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What is scientific computing”

Computational science

From Wikingdia e Tee cloyolopeura————-_

‘ ot to be confused with computer science.; ' >

Comput T ence (also scientific cofnputlng or scientific computation (SC)) is a rapidly growing multidisciplinary field that uses advanced computing capabilities to
understand and solve complex problems. It is an area of science which spans many disciplines, but at its core it involves the development of models and simulations to
understand natural systems.

« Algorithms (numerical and non-numerical): mathematical models, computational models, and computer simulations developed to solve science (e.g., biological, physical,
and social), engineering, and humanities problems

« Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components needed to solve
computationally demanding problems

« The computing infrastructure that supports both the science and engineering problem solving and the developmental computer and information science

In practical use, it is typically the application of computer simulation and other forms of computation from numerical analysis and theoretical computer science to solve
problems in various scientific disciplines. The field is different from theory and laboratory experiment which are the traditional forms of science and engineering. The scientific
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Scientific Computing in HEP: Getting from here...
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...to here
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The process
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Reconstruction: LArSoft (MicroBooNE)

- LArSoft, developed at Fermilab, is a common code base for LAr neutrino
detectors

« Used by MicroBooNE, SBND, ICARUS, DUNE
* Includes tools for both reconstruction and data analysis

Raw Noise-filter 1D-deconv. 2Dfeconv.

o | T. Usher
< : : : : —=
3 Example Wire Pulses =
T —=
v —=
2 =
2 — ~ s
" 14150 A A " " lsm " " 2 A 1530 " " A A lm 2 " " .. 1630 A
Time
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Reconstruction; CMS

Silicom - oy
Tracker &/ AL

Calorimeter

Hadron

Superconducting

Calorimeter
Solenoid Iron return yoke interspersed
with muen chambers
Muon Electron Charged hadron (e.g. pion)
- - =.Neutral hadron (e.g. neutron) @ ----. Photon
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Simulation
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Simulation
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- Event generators simulate the underlying
particle interaction of interest

* Resulting interaction event is then fed to a L
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- Consider the material and geometry of
every part of the detector

- Simulate how particles from interaction
and decay would propagate

 Most detector simulations use GEANT

* Also used in nuclear and accelerator
physics as well as medical and space
science
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Analysis
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Analysis

- Getting from data events of interest to
plots, tables, and numbers

 This is the computing step nearly all
HEP experimentalists are familiar with

- ROOT

Data Analysis Framework

- Common tools are needed
- Mathematical functions
- Statistical analysis
* Plotting/histogramming

0.45 < cos(@’e°°) <0.62

MicroBoone

» Nearly all HEP experiments use the AN g
ROOT framework P, [GeV] g
* Developed by CERN and Fermilab "™
- C++ (object oriented) e S —— §§

» Couples with code written in other |5
languages (e.g. Python) :
* https://pos.sissa.it/093/002/pdf

-1 -0.8-06-04-02 0 0.2
Sep/®
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ATLAS and CMS be—Total [ Stat. =3 Syst.
LHC Run 1 Total  Stat. Syst.

LAS H—yy F—==——4 126.02+0.51 (+0.43+0.27) GeV
CMS H—yy —— 124.70 + 0.34 (+0.31+ 0.15) Ge
ATLAS H—ZZ -4 p——o—| 124.51+0.52 (+ 0.5 04) GeV
CMS H—ZZ -4l ——— 125.5 45 (£ 0.4 7) GeV

0.4 06 0.8 1 rrrmmmmmmmmmmmmm e oo ssnisssssmsesonooes
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CPU
 Reconstruction and simulation of events
are biggest CPU drivers

- Such computing is “pleasantly parallel”

* Processing one event is completely
iIndependent of processing any other

* Relatively short processing times but
many events and growing complexity

- CMS - typical collider experiment
« ~30 s/event (~30x more in a decade!)

- ~billions events (simulated+collision)/
month

* MicroBooNE - liquid Argon (LAr) neutrino
experiment

- ~1-2 min/event
- ~million events (simulated+beam)/month

| | - uBooNE
* 1 event in DUNE will have ~50x more

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

channels (!)

