right\rangle \left\langle \square \rangle \left\langle \square \rangle \left\langle \square \rangle \right\rangle \right\rangle \left\langle \square \rangle \right\rangle \right\rangle \left\langle \square \rangle \right\rangle \right\rangle \left\langle \square \rangle \left\langle \square$

Further Applications

Gravitational Wave Observables

MKM, Mastrolia, Patil, Steinhoff (2022) MKM, Mastrolia, Patil, Steinhoff (2022) MKM, Mastrolia, O Silva, Patil, Steinhoff (2023)

GW observations

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Tasks

- Supplement conventional Analysis
- ^{*}Increase Theoretical Precision
- Perform Gravity phenomenology

Post-Newtonian (PN) Post-Minkowskian (PM)

Numerical Relativity

Perturbation Theory

Analytical Approximation Methods

Post-Newtonian (PN)

Post-Minkowskian (PM)

Self-Force (SF)

Effective One-Body (EOB)

Equations of Motion

Need:

Hamiltonian \mathcal{H}

Radiation Reaction \mathcal{F}

Advantage of QFT techniques

Use of Feynman diagrams

Dimensional regularization

Better to handle spurious divergences

Multi-loop Techniques

Mathematical IBP relations

MDifferential Equations

Hierarchy of scales

$$r << \lambda_{GW}$$

Hierarchy of scales

Tower of EFTs Goldberger, Rothstein

- 1. One-Particle EFT for Compact Object
- 2. EFT of Composite Particle for Binary
- 3. Effective Theory of Dynamical Multipoles

$$S[g_{\mu\nu}] = -\frac{1}{16\pi G} \int d^4x \sqrt{g}R$$
$$S_{pp}[g_{\mu\nu}] = -m \int d\sigma \sqrt{u^2}$$

Goldberger, Rothste

Hierarchy of scales

 $r_{\star} << r << \lambda_{GW}$

Tower of EFTs

1. One-Particle EFT for Compact Object

•	
Δ'	n
וס	

$$S[g_{\mu\nu}] = -\frac{1}{16\pi G} \int d^4x \sqrt{g}R$$
$$S_{pp}[g_{\mu\nu}, x_K] = \sum_{K=1}^2 -m_K \int d\sigma \sqrt{u_K^2}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + H_{\mu\nu} + h_{\mu\nu}$$

Goldberger, Rothstein

Hierarchy of scales

 $r_{\star} << r << \lambda_{GW}$

Tower of EFTs

2. EFT of Composite Particle for Binary

Method of Regions

potential gravitons $H_{\mu\nu}$ with scaling $(k_0, \mathbf{k}) \sim (v/r, 1/r)$

radiation gravitons $\bar{h}_{\mu\nu}$ with scaling $(k_0, \mathbf{k}) \sim (v/r, v/r)$

EFT at the orbital scale: Conservative Dynamics

$$e^{i S_{eff}[x_K]} = \int \mathcal{D}\bar{h}_{\mu\nu} \int \mathcal{D}H_{\mu\nu} \exp\left\{iS[\eta + \bar{h} - M_{\mu\nu}]\right\} + \frac{1}{2} \left\{iS[\eta + M_{\mu\mu$$

Effective Action for Dynamical Multipoles

$$e^{i S_{eff}[x_K]} = \int \mathcal{D}\bar{h}_{\mu\nu} \exp\left\{iS[\eta + \bar{h}] + \underline{\qquad}\right\}$$

 $[x + H] + i \sum_{K=1}^{2} S_{pp}[x_K(t), \eta + \bar{h} + H]$

Key Observation

Goldberger, Rothstein, Porto, Levi, ... Foffa, Sturani, Sturm, Mastrolia (2016)

Status of PN Results

	PN order		1.5		2.5		3.	.5	4.5			
	0	1	1	2	2		3	4		5		
no spin	N	1PN		2F	2PN		3PN		4PN		5PN	
spin-orbit			LO	so	NLC	SO	N2LC	o so	N3L0	o so	N	
spin^2				LO	S2	NLC) S2	N2L	O S2	N3L	0 9	
spin^3	L				LO	S3 NLC) S3	N			
spin^4								LO	S4	NLC) S4	
spin^5												
spin^6												

1PN [Einstein, Infeld, Hoffman '38].

2PN [Ohta *et al.*, '73].

