

Vertex Track Perfomance Studies

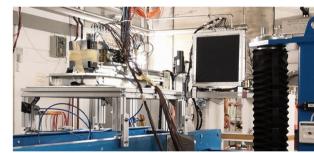
Giacomo Ubaldi

Cluster Reconstruction

- cluster position and its resolution
- fit of clusters in the different planes and its resolution
- residuals
- pulls
- Chi2 plots
- Studies on MC and first results on GSI2021 data

GSI 2021 Analysis

- Data-taking at GSI (Darmstadt, Germany) in 2021
- 16O 400 MeV/u on 5 mm C target
- Partial setup: no magnet, only one module of calorimeter

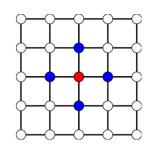


MC used Dataset:

 /gpfs_data/local/foot/Simulation/GSI2021_MC/16O_C_400_2_shoereg.root /gpfs_data/local/foot/Simulation/GSI2021_MC/16O_C_400_3_shoereg.root

Clusterization

- first neighbour search
- Two pixels are called first neighbours if they are contiguous in line or column
- search in an iterative way



- position of the cluster computing Center of Gravity
- sum in every pixel

$$x = rac{\sum f_n x_n}{\sum f_n} \quad y = rac{\sum f_n y_n}{\sum f_n}$$

$$\sigma_x = \sqrt{rac{\sum f_n(x_n-x)^2)}{\sum f_n}} \qquad \sigma_y = \sqrt{rac{\sum f_n(y_n-y)^2)}{\sum f_n}}$$

where f_n is the PulseHeight which is always 1

Track reconstruction

- cluster positions on each sensor
- searching for all possible combinations between the clusters of the last plane and the previous plane
- 2) the micro-track is extrapolated to previous layers
- 3) a good cluster candidate is added to the micro-track
- repeat 2) and 3)
- At the end of the process, a final **linear fit** is done for the position of the track, composed of a fit in (x,z) and a fit in (y,z)

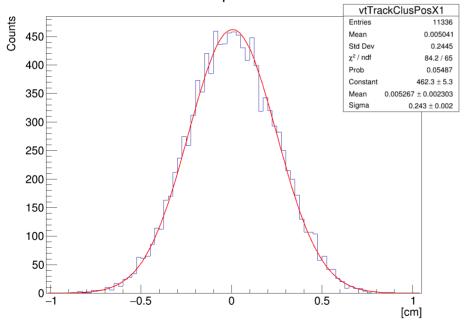
I added the following function to study the performance of the fit in branch Ubaldi_studies
 TAGbaseTrack:: GetCovMatrix, GetChi2, GetPvalue

Position of the cluster

• Let's start from the measurement of the position. As example, x coordinate of clusters for the sensor 1

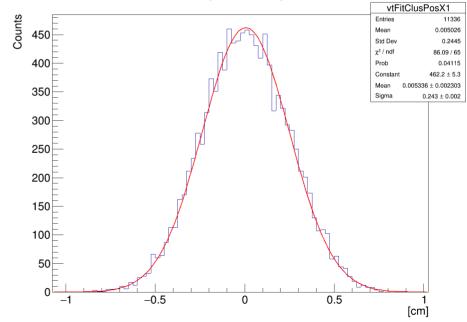
From measurement:
$$x = \frac{\sum f_n x_n}{\sum f_n}$$

Vertex - Clus X position in sensor 1



From fit:
$$x=mz+q$$

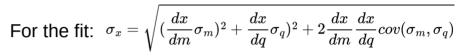
Vertex - Clus X position by fit in sensor 1



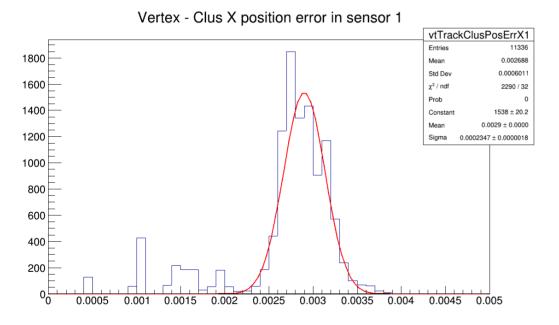
Resolution of the cluster

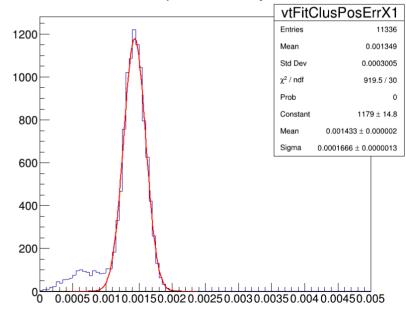
The resolution associated to the position is shown. As example, x coordinate of clusters for the sensor 1