Fermilab Summer Students School, July 2023 15 Marco Mambelli



Divide et Impera

« Split the complex problem
« Solve the parts (jobs)
« Get the overall solution

ORNTT LT

Fermilab Summer Students School, July 2023 16 Marco Mambelli



Divide et Impera

« Split the complex problem
« Solve the parts (jobs)
« Get the overall solution

Get it fast!

High Throughput Computing
(HTC)

Fermilab Summer Students School, July 2023 17 Marco Mambelli



Divide et Impera: 1 Billion Events

Memory Controller

- Use one computer for the CMS events?

- CPU: Central Processing Unit
(typically whole chip)

- Between 2 and 64 individual cores
- Each core can process one instruction at a time »

30s/% cores*lB evenks V120 3@.&1‘5 l&‘ I1
|

« Use your friends’ computers as well

* To get 1B events in one month, we require 1,440
8-core computers

« We are almost there with the friends!

 Your software and data would need to get to
each of those computers

* You'd need to collect output from each
+ And you’d need user accounts on all of them

Marco Mambelli

* Need to find an easier way to get from
one computer to many!

Fermilab Summer Students School, July 2023 18 Marco Mambelli



Divide et Impera: batch systems

- Batch systems
- Single entry point (queue for many users)
- Jobs to any available slot

- Output from each job handled in the same
way

- Batch system can handle user authentication
on each individual computer

Some batch systems at Fermilab:
Fermigrid (~20k CPU cores)

US CMS Tier1 (~20k CPU cores)
CMS LPC (~5k CPU cores)

Fermilab Summer Students School, July 2023 19

305/20,000 cores*lB evenks ~17 doujs
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Inside a Data Center: Computing Racks

////// /, T
\\\\\\“ L /// /{//4?:.44

Rack-mounted units "pizza boxes"

dual multi-core processors, large amount
of memory, system and small local disk
Newest units with 64-core processors,
256 GB of memory, 100 Gb/s network
All running Linux!

Hot and Cold rows

Limited by power and cooling
GCC has a power capacity of ~ 2.5
Megawatts

Fermilab Summer Students School, July 2023 20 Marco Mambelli



The Two Fermilab Data Centers

GRID Computing Center (GCC)

* Two “logical” data centers:

‘Room A, Tape Room, Network Room A
- *Rooms B, C, Network Room B

_ights out” facility, with UPS systems,
only good for minutes

Each a “corner” of a redundant network

Feynman Computing Center (FCC)

Two “logical” data centers (FCC2, FCC3)
High Availability, each has own
generator / UPS system

Each a “corner” of a redundant network

Fermilab Summer Students School, July 2023 21 Marco Mambelli



Divide et Impera: the Grid

* Many batch systems accessible from one
point: a computing grid
- grid sites (batch systems) from universities
and labs across the world into one grid

- Distributed high-throughput computing
(DHTC)

* Analogy: utility grids

* Delegated and Federated Trust Model

- Use tokens (JWT) or grid certificates
(x509) and Virtual Organization (VO)

* A certificate is an encrypted “signature”
that verifies you belong to an organization
(e.g., a collaboration like NOVA)

« Each site decides which VOs to trust

3 + /- NORDUGRID $
x = 7 \\ ;;; Solution for Wide Area
Op en S Ci ence Grl d Computing and Data Handling W I_G G

Worldwide LHC Computing Grid

Marco Mambelli
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Overlapping grids
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Overlapping grids

World LHC Computing Grid

-

\
______
) -

-------

200+ sites, 2M+ CPU cores

Fermilab Summer Students School, July 2023 24 Marco Mambelli



Divide et Impera: the Cloud

- And when you still don't have enough, then
you can rent it

- Commercial Clouds like AWS (Amazon),
GCE (Google) and Azure (Microsoft) can
rent you a seemly endless amount of
computing power

- Elastic computing: expands at will

Problem: irregular use pattern

Solution: burst-out by renting resources on
the Cloud for peak usage

More expensive than local resources
Difficult to justify non-capital expenditures

Fermilab Summer Students School, July 2023 25 Marco Mambelli



High Performance Computing

Much scientific computing outside of
experimental HEP is not “pleasantly
parallel”

