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Axion dark matter mass?

• What is the "typical mass" of the axion dark matter?


• Use cosmology to answer this question...
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Initial conditions
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Initial conditions

• Pre-inflationary scenario:

• Well understood production mechanism (vacuum realignment).


• Uncertainty due to the unknown initial angle     .
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Pre-inflationary PQ symmetry breaking scenario



• Topological defects


• Strings


• Domain walls


• Inhomogeneity at                                                                      

Post-inflationary scenario
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Seeds of miniclusters
[Kolb, Tkachev, astro-ph/9311037]

[Vaquero, Redondo, Stadler, 1809.09241]

formed at the PQ phase transition
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Domain wall formation after the QCD phase transition

• Axion is a periodic angular field defined in the range


• There can be a difference in                                                            

periodicity between            and    ,                                                       

creating N degenerate minima                                                                  

at low energies.


• The "domain wall number" N depends on models.
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e.g. N = 1 for (the simplest version of) KSVZ models

N = 6 for DFSZ models

: symmetry breaking scale

N = 3



Domain wall problem

• Models with N > 1 are basically ruled out since domain walls are stable and 
come to overclose the universe.


• But the problem can be avoided if there exists an additional term which explicitly 
breaks the PQ symmetry and lifts degenerate vacua, making walls unstable.
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[Sikivie (1982)]

string wall

unstable, going to collapse stable!
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[Sikivie (1982)]

[Kawasaki, KS, Sekiguchi, 1412.0789]



N > 1: Signatures from long-lived domain walls?

• Higher DM mass can be predicted,                                                       
up to the lifetime of domain walls.                                                    
Potential target of searches at                                                                  
higher mass ranges.


• Observational signatures


• Gravitational waves


• Too small for QCD axion models.


• Observable signatures predicted in ALP models or non-standard QCD 
axion models.


• But incompatible with isocurvature constraints?


• Possibility of primordial black hole formation
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[Hiramatsu, Kawasaki, KS, Sekiguchi, 1207.3166]

[Gelmini, Simpson, Vitagliano, 2103.07625; Ferreira, Notari, Pujolàs, Rompineve, 2107.07542]

[Gorghetto, Hardy, 2212.13263]

[Ferrer, Masso, Panico, Pujolas, Rompineve, 1807.01707; Gelmini, Simpson, Vitagliano, 2207.07126]

[Kawasaki, KS, Sekiguchi, 1412.0789; Ringwald, KS, 1512.06436]

[Armengaud et al., 1904.09155]



N = 1: The simplest scenario?

• No domain wall problem.


• One should be able to predict the dark matter mass uniquely                                                   
(only one free parameter,     ).


• Controversy on the interpretation of results from axion string simulations.
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Kawasaki, KS and Sekiguchi
1412.0789 (5123 static-lattice)

Fleury and Moore
1509.00026
(16003 static-lattice)

Klaer and Moore 1708.07521
(20483 static-lattice + eÆective theory)

Buschmann, Foster and Safdi
1906.00967 (20483 static-lattice)

Gorghetto, Hardy and Villadoro
2007.04990 (45003 static-lattice)

Buschmann et al. 2108.05368
(20483 cells
+ adaptive mesh refinement)

Mass determined from



How to simulate axion strings

• Solve the classical EOM for a complex scalar field (PQ field) in 
comoving coordinates, discretized as static lattice.

• Simulation requires a proper resolution 
of two different length scales.


• String core radius


• Hubble radius


: mass of the radial direction
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• String tension acquires                                                                    
a logarithmic correction.


• Realistic value


• Difficult to reach it in simulations with limited dynamical ranges.


• Actual strings may be "heavier" than what we observe in 
simulations. (affects dynamics?)

Difficulty in string dynamics
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Attractor/scaling solution

• Different initial conditions appear to converge.


• Characterize the attractor, and use it for extrapolation.


• Most of recent simulations observe a logarithmic growth in the           
string density.                                                                                           
(but full consensus has not been reached, cf. [Hindmarsh et al., 1908.03522; 2102.07723])
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[Gorghetto, Hardy, Villadoro, 2007.04990]

[Fleury, Moore, 1509.00026; Gorghetto et al., 1806.04677; 2007.04990; Kawasaki et al., 1806.05566]

String density parameter

: string length

: spatial volume



Spectrum of radiated axions

• Differential energy transfer rate


•      seems to be well approximated by a simple power law,                 
whose exponent is important. [Gorghetto, Hardy, Villadoro, 1806.04677]
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Discrepancy in the spectrum

• Simulations by [Gorghetto et al., 2007.04990]


• Simulations by [Buschmann et al., 2108.05368]                                                                        
(using Adaptive Mesh Refinement (AMR))
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Discrepancy in the index of the axion radiation spectrum...



Oscillation in the axion spectrum
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• Coherent oscillation with frequency           , interpreted as axion field oscillations   
after the horizon entry.


• Simple finite difference leads to a lot of contaminations from axion field oscillations.


• Reducing them by applying a filter to remove high frequency components in the 
mode evolution data.
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• Bias due to the oscillations in the IR modes gives rise to larger 
fluctuations in    .


• Possible source of discrepancy in the literature?
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Oscillation in the axion spectrum

Fit a power law


to the data in a range

with some coefficients
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Discretization effects

• Effect of the resolution of the string core parameterized by          .


• The effect appears to blow up faster at larger logs, leading to a 
significant distortion of the spectrum.
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The largest simulation

with 112643 static lattice

performed at

RAVEN (MPCDF, Garching) 

and SQUID (Osaka)

: lattice spacing



• Large           biases q towards larger values.


• Model the part that is independent of          , and use it for extrapolation.
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Discretization effects
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Extrapolation to large log

• Evolution of the IR peak                    　
                           is observed, 
which is relevant if           .


• If            , the non-linear effect 
around the QCD phase transition 
is relevant, which alleviates the 
log-enhancement of the axion 
number.
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Future: Simulations with Adaptive Mesh Refinement

• Instead of using a uniform grid, selectively increase the resolution in the 
region of interest (string core).


• Potential to substantially increase the dynamical range by using 
computational resources more efficiently.
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[Drew, Shellard, 1910.01718]

[Kaltschmidt, Redondo]

Figure by M. Kaltschmidt, presented at the workshop "DM beyond the weak scale", Liverpool (2023)



Alternative approach: Direct simulations with effective theory

• Clever method to effectively increase 
the string tension by considering a 
theory with 1 vector field + 2 complex 
scalars.


• Axion production turned out to be less 
efficient than the misalignment 
estimate, predicting smaller DM mass. 


• Is the axion spectrum consistent with 
the results from indirect simulations at 
smaller logs?
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[Klaer, Moore, 1707.05566; 1708.07521]



Simulations for other scenarios

• Generic ALP mass


• N > 1

n = 0 may lead to a larger abundance.

More challenging because of 

3 different scales.

Recent simulations show a logarithmic

increase in the area of domain walls.
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[Chaumet, Moore, 2108.06203]

[O'Hare, Pierobon, Redondo, Wong, 2112.05117]

[Gorghetto, Hardy, 2212.13263]
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Conclusions

• New generation of numerical simulations allow us to have a 
better understanding of the nature of axion dark matter in the 
post-inflationary scenario.


• Main problem is dynamical range.


• Measurement of the axion spectrum is still uncertain due to 
severe discretization effects.


• There are several rooms for improvement in simulation or 
analysis methods, which are expected to provide a shaper 
prediction for the axion dark matter mass.
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