For the measurement:
$$\sigma_x = \sqrt{rac{\sum f_n(x_n-x)^2)}{\sum f_n}}$$



Vertex - Clus X position error by fit in sensor



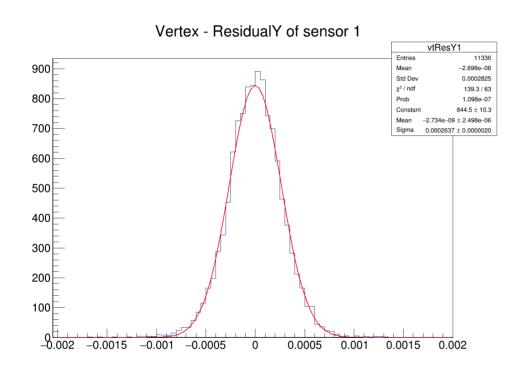


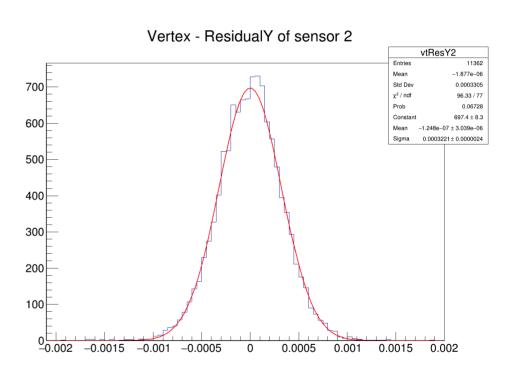
The mean of the error is about 30 µm. Is it overestiamated wrt what said in Frontiers Paper?

Residuals Y coordinate

$$r=y_{meas}-y_{fit}$$

I measure the residual as in the formula. As example, y coordinate of clusters for the sensor 1





Is the mean of the residual the spatial resolution of the VT detector as reported in Frontier paper?

In the following slide, the pull in x for all the sensors

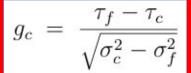
Then the pull

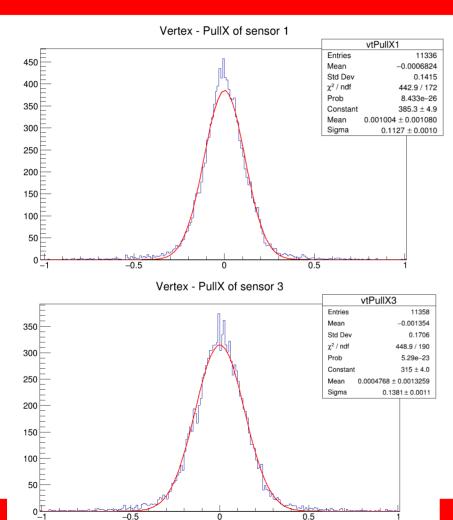
$$g_c = \frac{\tau_f - \tau_c}{\sqrt{\sigma_c^2 - \sigma_f^2}} \tag{10}$$

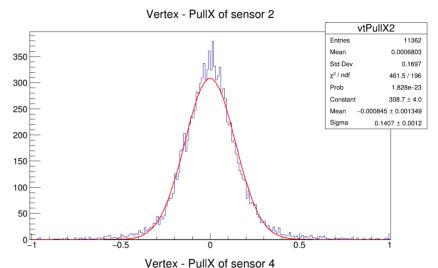
is usually a standard Gaussian. The denominator of the expression for g_c may at first sight look a bit surprising, but it is simply the error on the numerator, taking into account the correlation between the errors in the fit result τ_f and the measure τ_c .