Better platform: High Performance
Computing (HPC)

- Batch systems where individual

computers are interconnected via
high—speed links Aurora@Argonne: 20k CPUs 60k GPUs,
10PB memory, 2 DP exaflops

- Large HPC systems are often called
“supercomputers”

Fermilab has 5 HPC clusters
« Total of 18.5k CPU cores

 Used for Lattice QCD calculations,
accelerator modeling, large-scale
astrophysical simulations and testing

Used also for event processing by
splitting it into pieces

Fermilab Summer Students School, July 2023 26 Marco Mambelli



Simplify access: Pilot jobs

- Late binding ‘ l ‘
- Separation of tasks
* Pilot jobs &
* Jest |
- Set up
- Wait in the queue
- User jobs
« Science
A Factory will submit pilot jobs for you
- Use resources as available (pressure) /\
« Separation of knowledge & h
|

®

@

Undergraduate lecture series, July 2021 27 Marco Mambelli
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Putting it all together: GlideinWWMS

a
J

- The Glidein Workload Management System is
a pilot based resource provisioning tool for :
Distributed High Throughput Computing

- Provides reliable and uniform virtual Frontend +
clusters, the global pool

« Submits Glideins to unreliable
heterogeneous resources

Factory F/

\

-

\l

[ Glidein

Worker

Cluster

Worker

/»[ Glidein

;{ Glidein Worker

- o
CE \[ Glidein O
v,
 Knows "how to talk" to all the different
systems = =
- Multiple Frontends and Factories work I — - .
. . . g 3 I e tweree ([ vene o npaign B ca
together to provide High Availability e —
(POMS, Jobsub, OSG-Connect) SR

Undergraduate lecture series, July 2021 28 0 crmie— — - Marco Mambelli



HEPCloud

- Making it all possible from one place:
HEPCloud

« Unified interface to Grid, Cloud, and
HPC resources ot tars st by Gorid S

- Currently used mainly to run CMS " YOsget alocations
workflows on NERSC supercomputers

HPC

= Community Clouds - Similar
trust federation to Grids

= Researchers granted access to
HPC installations

= Commercial Clouds - Pay-As-
You-Go model

o Strongly accounted
o Near-infinite capacity =¥ Elasticity

= Peer review committees award
Allocations

o Awards model designed for individual Pls rather than

—Unused allocations: opportunistic resources large collaborations

Spot price market

“Things you borrow” “Things you rent” “Things you are given”

» Optimized bidding for AWS spot
pricing

¢ Better hand | i ng Of heterOgeneOUS € HEPCloud/ HEPCloud Glideins % <3 HEPClout Gldeins ; Orafara ® | | < @2021:01:01 00000010 20220101 000000 ~ | > [ @]/ Q| v
resources (GPUs, QPUs) R

00000

Grant Allocation

 In 2021 doubled CMS Tier 1 capacity
using NERSC and other facilities,
160M CoreHrs

T3_US_NE RSC_Cori_SL7
= T3_US_TA( C-S
. . . . ~ TACC-Frontera.CMSHTPC_T3_US_TACC_FRONTE!
Imulated 1 billion events in 48 hours ===
= UCSDT2-Cloud.CMSHTPC_T2_US_UCSD-cms-c!
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Storage: understanding units
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Storage: understanding units
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Storage: tape

* Primary storage medium for scientific data at
Fermilab: magnetic tape

- Still the most efficient way to store petabytes
of data if:

« Not all of it is accessed at the same time
« Access patterns are fairly linear
- Sufficient disk for staging
- Fermilab has seven robotic tape libraries
- Each library can hold up to 10,000 tapes

« Current tapes hold ~12TB of data each
(1km of tape!)

