

Microelectronics at Fermilab

Davide Braga on behalf of Microelectronics Division 26 July 2023

Fermilab Integrated Circuits Design Capabilities and Mission

ACADEMIC RESEARCH

- Support interdisciplinary research
- Enables new scientific discovery and foundational engineering
- Novel solutions
- Mission: new knowledge and education of students

NATIONAL LABS: ADVANCED SCIENTIFIC INSTRUMENTATION

- Support scientific experiments operating in extreme environments
- Mid-size scaling for large experiments
- Mission: robust performance over several decades

INDUSTRY – PRODUCT DRIVEN

- Support consumer electronics
- Mature designs
- Mission: incremental product driven design

Technology readiness level

Growth of Integrated Circuit design over ~ 4 decades at Fermilab

- Highly specialized expertise in developing robust custom microelectronics with long-term reliability over decades
- Investigate novel solutions and ensure technology development to enable mid-volume prototyping
- Increased complexity: 2016: 0.5B transistors in ~cm² -> 2021: 2B transistors in ~mm²
 (shifting the burden from design to verification)

Since 1980's

Ionizing radiation >1 Grad (1000x higher than outer space) Extreme flux for single event effects - Collider Experiments (FCC, HL LHC)

Cryogenic electronics (77K – 100K) - Neutrino experiments (DUNE), Dark matter experiments (Skipper CCDs)

Since

2010's

New

2022

Fermilab

Deep Cryogenic electronics (~ 4K)
Dark matter experiments (Cryogenic detectors e.g. SNSPDs, TES etc.),
Quantum Information Science

Superconducting electronics (~100 mK) - Quantum Information Science for HEP (TWPAs, JPAs for ADMX)

Since 2019

ASIC Design at Fermilab

Core competencies

Analog and Mixed Signal Design

Low noise, low-power front end circuits High frequency (e.g. PLL, VCOs) Sensor interface and codesign

Digital Design and Verification

Design, placement and verification RTL, Synthesis, P&R

Functional and formal verification

Testing, modeling and characterization

Robotic testing for mid-volume chip characterization (100K chips)

Cryogenic test stands (77K and 4K)

Development of extreme environment technology models for cryogenic and rad-hard chips

Automated 12" wafer prober

Radiation testing at Fermilab Irradiation Test Area

IMPACTFUL HARDWARE DEVELOPMENT

Fast Timing

ETROC

- LGAD readout ASIC for CMS Endcap Timing Layer
- 16x16 pixel, full reticle chip in 65nm
- ETROC2: full size, full functionality prototype currently being tested
- Per-pixel TDC with self calibration scheme to compensate for process variation, temperature, and power supply voltage
- Sensor+ASIC time resolution of 40ps

Constant Fraction Discriminator

- 65nm CMOS
- does not require offline corrections or calibrations
- Achieves 15ps for 20fC signal

ASIC TDC

- Time-to-digital converter test structure for SNSPD readout
- Cryogenic operation (4K)
- 22nm CMOS
- Demonstrates better than 8ps timing resolution at 4K (300uW)

Quantum support chips

cryoCMOS for Quantum

cryoCMOS model and tool-kit development (4K) cryoCMOS workshops (e.g. IceQubes, IEEE Quantum week)

EPFL SYNOPSYS® 🗗 GlobalFoundries

QUANTUM COMMUNICATION

SNSPD

Low Noise amplifier, Photon counting and picosecond timing

[space science applications, dark matter detection]

QUANTUM SENSING

Portable optical atomic clocks (Joint DOE-DOD development)

QUANTUM COMPUTING

Utility scale QC

ADC: 12b, 10 GSPS, < 100mW, operating at 4K

Quantum Science Center

Cryoelectronics for Ion-Trap based QC

Co-design system for Spin-Liquid simulations

Multi-tier compact cryogenic system

Eliminating cryogenic isolators and circulators, combining superconducting electronics with cryoCMOS

Microsoft

3 mm

AI ASICs

AI chiplet: AI Autoencoder ECON

On-detector Edge Compute for Adaptive-Autonomous Real time data processing at the Large Hadron Collider

 Algorithm Co-design: Low power (2nJ/inference), Low latency (25ns), Radhard operation

Adaptive programable interface for various detector geometries and evolving detector conditions

To our knowledge, the first AI ASIC in HEP (all of DOE??)