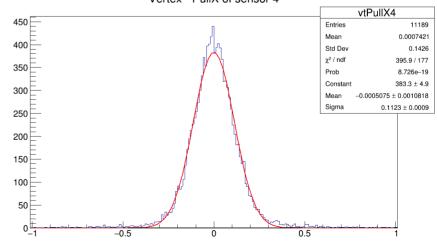
f stands for the fit c stands for the measurement

Pull X coordinate

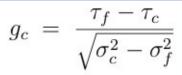


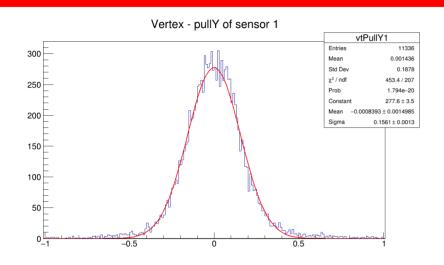


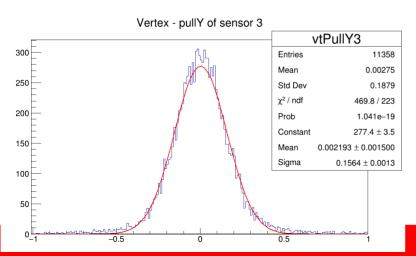


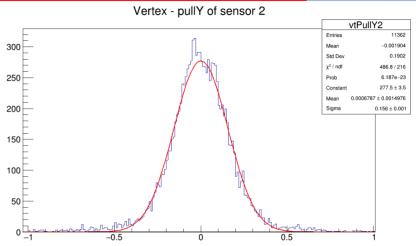


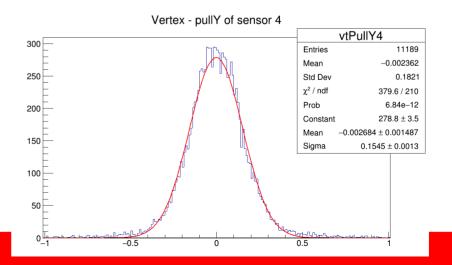
Pull Y coordinate







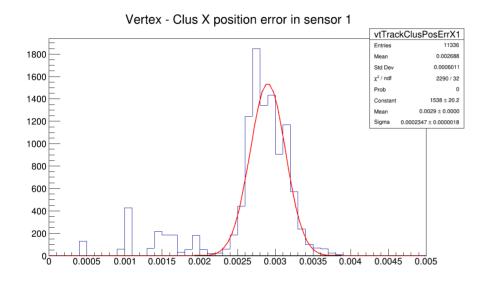




Observations

- In the best condition, a mean around 0 and a σ_{pull} around 1 are expected.
- In this case $\sigma_{\text{pull}} \sim 0.2 \rightarrow \sigma_{\text{measurement}}$ is overestimated

Resolution of the cluster

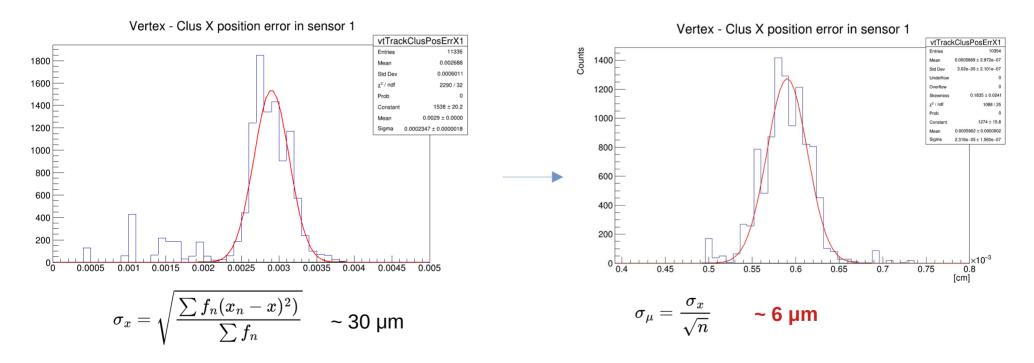


The $\sigma_{measurement}$ I am using now is the mean of this distribution: Since the estimator of the position is a mean, I want to use as $\sigma_{measurement}$ the one associated to the mean:

$$\sigma_x = \sqrt{rac{\sum f_n(x_n-x)^2)}{\sum f_n}} \ \sigma_\mu = rac{oldsymbol{\sigma}_x}{\sqrt{m}}$$

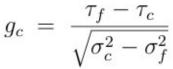
Resolution of the cluster

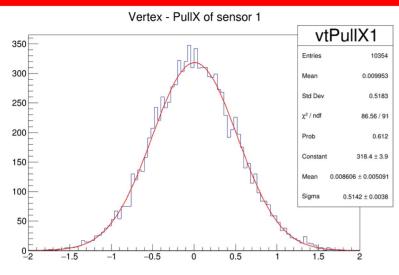
• I run again my data with the new $\sigma_{measurement}$. Ex. resolution in x of sensor 1

