FCC-ee IR Beam Losses and MDI collimation

G. Broggi ^{1,2,3}, A. Abramov ², M. Boscolo ³, R. Bruce ²

- ¹ Sapienza University of Rome, Rome, Italy
- ² CERN, Meyrin, Switzerland
- ³ INFN-LNF, Frascati, Italy

2nd FCC@LNF meeting – 23/05/2023

Many thanks for discussions and input to:

A. Lechner, M. Hofer, M. Migliorati, K. Oide, A. Perillo-Marcone, S. Redaelli, F. Zimmerman

FCC-ee: collimation system requirements

- FCC-ee will have an unprecedented stored beam energy for a lepton collider
 - Up to **17.8 MJ** (Z mode) → highly destructive beams!
- Collimation system indispensable
 - Reduce the background in the experiments
 - Protect the machine from unavoidable losses

- Dedicated halo collimation system in PF (A. Abramov talk)
 - Two-stage betatron and off-momentum collimation in one insertion
 - First collimator design for beam cleaning performance
 - Primary collimators (TCPs): MoGr 33 cm
 - Secondary collimators (TCSs): Mo 30 cm

Further optimization studies ongoing!

Synchrotron radiation collimators around the IPs (K. André - talk)

(Exp.)

 $L_{arc} = 9.6 \text{ km}$

FCC-ee aperture bottlenecks

23-05-2023

- The aperture bottlenecks are in the experimental interaction regions (IRs)
- The **bottlenecks must be protected** → **collimation system**
 - The final focusing quadrupoles are superconducting: risk of quenches!
 - The detectors are sensitive to backgrounds from beam losses
 - The SR collimators and masks are not robust to large direct beam impacts and they can also produce backgrounds

FCC-ee halo collimation system optimization

Goals

- Evaluate the halo collimation system performance for beam loss cleaning
- Study beam dynamics aspects for beam cleaning performance
- Optimization of the collimator design parameters
- Study possible loss mitigation strategies

In this talk

- Evaluation of the halo collimation system performance for beam loss cleaning
 - > FCC-ee 4IP layout, generic beam halo loss scenario
- Impact parameter scan for different scenarios
 - Without and with radiation and tapering
 - Without and with collimators aligned to the beam envelope (loss mitigation strategy)
- Suppression of power loads in the IRs by aligning the primary collimators to the beam envelope
- Possible collimator design optimization through a parametric scan of the primary collimator length (tt mode) PRELIMINARY!

SIMULATION SETUP

Case study: beam halo losses

- Tracking simulations (Xtrack-BDSIM) to evaluate the collimation system cleaning performance
- Generic halo beam loss scenario
 - > Simulation starts with halo particles impacting a primary collimator at a given impact parameter
 - The impact parameter affects the collimator active length
 - To get a conservative performance estimate: the particles impact the collimator at the critical impact parameter

The particles scattered out from the collimator are tracked, and the losses on the aperture are recorded (loss maps)

Example: Z mode betatron halo loss map

- FCC-ee 4IP layout, Z operation mode (B1, 45.6 GeV positrons), 17.8 MJ stored beam energy
- Halo particles (5x10⁶) impacting the horizontal primary collimator TCP.H.B1, 1 μm impact parameter
- Particles scattered out from TCP.H.B1 tracked for 700 turns
- Synchrotron radiation emission and lattice tapering

IMPACT PARAMETER SCAN

Impact parameter scan

Scan to determine the loss cleaning performance as a function of the impact parameter

• FCC-ee 4IP layout
Z operation mode (B1, 182.5 GeV positrons, 0.3 MJ stored beam energy)
tt operation mode (B1, 45 GeV positrons, 17.8 MJ stored beam energy)

Different scenarios examined:

	SR emission	lattice tapering	tilted TCP.H.B1
NO R&T	×	×	×
R&T			×
R&T + tilted TCP.H.B1 *			

^{*} Aligning the collimators to the beam divergence significantly increases the loss cleaning performance

Impact parameter scan: figures of merit

Peak and integrated (along s) cold losses ± 8 m from the IPs chosen as representative quantities for the overall cleaning performance (i.e., losses in the final focusing quads)

from the example on slide 4

tt mode - NO radiation and tapering

- The critical impact parameter is b_{crit} = 0.1 μm
- The most critical IPs are IPA and IPD (the farther from the collimation insertion)
- Second-turn effects likely determine the decrease for the smallest impact parameters

tt mode - radiation and tapering

- The critical impact parameter is b_{crit} = 0.1 μm (as without radiation and tapering)
- With radiation and tapering losses are lower
- The most critical IP is IPD (the farther from the collimation insertion)
- Second turn effects/radiation damping likely determine the decrease for the smallest impact parameters

tt mode – radiation and tapering + tilted TCP.H.B1

- The critical impact parameter becomes b_{crit} = 50 nm
- Aligning TCP.H.B1 to the beam divergence leads to significantly better cleaning performance (2 orders of magnitude) for the same impact parameter
- The most critical IP is IPG (the one downstream of the collimation insertion, located in PF)