- Total active on tape: 300 PB
« CMS, 89.69
« NOVA, 53.65
 uBoone, 28.48
- gm2, 17.51
- DUNE, 15.06
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Storage: tape libraries

* 9000 to 10000 tapes per library
- A few dozen drives
 Fire suppression system
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https://drive.google.com/open?id=1caM9JoUONtfIgqxrcJBBN5OlmGrpnYy5

Storage: disk

- ~80PB of disk (hard drive) storage
- Most used as staging area from tape

Harddrive - Disks are organized into pools
- Software allows collections of pools to appear to
a user as a single storage device
- Fermilab uses a system called “dCache”
Diskooo *Ina typical week, data throughput in the
~ermilab dCache pools average 30GB/s
~
Storage | = £ = =
System &= = <= =— Door
\: TE W E = \-j
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Networking: Local Networks

Tieeen|

-}
,fb‘-';.
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Networking: Wide Area Networks

» Distributed computing requires + e.g. ESNet at national labs,
fast and reliable networks GEANT in Europe

- Dedicated fiber optic links « Dedicated LHC links connect
(typically 100 Gbps) connect these together (LHCONE,
experiments and major labs LHCOPN)

+ Department of Energy Office of Science National Labs
Ames Ames Laboratory (Ames, IA) LBNL Lawrence Berkeley National Laboratory (Berkeley, CA)
ANL  Argonne National Laboratory (Argonne, IL) ORNL Oak Ridge National Laboratory (Oak Ridge, TN)
BNL  Brookhaven National Laboratory (Upton, NY) PNNL Pacific Northwest National Laboratory (Richland, WA)
FNAL Fermi National Accelerator Laboratory (Batavia, IL) PPPL Princeton Plasma Physics Laboratory (Princeton, NJ)
ENERGY SCIENCES NETWORK JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA) SLAC SLAC National Accelerator Laboratory (Menlo Park, CA)
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Networking

LHCONE L3VPN: A global infrastructure for High Energy Physics data analysis (LHC, Belle Il, Pierre Auger Observatory, NOvA, XENON, JUNO)
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International infrastructure by provider/collaboration

LHCONE VRF domain/aggregator

NREN/site router at exchange point
- A provider network.
Connector network — provides,

Communication links:
e.g., an L2 path between VRFs.

——mm <100G=1.5pt, 100G=4pt, 200G=5pt,
400G=6pt, 800G=7.5pt

Provider network PoP router Smgﬁmc
WLCG sites that are

Underlined link information

indicates link provider, not use
not connected to LHCONE Double dash outline indicates distributed
. site
Future site

I Various m— SINET

s AARNet NORDUnet

— GEANT KIAE, Russia

mmmmmm SINET, Japan, global ring e KREONet2, Korea
ASGC, Taiwan BELLA: GEANT, et al,
ESnet transatlantic, USA RedCLARA, et al
NICT/NCCC/ SingAREN

LHCB-T1

JUNO JUNO
ANA-300/400 - Various links provided by CANARIE, ESnet,
GEANT, Internet2, NORDUnet, SURFnet, SINET,IU/NSF

LHC ALICE or LHCb site

CNAF-T1 LHCTier 1 ATLAS and CMS
UChi LHC Tier 2/3 ATLAS and CMS
KEK Belle Il Tier 1/2

Sites that are
standalone VRFs

NOTES
1) ONLY links involved in LHCONE are shown

2) LHCOPN links are not shown on this diagram

3) For map explanation see “Interpreting the LHCONE Map” at
https://www.dropbox.com/sh/padxfo58j0jlraz/AADsB5K8fISHOFfhCjAdeCtea?dI=0
4) GEANT and CANARIE have shutdown the peering between their VRF and KIAE, as
a result of the Ukraine war.

CIEMAT-LCG2,
UAM-LCG2

CNAF Ital
Raly
LHC-T1 i)
Belle-1I INEN
Bari, Catania,
INEN Frascati, Legnaro,

Milano, Roma1,
Torino

Pisa, Napoli

-
1 Kaust !

! Saudi Arabia

\
J 1

LHCONE - intermediate detail from William Johnston - https://www.dropbox.com/sh/padxfo58j0j1raz/AADsB5K8fISHIFfhCjA4eCtea?dl=0
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The Future
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HL-LHC, DUNE, LSST, SKA will produce
up to exabytes of data per year

More than one order of magnitude above
current dataset sizes

And more complex data to allow
precision measurements

Growing dataset size and event
complexity = more computing!

