

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO AGATA week workshop 2023

Performance of AGATA at higher energies

M. Balogh, S. Bottoni, R.M. Peréz-Vidal, S. Pigliapoco, Md.S.R. Laskar

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,r Summarv

Performance of AGATA

@ 1.3 MeV

Analysis mode	Efficiency	P/T
Core	3.05(9) %	16.8(6) %
Tracked	4.16(12) %	32.9(9) %
Addback	4.21(13) %	28.6(8) %

R.M. Pérez-Vidal et al., INFN-LNL Annual reports, vol. 56, 2022.

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n Summarv

Performance of AGATA

• Analyses of γ-ray spectroscopic data

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n) Summary

Performance of AGATA

- Analyses of γ-ray spectroscopic data
- Preparation of experimental proposals

Coulomb excitation of the super-deformed structure in ³⁶Ar AGATA + SPIDER + DANTE

Spokespersons: K. Hadyńska-Klęk, M. Matejska-Minda

Transition	E _γ [keV]	Counts / 7 days	Counts/ 7 days	
		(AGATA + SPIDER)	(AGATA + DANTE)	
		$124-161^{\circ}_{LAB}$	$15-75^{\circ}_{LAB}$	
$2^+_1 \rightarrow 0^+_1$	1970	$8 \cdot 10^{6}$	2.10^{7}	
$4^+_1 ightarrow 2^+_1$	2444	$3 \cdot 10^{3}$	$2 \cdot 10^{3}$	
$0^+_2 \rightarrow 2^+_1$	2359	1.10^{3}	100	
$2^+_2 \rightarrow 2^+_1$	2981	150	120	
$2^+_2 ightarrow 0^+_1$	4951	50	50	
$2^+_3 \rightarrow 0^+_1$	4441	110	100	
$2^+_3 \rightarrow 2^+_1$	2471	70	90	
$3^1 ightarrow 2^+_1$	2208	$3 \cdot 10^{3}$	3.10^{3}	

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n Summary

Performance of AGATA

- Analyses of γ-ray spectroscopic data
- Preparation of experimental proposals
- Comparison with GEANT4 simulations

Performance of AGATA at higher energies

Scientific motivation

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n) Summary

Performance of AGATA

- Analyses of γ-ray spectroscopic data
- Preparation of experimental proposals
- Comparison with GEANT4 simulations
- Optimization of the tracking parameters for E>3 MeV

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n ummary

Previous performance reviews

LNL 2013

• 6 crystals

F.C.L. Crespi, NIM A **705**, 2013

- resolution, hit multiplicity, tracking
- Am-Be-Fe source + in-beam

GSI 2016

.

N. Lalović, NIM A **806**, 2016

- 21 crystals
 - efficiency, P/T, tracking
- calibration sources, up to 3.4 MeV (¹⁵²Eu, ⁶⁰Co, ⁵⁶Co)

GANIL 2020

J. Ljungvall et al., NIM A **955**, 2020

- 30 crystals
- efficiency, tracking, P/T, angular correlations
- calibration sources (¹⁵²Eu, ⁶⁰Co) and in-beam (⁹²Mo)

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n Jmmary

Efficiencies up to 3.4 MeV

- measured with a ^{56}Co $\gamma\text{-ray}$ source
- 2-3 days measurement (⁵⁶Co, ⁶⁰Co, ¹⁵²Eu, ²⁴¹Am, ²²⁶Ra)

Energy [keV]	Intensity [%]	Rel. uncertainty [%]		
846.77	100.00	0.02		
977.37	1.42	0.42		
1037.84	14.06	0.28		
1175.10	2.25	0.27		
1238.29	66.50	0.18		
1360.21	4.29	0.28		
1771.36	15.42	0.39		
2015.22	3.02	0.40		
2034.79	7.77	0.39		
2598.50	16.98	0.24		
3009.65	1.04	1.25		
3202.03	3.21	0.37		
3253.50	7.93	0.27		
3273.08	1.88	0.11		
3451.23	0.95	0.53		

TABLE I: 56 Co γ rays with intensity >0.95 %. Data taken from NNDC database.

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n) Jmmary

Efficiencies up to 4.8 MeV

- above 4 MeV estimated via the ⁶⁶Zn(p,n) reaction
- ⁶⁶Zn enriched target to limit the neutron flux on AGATA
- E_n=13 MeV → **σ≈680 mb**
- thickness ~ 2.5 mg/cm²
- Al backing for preventing recoils to exit the target

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n) ummary

Efficiencies up to 4.8 MeV

- above 4 MeV estimated via the ⁶⁶Zn(p,n) reaction
- ⁶⁶Zn enriched target to limit the neutron flux on AGATA
- E_n=13 MeV → **σ≈680 mb**
- thickness ~ 1.5 mg/cm²
- Al backing for preventing recoils to exit the target

TABLE II: γ rays with intensity >0.8% produced in ⁶⁶Zn(p,n) reaction and expected number of fullyabsorbed tracked γ ray events per crystal for the duration of the measurement. Data taken from NNDC database.