3PN [Jaranowski, Schaefer, '97; Damour, Jaranowski, Schaefer, '97; Blanchet, Faye, '00; Damour, Jaranowski, Schaefer, '01] **4PN** [Damour, Jaranowski, Schäfer, Bernard, Blanchet, Bohe, Faye, Marsat, Marchand, Foffa, Sturani, Mastrolia, Sturm, Porto, Rothstein...] 5PN [Foffa, Mastrolia, Sturani, Sturm, Bodabilla, '19; Blümlein, Maier, Marquard, '19; Bini, Damour, Geralico, '19; Blümlein, Maier, Marquard, '19; Almeida, Foffa, Sturani, '22;]

Levi, McLeod, Steinhoff, Teng, Von Hippel,... **Kim, Levi, Yin (2021)** Kim, Levi, Yin (2022) MKM, Mastrolia, Patil, Steinhoff (2022) Levi, Yin (2022) MKM, Mastrolia, Patil, Steinhoff (2022)

Status of PN Results

1PN [Einstein, Infeld, Hoffman '38].

2PN [Ohta *et al.*, '73].

3PN [Jaranowski, Schaefer, '97; Damour, Jaranowski, Schaefer, '97; Blanchet, Faye, '00; Damour, Jaranowski, Schaefer, '01] **4PN** [Damour, Jaranowski, Schäfer, Bernard, Blanchet, Bohe, Faye, Marsat, Marchand, Foffa, Sturani, Mastrolia, Sturm, Porto, Rothstein...] 5PN [Foffa, Mastrolia, Sturani, Sturm, Bodabilla, '19; Blümlein, Maier, Marquard, '19; Bini, Damour, Geralico, '19; Blümlein, Maier, Marquard, '19; Almeida, Foffa, Sturani, '22;]

Levi, McLeod, Steinhoff, Teng, Von Hippel,... **Kim, Levi, Yin (2021) Kim, Levi, Yin (2022)** MKM, Mastrolia, Patil, Steinhoff (2022) Levi, Yin (2022) MKM, Mastrolia, Patil, Steinhoff (2022) Brunello, MKM, Mastrolia, Patil (W.I.P)

EFT of Spinning Objects

$$S_{\rm EH} = -\frac{c^4}{16\pi G_N} \int d^4x \sqrt{g} \ R[g_{\mu\nu}] + \frac{c^4}{32\pi G_N} \int d^4x \sqrt{g} \ g_{\mu\nu}\Gamma^{\mu}\Gamma^{\nu}$$

$$\Omega^{\mu\nu}_{(a)} = \Lambda^{\mu}_{(a)A} \frac{dA}{dA}$$

$$S_{\rm pp} = \sum_{a=1,2} \int d\tau \left(-m_{(a)}c \sqrt{u_{(a)}^2} - \frac{1}{2}S_{(a)\mu\nu}\Omega^{\mu\nu}_{(a)} - \frac{S_{(a)\mu\nu}u_{(a)}^{\nu}}{u_{(a)}^2} \frac{du_{(a)}^{\mu}}{d\tau} + \mathcal{L}^{(R)}_{(a)} + \mathcal{L}^{(R^2)}_{(a)} + \dots \right)$$

$$S_{\rm EH} = -\frac{c^4}{16\pi G_N} \int d^4x \sqrt{g} \ R[g_{\mu\nu}] + \frac{c^4}{32\pi G_N} \int d^4x \sqrt{g} \ g_{\mu\nu}\Gamma^{\mu}\Gamma^{\nu}$$

$$\Omega_{(a)}^{\mu\nu} = \Lambda_{(a)A}^{\mu} \frac{d\Lambda_{(a)}}{dr}$$

$$S_{\rm PP} = \sum_{a=1,2} \int d\tau \left(-m_{(a)}c\sqrt{u_{(a)}^2} - \frac{1}{2}S_{(a)\mu\nu}\Omega_{(a)}^{\mu\nu} - \frac{S_{(a)\mu\nu}u_{(a)}^{\nu}}{u_{(a)}^2} \frac{du_{(a)}^{\mu}}{d\tau} + \mathcal{L}_{(a)}^{(R)} + \mathcal{L}_{(a)}^{(R^2)} + \dots \right)$$

$$\mathcal{L}_{(a)}^{(R)} = -\frac{1}{2m_{(a)}c} \left(C_{\mathrm{ES}^2}^{(0)} \right)_{(a)} \frac{E_{\mu\nu}}{u_{(a)}} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{\mathrm{STF}} + \dots$$
$$\mathcal{L}_{(a)}^{(R^2, S^0)} = \frac{1}{2} \left(C_{\mathrm{E}^2}^{(2)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\nu} E^{\mu\nu}}{u_{(a)}^3} S_{(a)}^2 + \dots$$
$$\mathcal{L}_{(a)}^{(R^2, S^2)} = \frac{1}{2} \left(C_{\mathrm{E}^2 \mathrm{S}^2}^{(0)} \right)_{(a)} \frac{G_N^2 m_{(a)}}{c^5} \frac{E_{\mu\alpha} E_{\nu}^{\ \alpha}}{u_{(a)}^3} \left[S_{(a)}^{\mu} S_{(a)}^{\nu} \right]_{\mathrm{STF}} + \dots$$