- If we scale current algorithms, the
CPU needs of LHC experiments will
grow by a factor of 30 in a decade

- Similar issues faced by newer, bigger
LAr experiments such as DUNE
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—xplosion of data and ever-growing need for CPU

SKA Phase 1 -
2023
~300 PB/year
science data
//
~~ /DUNE
2026
30 PB

Yearly data volumes

SKA Phase 2 — mid-2020’s
~1 EB science data

/
A

HL-LHC - 2026

.~600 PB Raw data
N

HL-LHC - 2026
~1 EB Physics data

|
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Moore’s Law probably won't help

Moore’s Law:

48 Years of Microprocessor Trend Data

T T T T |
7 L ad
10 aid 4 **| Transistors
108 F A CA “ | (thousands)
A ‘fﬁAA .
10° F 4 ans, — Single-Thread
gt 3 ..q:,"’ Performance ,
104 k NV o' | (SpecINT x 10%)
3 Y :.‘& ﬁ‘. l!*‘ﬂ.‘ ".:y Frequency (MHz!
10° “n Al 'ﬂ’ ]
, o ’f_- . ol 1997 Typical Power
10° i - 2.. v-' - "7 Yy 'v‘v" Yy ° :’Q. (WattS)
10" F ] - w Yy :': .::’.'i _| Number of
o L - ‘t Logical Cores
ol & ™ - v snaoe
10Y | ; - ¢ 0 B e W Lmm Wmrnene ¢ e -
| 1 | |
1970 1980 1990 2000 2010 2020

Year

on a chip doubles every 2 years
- That’s still true, but single-thread performance has stopped increasing
* Instead, number of cores is now dramatically increasing

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp
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To take advantage of these:

T

Intel Many Integrate Core (MIC) CPU

NVIDIA GPU

We need to rewrite a
lot of software!
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What about supercomputers?

ASCR” Computing Upgrades At a Glance

NERSC OLCF ALCF NERSC ALCF
Now Now Now Upgrade Upgrade

System attributes

Name Summit Perimutter Polaris Frontier Aurora

Installation 2016 2018 2017 2021 2021 2021-2 | 2022-3
(nlanned or actual)

System peak (PF) 30 200 12 >120 35-45 1500

> 1000

Peak Power (MW) 3.7 10 <2.1 6

<2 _ml 29 60

This is the hard part - getting the 8omputing power

without melting the building. PF = petaflops, floating

point operations per

—— second
t PerImiFtter i ;7’ 1,000 PF = 1 exatflops
; N
" = “Excascale”

[ &

*Advanced Scientific Computing Research

(Dept. of Energy) http://exascaleproject.org/
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http://exascaleproject.org/

Commercial cloud computing (>> HEP computing)

- Total spending on cloud computing is now > $200 billion per year

- Many huge companies (Netflix, for example) don’t buy their own clusters but
rely entirely on cloud computing

- HEP experiments are using these resources as well

Cumulative CAPEX (SM)

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

e G00g|e  e——AMazon e Microsoft e=Qracle

https://www.infoworld.com/article/363901 7/cloud-costs-a-lot-of-money.html
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Analysis technigues: tools from industry

- HEP experiments were some of the first cases where people had to deal with
analyzing really big datasets

- Had to develop our own tools to get the science done (ROOT, for example)

- Not true anymore. Basically every big company you can think of has huge
amounts of data at their fingertips

- Many tools of been developed outside labs and universities to help store,

process, and analyze all this data |
&

« Fermilab’s approach for CMS analysis is COFFEA (the COmpact
Framework for Elaborate Algorithms)

- Instead of a for loop over events, use array programming expressions to
process many events simultaneously

« Uses Apache Spark and tools from the scientific python “ecosystem”

based on numpy
S APACHE &ﬁ
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Analysis technigues: Machine Learning

* Machine Learning is a very good fit for
heterogeneous computing

- ML is function approximation XYy Hidden
- Maps inputs to outputs by optimizing npu )
weights  Y=F'(X; W) o
* Deep Learning uses Neural Networks with many

hidden layers to derive features from inputs
(the Neural Networks Zoo)

* More neurons --> more multiplications, weights
* Training: optimizing weights to improve
function approximation