AI tools and design methodology

Open source tool and design methodology: hIs4mI, backend compatible for ASICs, extending to eFPGAs, mixed signal and beyond CMOS (CrossSim – Sandia), ESP

Industry and community driven: A large community from a variety of applications. Industry adding Open-source to tool plug-in

Energy Efficient Edge AI hardware

- Chiplet, on-chip-edge, in-pixel
- Types of NN: DNN-Digital CMOS, Digital SNN, Analog NN (SRAM, ReRAM, ECRAM)

Al-driven integrated heterogenous systems

Beyond system-on-chip: Heterogenous Compute Onchip

- Electronic Photonic Integration
- In-memory compute
- Incorporate Industry/ Open source IP: ARM/RISC cores
- Heterogenous Detector stack: Sensors, Neuromorphic Layer (Novel Materials), Mixed signal electronics, Photonics

Skipper CCD and CCD-in-CMOS readout

Skipper CCD readout: MIDNA

- State-of-the-art noise performance (~3e- noise performance)
- Cryogenic operation (100K)
- On-chip analog pile-up to reduce readout time
- 100x lower power, extremely small footprint, significantly reduced cost
- Excellent test performance

Skipper CCD-in-CMOS Sensor

- Collaboration with leading CMOS foundry (Tower Semiconductor) to develop Skipper-CCD in commercial CMOS process
- Prototyped ASIC has ~400 variations (pixel designs/process splits) to evaluate best design
- Testing underway, so far demonstrated detection, charge transfer, and skipping
- Full-reticle large area prototype to follow

structure **Pixel Matrix** 0 200 x 200 pixels ontrol 15 µm pitch **Analog Front-End**

Highly-parallel readout ASIC for Skipper-on-CMOS

- Developed low-power in-pixel ADC for highly parallel readout (\rightarrow high frame rates)
- Per-pixel 10b ADC for massively parallel readout
- First two prototypes under test
- Full-reticle ASIC in 2023

10b, 100KSPS in-pixel ADC (~30x30µm)

SPROCKET ASIC: 64x32 pixels (09/22)

Advancement of two complementary classes of cryogenic state-of-the-art single-photon and particle detectors:

- the Skipper CCD-in-CMOS silicon detector
- a hybrid detector platform based on superconducting nanowires

Development and co-design of:

- advanced fabrication and integration techniques
- novel optimized hybrid readout architectures
- cryo-ASICs and cryotron-based superconducting electronics for integrated sensing and data reduction at source, through feature extraction and edge computing.

cryoASIC

Cryogenic testing

- Custom ~4K close-cycle cryocooler (large area and # flanges)
- Cryogenic probe station in the planning

Chips received in Apr 2022

- 2 channels of Cryo DAC: 100 MSPS, 10V O/P swing
- 10 GHz VCO for on-chip PLL
- High voltage test structure for debugging
- Noise test structure
- Capacitive DAC test structure
- Digital processor and memories

Overview of Fermilab's 22FDX Cryo-CMOS modeling activities

Fermilab is leading several activities for the cryogenic characterization of 22FDX transistors:

In House:

 Measurement and modeling of high voltage devices at 4K (BOXFET, LDMOS)

With EPFL:

- Measurements of transistors at 4K
- Development of simplified EKV model for analog design
- Low noise test structure measurements

With Synopsys:

• PDK-compatible BSIM-IMG for 4K

22FDX Cryogenic modeling – BSIM-IMG

SYNOPSYS[®]

Fermilab is working with Synopsys to develop PDK-compatible isothermal models at 4K with Mystic (advanced compact model parameter extraction tool for SPICE models)

- Currently working on thin and thick oxide cmos
- HV devices next

Cryo-CMOS Modeling – before extraction

1.8

Tranfer Characteristics PDK Simulated

Fermilab Synopsys[®]

- PDK models are numerically robust but not accurate at extremely low temperature (e.g. 40K)
- Significant discrepancy between measurement data and simulation data

Cryo-CMOS Modeling – after extraction

Fermilab Synopsys[®]

- PDK models are numerically robust but not accurate at extremely low temperature (e.g. 40K)
- Significant discrepancy between measurement data and simulation data
- Fitting so far progressing well

CMOS Sensors Vision

GOALS for a HEP community-driven CMOS sensor development

- Enable US manufactured sensor capability for HEP experiments
- Optimize the process to enable various types of sensors ubiquitously used in HEP (MAPS, MAPS with timing, Digital SPADs, LGADs, CMOS LGADs)
- Co-design sensor and readout electronics
- Enable the broad adoption of the development across HEP community