Z mode – NO radiation and tapering

- The critical impact parameter is b_{crit} = 10 nm *
- The most critical IPs are IPG and IPJ (the one downstream of the collimation insertion, located in PF)
- Second-turn effects likely determine the decrease for the smallest impact parameter

* 10 nm is at the level of a grain size: surface roughness should be taken into account!

Z mode – radiation and tapering

- The critical impact parameter is b_{crit} = 10 nm * (as without radiation and tapering)
- With radiation and tapering losses are higher (opposite to tt)
- The most critical IPs are IPA and IPD (the farther from the collimation insertion, located in PF)
- The effects of radiation and tapering on this scenario must be studied
- * 10 nm is at the level of a grain size: surface roughness should be taken into account!

Z mode – radiation and tapering + tilted TCP.H.B1

- The critical impact parameter is b_{crit} = 10 nm * (not very sharp, statistical fluctuations can play a role)
- Aligning TCP.H.B1 to the beam divergence leads to significantly better cleaning performance (more than 2 orders of magnitude) for the same impact parameter
- NO most critical IPs
- * 10 nm is at the level of a grain size: surface roughness should be taken into account!

Example: Z mode betatron halo loss map

- FCC-ee 4IP layout, Z mode (B1, 45.6 GeV positrons), 17.8 MJ stored beam energy
- Untilted TCP.H.B1
- b = 1 µm has been used as standard in the studies so far
- Significant increase in the losses at the critical impact parameter!

Note: Further checks of the beam dynamics and modelling techniques should be carried out before selecting a new impact parameter for future studies.

SUPPRESSION OF POWER LOADS IN THE IRS

Z mode – radiation and tapering

Impact parameter b_{crit} = 10 nm, 5 min lifetime assumed

161.06 W power load in the IRs (136.47 W + 24.59 W)

Z mode – radiation and tapering + tilted TCP.H.B1

Impact parameter b_{crit} = 10 nm, 5 min lifetime assumed

1.64 W power load in the IRs (1.31 W + 0.33 W)

PARAMETRIC SCAN OF THE PRIMARY COLLIMATOR LENGTH (tt mode)

PRELIMINARY!

Parametric scan of the TCP length (tt mode)

- **Current TCP length** relies on the **LEP collimation experience** (2 rad. length primary collimators)
- Primary collimators give a significant contribution to the global RF impedance
 - They are the collimators **closest to the circulating beam**

Because of **robustness requirements**, they are typically made of **low-density** and **low** electrical conductivity materials (e.g., MoGr)

Low-density translates into **high radiation length**; therefore, if the design criterion requires that a certain number of radiation lengths is needed, this could lead to long collimators

- Parametric scan of the TCP length performed with the aim of observing the behaviour of the halo collimation system performance as a function of the primary collimator length
- **Xtrack-BDSIM simulation setup** used to perform this study
- **Goal:** reduce as much as possible the TCP length without significantly worsening the halo collimation system cleaning performance

Parametric scan of the TCP length (tt mode)

15

L TCP [cm]

20

25

30

TCP.H.B1 aligned to the beam envelope

To check: behaviour with the Z lattice

10

5

0

SUMMARY AND NEXT STEPS

Summary

- The halo collimation system performance has been evaluated for FCC-ee 4IP lattice (Z and tt)
- An impact parameter scan identified the most critical impact parameter in different scenarios
- The collimator jaws need to be aligned to the beam envelope to significantly suppress (two orders of magnitude) the power loads in the IRs
- PRELIMINARY: a parametric study of the primary collimator length suggests that shorter TCP can give comparable cleaning performance

Next steps

- Determine whether the cleaning performance offered by the halo collimation system are adequate or not (beam loss tolerances needed)
- Sensitivity study of the collimator tilt angle
- Investigate further the **beam dynamics determining the critical impact parameter** (including the effects of **radiation and tapering** and **dynamic aperture**)
- Further optimize the collimator design (alternative materials, parametric scan of secondary collimator length...)
- Iterate the collimator design with the engineering, impedance and FLUKA teams

Thank you!