* Inference: applying optimized function to
new data to make predictions

« Used in HEP and Astrophysics since the turn of
the century

- Fermilab Artificial Intelligence Project

Events

Neural Network Output
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https://www.asimovinstitute.org/neural-network-zoo/
https://computing.fnal.gov/artificial-intelligence/

Al at Fermilab

Algorithms for HEP science Computing hardware
Physics-inspired data & models; Robust & generalizable and infrastructu re

learning; Fast and efficient algorithms

Operations and Real-time Al i
control systems systems at edge

Tia Miceli - Al at Fermilab - https://indico.fnal.gov/event/59656/contributions/269042/attachments/168498/225755/20230629_Al_at_Fermilab_TiaMiceli.pdf
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| | | | |
FastML Science

Real Time Al

ey

o
—
o
|

Sensor Data Compression

[ —

Jet Classification

—_
o
o]
|
|

- Fast ML at the extreme edge
- Efficient ML hardware-software codesign

Streaming data rate [B/s]

—_

o
D
|

MLPerf Tiny (IC) 7

Beam Control

104_ . '% —
MLPerf Mobile (NLP)

1q2 l | ] | | |
0°° 107 10 10° 107 10 108 105
Reference latency [s]

g his 4 ml Ll
€) ONNX

682 Github stars,
580 downloads last month

Hardware

QKeras (Google) V|VADO‘\ MGQR(
Brevitas (AMD)
HAWQ (UC Berkeley)
QONNX (Microsoft/AMD)

Prime

Tia Miceli - Al at Fermilab - https://indico.fnal.gov/event/59656/contributions/269042/attachments/168498/225755/20230629_Al_at_Fermilab_TiaMiceli.pdf
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Algorithms for H

P gcience

HEP Projects

Impact

Uboldi et al, Nucl. Instrum. Meth. A 1028 (2022) 166371

' JINST 17 (2022) P01018
CNN LArTPC Reconstruction DﬁrSENM%
GNN CMS Reconstruction: HGCal, ECal, + 2x signal H->bb

Yy improve 7%

SBI flexible likelihoods

Cosmic analyses

105 x faster

Generative models

Particle sim through matter

20-50x faster than GEANT4

Neural networks & importance sampling

Many-body schrodinger equation

Rocco et al., arXiv: 2206.10021
Issacson et al., arXlv:2212.06172

Deep Universal Domain Adaptation

Cosmic analyses, LHC Stealth SUSY
background estimation

Mitigate bias, reduce hyper parameter
tuning

Auto Encoders for anomaly detection

LHC QCD showers, Accelerator
controls @ Linac (L-CAPE)

Pedro et al., JHEP 02 (2022) 074
Ngadiuba et al., arXiv: 2107.02157

Ngadiuba et al., Nature Machine Intelligence 4, 154 (2022) g
Ngadiuba et al., arXiv: 2110.08508

GNN

CMS pileup mitigation

Improve algo > 20%

Tia Miceli - Al at Fermilab - https://indico.fnal.gov/event/59656/contributions/269042/attachments/168498/225755/20230629_Al_at_Fermilab_TiaMiceli.pdf

Fermilab Summer Students School, July 2023

47

Marco Mambelli



Algorithms for HEP science (cont)

Positives, P,y > 0.8 True Positives, Grad-CAM

. DeepShadows: (arXiv:2011.12437) ] o) e ]
» Convolutional NN to distinguish Low Surface -.-.Hm
Brightness Galaxies from artifacts in DES data
« 92% accuracy, vs. ~80% accuracy for simpler — wme — weowse
ML methods -—>‘—> .
» Graph NN for unsupervised optimization of
telescope time: pick best galaxies to observe SENA TR
« Qutperforms conventional strategies arXiV:z106‘09;61\%.3@%;.%”VSEm
- Dynamic Reduction Network (arXiv:2003.08013) i:\i“; S e s . 20 21
 Learn best graph of inputs & use it for regression *ﬁi:g‘,\l*
- Improve electron resolution by 10% (vs. state of S T,
the art) g S S P P
- Work in progress: apply to missing energy I
- Semi-supervised Graph NN to reject pileup: {77 = 2 S
trained on charged particles — can use data! " o 0 PU= 140 |
» Significantly improves on classical algorithm BOOST 2021 )
. See K.Pedro, Al at Fermilab, for more - CEREL 5:303 A S