Levi, Steinhoff (2015)

 $S_{(a)\mu\nu} = -2\frac{\partial L_{\rm pp}}{\partial \Omega^{\mu\nu}}$

Computational Algorithm : Towards Automation

MKM, Mastrolia, Patil, Steinhoff (2022) MKM, Mastrolia, Patil, Steinhoff (2022)

☑ Automated in-house codes

Aim to publish the code in future

IBP Decomposition

Binding Energy for Spin-Orbit Coupling

GW cycles before merger

MKM, Mastrolia, Patil, Steinhoff (2022)

NR data from Ossokine, Dietrich, Foley, Katebi, Lovelace (2018)

Tidal Effects

- NS features a number of oscillation modes
- Fine dominant mode is known as *f-mode*, which is the lowest frequency surface gravity waves
- The frequency depend only on the mean density of the star and not on the Equation of State of the NS
- The f-modes dynamical tides are important as it significantly affect the inference of the equations of state of NS

MKM, Mastrolia, O Silva, Patil, Steinhoff (2023)

Tidal Love number

Pratten, Schmidt, Williams (2022)

Dynamical Electric Tides at 2 PN

$$\mathcal{L}_{\rm DT} = \frac{z}{4\lambda\omega_f^2} \left[\frac{c^2}{z^2} \frac{\mathrm{d}Q_{\mu\nu}}{\mathrm{d}\tau} \frac{\mathrm{d}Q}{\mathrm{d}\tau} \right]$$

 $\omega_f
ightarrow \infty$, Adiabatic limit:

Binding Energy

$$E_{\rm AT}(x,\tilde{\lambda}_{(a)}) = -x^6(9\tilde{\lambda}_{(+)}) + x^7 \left[\left(\frac{33}{4}\nu - \frac{121}{8} \right) \tilde{\lambda}_{(+)} - \left(\frac{55}{8} \right) \delta \tilde{\lambda}_{(-)} \right] + x^8 \left[\left(-\frac{91}{16}\nu^2 + \frac{2717}{42}\nu - \frac{20865}{224} \right) \tilde{\lambda}_{(+)} + \left(\frac{715}{48}\nu - \frac{11583}{224} \right) \tilde{\lambda}_{(+)} \right]$$

MKM, Mastrolia, O Silva, Patil, Steinhoff (2023)

Scattering Angle

$$\frac{\chi_{\text{AT}}}{\Gamma} = \frac{1}{Mb^4} \begin{bmatrix} \lambda_{(+)} & \delta\lambda_{(-)} \end{bmatrix} \cdot \left\{ \pi \left(\frac{G_N M}{v^2 b} \right)^2 \begin{bmatrix} 1\\ 0 \end{bmatrix} \left\{ \frac{45}{16} + \frac{135}{32} \left(\frac{v^2}{c^2} \right) + \frac{1575}{256} \left(\frac{v^2}{c^4} \right) + \left(\frac{G_N M}{v^2 b} \right)^3 \left\{ 48 \begin{bmatrix} 1\\ 0 \end{bmatrix} + \begin{bmatrix} 732/5\\ 12 \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \frac{3}{35} \begin{bmatrix} 3073\\ 593 \end{bmatrix} \left(\frac{v^4}{c^4} \right) \right\} + \pi \left(\frac{G_N M}{v^2 b} \right)^4 \left\{ \frac{315}{8} \begin{bmatrix} 1\\ 0 \end{bmatrix} + \frac{315}{64} \begin{bmatrix} 51 - 2\nu\\ 5 \end{bmatrix} \left(\frac{v^2}{c^2} \right) + \frac{15}{128} \begin{bmatrix} 5331 - 274\nu\\ 1383 \end{bmatrix} \right) \right\}$$

 $\delta \widetilde{\lambda}_{(-)}$

 $\left(\frac{v^4}{c^4}\right)\bigg\}\bigg\}$

Conclusion

Movel Algebraic Property Unveiled

- The algebra of Feynman Integrals is controlled by intersection numbers
- Intersection Numbers : Scalar Product/Projection between Feynman Integrals
- **Mathematics** Useful for both Physics and Mathematics

Applications to GW phenomenology

- *in understanding spin effects / tidal effects for the compact binaries*
- If A number of observables e.g binding energy, scattering angle has been computed to high precision

Outlook

Outlook

Radiation Reaction Potentials

Gravitational Wave Physics

Power Loss / Flux

Waveforms