PARTNER with SKYWATER TECHNOLOGIES

Strong academic support for device simulation and testing

Engineering run with various designs on a high resistivity wafer

High-throughput testing of sensors at Fermilab

Silicon Photonics

- Goal: Integrated sensing edge computing communication
- Creating high bandwidth, low power interconnect for sensor networks
- Preliminary use case: Pixel detectors → 1M pixels generate > 1 Tbps data zerosuppressed data; with edge computing we can get to 30 – 100 Gbps

High bandwidth data transmission integrated with chips

Cryogenic data transmission (100K to 4K)

Rad-hard data transmission

3D ICs – community driven for DOE applications

Fermilab started pursuing 3D integration in 2006

- Work with partners (university, national labs, industry) to create a 3D IC Consortium
- Create pathway for DOE applications
- Work with vendors to setup standards/processes for low-mid volume prototyping

Why do we need AI/ML in Science?

Rubin LSST

- ~ 20 TB / day
- ~ 100 PB total by DR11

DUNE

~ 30-60 PB / year (raw)
 ~ 114x4 TB / month (raw)
 for Supernovae detection

 (speed need for
 followups)

HL-LHC

~ order of magnitude more data ~ 650 PB / year

Slides courtesy of Ben Hawks (he/him/his) Al Researcher @ Fermilab Real Time Processing Systems - Data Intensive Systems bhawks@fnal.gov @quantized_bits<@defcon.social>

Types of ML Tasks - Supervised Learning

Types of ML Tasks - Unsupervised Learning

Design Methodology: Physics driven hardware co-design

- Algorithm development based on Physics data
- **hls4ml** simplifies the design of on-chip ML accelerators
 - hls4ml directives | << | HLS directives |
 - C++ library of ML functionalities optimized for HLS
- TMR4sv_hls: Triple Modular Redundancy tool for System Verilog & HLS

ALGORITHM

DEVELOPMENT

ML Model

•

Real-time tracking for pixel detectors

Cluster shapes and Pulse information for filtering out low p_T particles

- NN classifier identifies and saves clusters from tracks with $p_T > 2 \text{ GeV}$
- \geq 95% data reduction by saving only high p_T
- Low power implementation

Compact algorithms for data reduction through featurization

- **Predict** physics information (x,y,θ,ϕ) and **meaningful error** (UQ) on particle position, angle
- Potential for reduction of track seeds \rightarrow saves time & computing resources down the line

Technology development to enable on-sensor computing

- Ultra low power in-memory compute chips
- 3D integration for optimized data processing
- Leverage emerging technologies such as novel CMOS compatible memristors

🚰 Fermilab

Scalable Quantum Control

- **Platform for Scalable Quantum Control** = ESP + FlexLogix eFPGA
 - ML running on eFPGA/SoC in the cryostat for scalable quantum control
 - Methodology: hls4ml + Catapult HLS + Synplify + FlexCompiler
 - Architecture: eFPGA integration in SoC tile(s)
 - **Quantum control applications**
 - Data acquisition, model training, model evaluation, hardware synthesis
 - State preparation (Control)
 - Workshop on Quantum Computing Software 2022
 - Readout, Error correction
 - Early emulation on FNAL QICK looking for collaborators for demonstration

CryoAl, 22nm

- Digital test chip to evaluate low power cryogenic performance of digital backend at lower core voltages
- Design and integration of an ML Accelerator (AutoEncoder for Anomaly Detection IoT MLPerf Tiny)
- Chip & board fabricated Ongoing testing
- ESP simulation for future respin

Reconfigurable Edge AI – Solve the HEP data challenge

- Collaboration with Columbia U. & Northwestern U.
- Edge AI: Combining two established open-source platforms (ESP and HLS4ML) into a new system-level design flow to build and program a System on chip

In the modular tile-based architecture, we integrated a low-power 32-bit RISC-V microcontroller (lbex), 200KB SRAM-based memory, and a neural-network accelerator for anomaly detection utilizing a network-on-chip.

 Embedding FPGAs on detector: Radhard/ cryogenic eFPGA on-chip – with Flex Logix (22nm / 28nm). Establishing design flow and investigating extreme environment performance

Thank You!

Many topics not covered in this presentation If interested, please contact us