102 107 i
False positive rate Jet pr (p{ee° - pluth)/plruth
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https://arxiv.org/abs/2011.12437
https://arxiv.org/abs/2003.08013
https://indico.fnal.gov/event/49544/contributions/220167/attachments/145806/185765/AI%20at%20Fermilab.pdf
https://arxiv.org/abs/2106.09761
https://indico.cern.ch/event/1034469/contributions/4434644/
https://indico.cern.ch/event/1037559/contributions/4451753/

Operation System Controls

Cosmology Quantum Accelerator Controls

- Linac RF optimization (prevent the need for
constant tuning to reduce beam losses at
injection to Booster)

- Booster GMPS (reinforcement learning agent

- Experiment automation for - Al/ML for controlling & "
self driving telescopes (GNN optimizing quantum on FPGA to supplement traditional PID loop)
& RL) computers with micro - Real-time Edge Al Distributed Systems

- instrument design (replace electronics and edge Al (READS)
expensive optics simulations - Theoretical & experimental * Disentangle Main Injector and Recycler
with SBI and decision trees) work on quantum detectors Ring beam losses with a U-Net

* Increase muon resonant extraction spil
uniformity for Mu2e with reinforcement @
learning

Tia Miceli - Al at Fermilab - https://indico.fnal.gov/event/59656/contributions/269042/attachments/168498/225755/20230629_Al_at_Fermilab_TiaMiceli.pdf
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Computing hardware infrastructure

* Elastic Analysis Facility @ Fermilab provides resources and rlechas et al. an 12293 10191
data-science standard industry tools for Al training and inference
* Additional GPU resources available on CMS LPC, Wilson Cluster

4 Mil

« Capable of bursting to O(100k) batch computing CPU cores

Benjamin et al., arXiv:2203.08010

3 Mil

|
2.50 Mil i | |
O ® 1 (N
/7;77 . 2 Mil | “M"jﬂ 1 " “
Jupyter | Core Features AET ‘ I I
2 JupyterLab Extension > 1 L i
— — = "‘ 1 Mil LN | “"‘ h]‘ |
Alice o 8 - 500 K \
., 2 A
L I
~_ Jupyter !
o~ (0
PR S _ _ .
[
1 Core Feawre>
| e—

L J u pyte r [2 JupyrerLab Exienswons
Sob ,‘ =

% ; ServiceX B
UReEd(i)ng) art\d witng | func-ad| Remoedaa (G1] :
ROOT files (just I'0) » Remote queries ssL®
. ffoa “iminut  ZTit
: A\\'k“‘q r(l e { Raw minimization  Curve fits |
1 4 / & - Lorentz vectors, H i

. Array ke R — TN :
. Manipulating am:ys: hep-tables Ot procmarg.. p.'..___L.._if Statistical tools |

et
...................

: with nested structure  DataFrame for ; | mpthep . HistFactory-stylefits !
- (not HEP-specific) nested structure Tegenssssansanoasanenett '
O paeem ; =/ : <. o |

o W § |
] Y Boost - |
g _;1_ [ istggfm Plotting ,.-="" & S
s VecCTor 1 & hist! " Pirticle *= oz !
. 2D,3D, & Lorentz vectors Histogramming PythonicPDG .. ~# (7‘1\ '

Tia Miceli - Al at Fermilab - https://indico.fnal.gov/event/59656/contributions/269042/attachments/168498/225755/20230629_Al_at_Fermilab_TiaMiceli.pdf
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Conclusions

« The complexity of HEP experiments doesn’t stop with the detectors

- Scientific computing permeates every aspect of how we do physics at
Fermilab

* There are challenges ahead
- Many that you could help solve!

- Thanks to all those who helped with content

- Especially: Bo Jayatilaka, Allison Hall, Kevin Pedro, Lorena Lobato, Dmitry
Litvintsev, Sophie Berkman, Oliver Gutsche, Ken Herner, Burt Holzman,

Michael Kirby, Anne Schukraft, Erica Snider, Alexander Radovic, Stuart
Fuess

Questions”?
http://computing.fnal.gov
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