CERN Neutrino Platform: ProtoDUNE and DUNE programs at CERN

Sandro Palestini (CERN + Yale U. e INFN Torino)

Workshop Italian Summer Students at Fermilab Pisa, 24-26 giugno 2023

The CERN Neutrino Platform

- It follows the mandate given by the *EU strategy* in 2013: "CERN should develop a neutrino programme to pave the way for a substantial European role in future long-baseline experiments. Europe should explore the possibility of major participation in leading long-baseline neutrino projects in the US and Japan." Confirmed in 2013 ES update.
- Main goal : compact the European groups around the projects of the future short and long Neutrino baselines.
- CERN as a facility for R&D on future technologies (HW and SW) and partner in several neutrino research programs.
- A new phase of the Neutrino Platform has been recently approved, including ProtoDUNE tests in 2023-2024 with Module-0 detector elements for DUNE Far-Detector-1 (HD) and Far-Detector-2 (VD).
- CERN will also provide infrastructures for DUNE, include the cryostats of FD-1 and FD-2.

Neutrino Platform (cont.)

- Advances on LAr TPC detector technology for DUNE (2018-2022):
 - Finalized APA's configuration and components for the Horizontal Drift
 - Testbeam Sep-Nov 2018

- Development of technologies for Vertical Drift detector 2020-2023
- Cosmic runs (Sep 2018 Jul 2020)
- Study of detector performance within or above specifications (signal-to-noise, stability and reliability of the cold electronics)
- Studied Xe doping (spring/summer 2020)
- Achieved LAr Purity level above 20 ms lifetime
- ♦ HV and drift field stability for Horizontal (-180 kV over 3.6) m) and Vertical (-300 kV over 6 m) Drifts ProtoDUNEs (until Mar 2022)
- Trigger and readout
- Development of large scale optical readout (ARIADNE)
- ✦ Reconstruction and analyses:
 - Energy reconstruction of electrons
 - Hadron-LAr cross-section measurements

Detector Parameter	Specification	Goal	ProtoDUNE Performance
Electric Drift Field	> 250 V/cm	500 V/cm	500 V/cm *
Electron Lifetime Impurity Concentration	> 3 ms (<100 ppt [O ₂ -equiv])	10 ms (<30 ppt [O ₂ -equiv])	> ~30 ms in TPC ** < 10 ppt
TPC Electronics Noise	< 1000 e ENC	ALARA	550-650 e ENC (raw) 450-560 e ENC (cnr)***
TPC dead channels	< 1%	ALARA	0.2 % (of ~15,360 channels over 1.5 yr operation)
PhotoDetector Light Yield	> 0.5 Ph/MeV (at cathode plane - 3.6 m distance)		1.9 Ph/MeV ++ (at 3.3 m distance)
PhotoDetector Time Resolution	< 1µs	< 100 ns	14 ns ^^

Muon Dat

Kaon Data

Proton Data

200

CERN Neutrino Platform: ProtoDUNE detectors in phase 1 set-up NP02, NP04: Membrane cryostat technology

- Corrugated SS primary membrane in contact with LAr
- Plywood
- Insulation: reinforced polyurethane foam
- Secondary membrane for gas containment
- Insulation
- Plywood
- Outer vessel

No vacuum, insulation purged with Ar

Concept developed for carrier ships. Developed for LAr in collaboration with industry (GTT)

Used for ProDUNEs, SBND, DUNE, DarkSide ...

ProtoDUNE prototypes

HD Design

VD Design

Event from ProtoDUNE-HD, with accidental cosmic ray activity

7

Zoom on the same event

DUNE FD-2 VD concept (Vertical Drift far detector)

Detector for Ar scintillation light (UV light emitted by dimers formed at primary ionization):

- ARAPUCA detectors: acrylic detection plate, covered by wavelength shifter layers, acting as light guide (internal reflection), read out by silicon photomultipliers
- Complexity for DUNE FD2-VD: some modules are placed on the cathode, which is operated at -300 kV
 - Power for SiPM's bias and readout provided over optical fibers, connected to power converters
 - Similarly, readout uses signal converter and transmission via fibers These technologies are not new, but the is lack of experience for cryogenic applications and applications requiring very high reliability.

DAQ requirements

- Readout throughput: 1.8 TB/s per FD module
- 1.8 TB/s readout throughput
- 10 Gb/s average, 100 Gb/s peak storage throughput per FD module
- ~30 PB per year data to tape

LAr TPCs produce large amount of data

Zero-suppression would be useful, but it is critical for the physics goal:

- Somewhat easier for "high energy" beam neutrino interactions
- Difficult for supernova and solar neutrino measurements
- Besides, supernova events require ~100 s continuous readout, compared to ~ 5 ms for other types of events.

Non-classic event reconstruction: Event identification in the DUNE far detector with a Convolutional Neural Network

Also *classic* reconstruction, and hybrid approaches are followed

https://doi.org/10.1103/PhysRevD.102.092003

«Images» from each

MonteCarlo data.

for v_e and v_u .

Near and Far Detectors in a Nutshell

DUNE

SURF

Data collection expected to start in 2030

1300 km

Fermila

Phase 1 Near Detector:

- ND-LAr +TMS with DUNE-PRISM: moveable LArTPC system
 - ND-LAr: 7x5 array of modular 1x1x3 m³ LArTPCs with pixel readout
 - TMS: Muon spectrometer: magnetized steel range stack to measure μ momentum/sign from \textit{v}_{μ} CC interactions in ND-LAr
 - DUNE-PRISM: ND-LAr + TMS move up to 28.5 m off-axis
- SAND: Multi-purpose on-axis magnetized detector
 - KLOE SC solenoid and Calorimeter
 - GRAIN: Optical LAr target
 - STT: STraw tube tracker system

DUNE Far Detectors (Phase I)

- Phase 1 will include caverns for 4 detector modules in South Dakota and 2 far detector modules, each 17 kton of LAr, the largest LAr TPCs ever constructed.
 - FD1: horizontal drift (ala ICARUS, MicroBooNE)
 - FD2: vertical drift (capitalizing on protoDUNEs)

• Order of magnitude more mass than has been deployed up to now from all LAr TPCs

Supernova physics: unique sensitivity to electron neutrinos

¹Super-Kamiokande, *Astropart. Phys.* **81** 39-48 (2016) ²Lu, Li, and Zhou, *Phys Rev. D* **94** 023006 (2016)

- Time (and energy) profile of the flux is rich in supernova astrophysics
- Flux contains v_e and v_e as well as a component of the other flavors (v_x) DUNE has unique sensitivity to v_e component
- Phase I: O(100s) events per FD module for galactic SNB
- Phase II: Reach extends reach beyond the Milky Way
- Enhancements to LArTPC design in Phase II could greatly extend low energy science (see talk by Mary Bishai)