Energy [keV]	Intensity [%]	Rel. uncertainty [%]	Number of tracked γ rays [1/crystal/da	
833.53	5.90	5.08	305 000	
1039.22	37.00	5.41	1 860 000	
1333.11	1.17	5.13	56 500	
1918.33	1.99	5.53	89 800	
2189.62	5.30	5.66	233 000	
2422.53	1.88	5.32	80 800	
2751.84	22.70	5.29	950 000	
3228.80	1.61	5.30	61 000	
3380.85	1.47	5.44	58 700	
3422.04	0.86	5.81	34 300	
3791.00	1.09	5.50	42 400	
4085.85	1.27	5.51	48 500	
4295.19	3.81	5.51	144 000	
4461.20	0.84	5.95	31 435	
4806.01	1.86	5.38	68 000	

Estimated rate ~2kHz/crystal assuming

- flat P/T = 30%
- 2.67 average hits per track
- 1% extrapolated efficiency
- 24 hours of measurement

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p,n) ummary

Neutron flux

- estimated using PACE4
- lowest neutron flux backward angles (PRISMA@20°)
- AGATA backward
- average 8 neutrons/s/crystal (24 hour measurement)
- neutron shielding 10cm polyethylene + 38cm paraffine
- flux decrease > 1/100

Performance of AGATA at higher energies

Scientific motivation The experiment 1st PHASE ⁵⁶Co

Summary

Summary

1st PHASE:

⁵⁶Co γ-ray source measurement:

• Efficiencies up to 3.4 MeV

2nd PHASE:

⁶⁶Zn(p,n) reaction:

- Efficiencies up to 5 MeV
- o **σ≈** 680 mb
- 5 pnA proton beam @13MeV, **24 hours**
- AGATA @ back-most
 - 144x10³ counts/ crystal x day @ 4.3 MeV
 - ~70x10³ counts/ crystal x day @ 4.8 MeV

PHASE	BEAM TIME Requested		
⁵⁶ Co+others sources	2-3 days		
⁶⁶ Zn(p,n)	1 day		

Collaboration

M. Balogh¹, S. Bottoni^{2,3}, R.M. Pérez-Vidal¹, S. Pigliapoco^{4,5}, Md. S. R. Laskar³, G. Benzoni³,
 D. Brugnara¹, F. Camera^{2,3}, F.C.L. Crespi^{2,3}, A. Ertoprak¹, F. Galtarossa⁵, A. Goasduff¹, A. Gottardo¹,
 R. Menegazzo⁵, D. Mengoni^{4,5}, B. Million³, J. Pellumaj¹, J.J. Valiente Dobón¹, O. Wieland³, L. Zago^{1,4},

¹ INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy.
 ² Dipartimento di Fisica dell'Università degli Studi di Milano, Milano, Italy
 ³ INFN, Sezione di Milano, Milano, Italy.
 ⁴ Dipartimento di Fisica dell'Università di Padova, Padova, Italy.
 ⁵ INFN, Sezione di Padova, Padova, Italy.

AGATA week workshop 2023

Performance of AGATA at high energies

Thank you for your attention!

Performance of AGATA at higher energies

Scientific motivation The experime

1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p Summary

Istituto Nazionale di Fisica Nucleare

Better ideas?

Table 1

Parameters of the (p, γ) reactions, energies (E_{γ}) and relative intensities (I_{γ}) of the γ -rays emitted by product nucleus [9,11,12].

Reaction	E _{res} (keV)	Q value (keV)	E _p (keV)	E _γ (keV)	Iγ	Target and its thickness (µg/cm ²)
23 Na(p, γ) 24 Mg	1318.1	11693	1323 F.C.L. Crespi, NIM A 705	1368.6(1) 2012(584.9(6)	1.000(2)	Na ₂ WO ₄
23 Na(p, γ) 24 Mg	1416.9	11 693	1422	2754.0(1)	1.000(1)	Na ₂ WO ₄
27 Al(p, γ) 28 Si	767.2	11 585	770	8925.2(6) 2838.7(1)	0.985(1) 1.0000(14)	20 Al
³⁹ K(p, γ) ⁴⁰ Ca	1346.6	8328	1351	7706.5(2) 3904.4(1)	0.9810(14) 1.000(1)	15 K ₂ SO ₄
$^{11}B(p,\gamma)^{12}C$	675	15 957	676	5736.5(1) 4438.0(3)	0.965(1) 1.0000(7)	20 LiBO ₂
7 Li(p, γ) ⁸ Be	441	17255	450	12 137.1(3) 17 619.0(6)	1.0000(7) -	75 LiBO ₂ , 75

Nuclear data are taken from ENSDF [13]. Q values calculated by QCalc from NNDC [14].

L. Netterdon, NIM A **754**, 2014

Performance of AGATA at higher energies

Scientific motivation The experiment 1st PHASE ⁵⁶Co 2nd PHASE ⁶⁶Zn(p)

Summary

Performance of AGATA at higher energies

Scientific motivation

The experiment

1st PHASE ⁵⁶Co

2nd PHASE ⁶⁶Zn(p,n)

Summary

Complementary approaches

Istituto Nazionale di Fisica Nucleare

Single ATC characterization

• Possibility of sending one AGATA ATC to ILL to be tested with (n,g) in the future