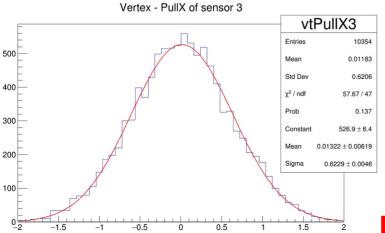


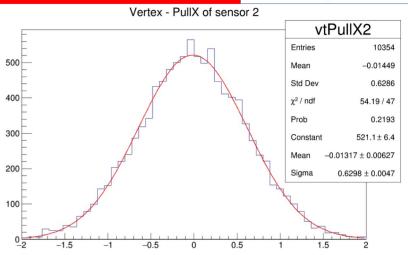
• Omitting all the steps already seen, I measure the new pulls in the next slide

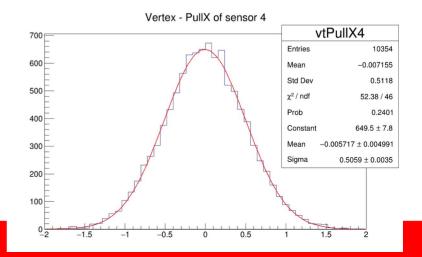
Pull X coordinate



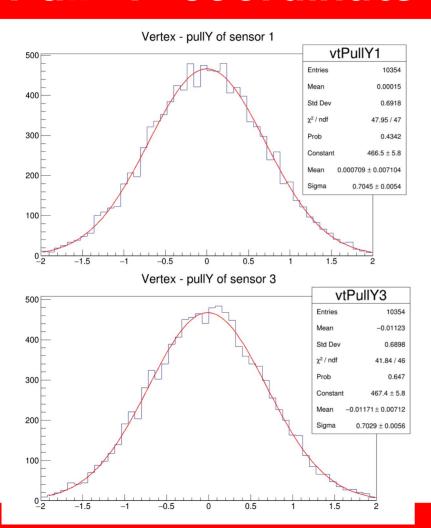


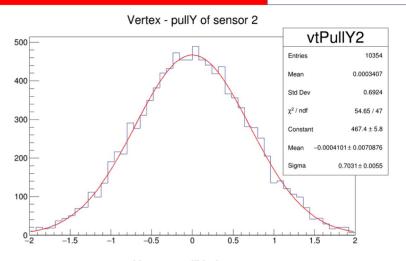


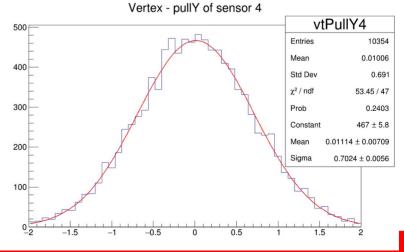




Pull Y coordinate

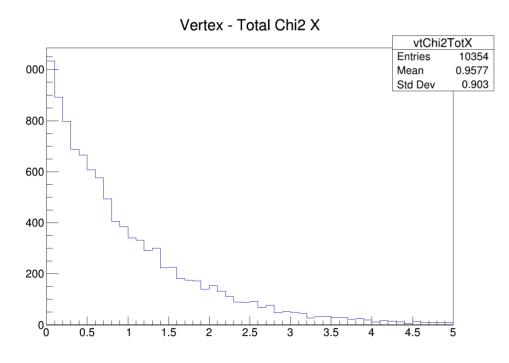


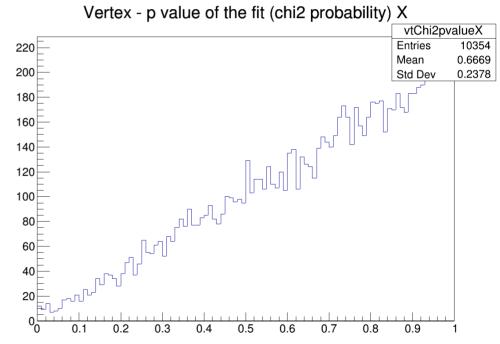




Chi2 Test X coordinate

The Chi2 distribution of every fitted track and its pvalue is shown. The mean of the distribution should be ~ 2 (dof = 4 (number of points) / 2 (m,q parameters) The p value distribution should be uniform





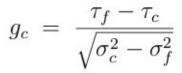
Observations

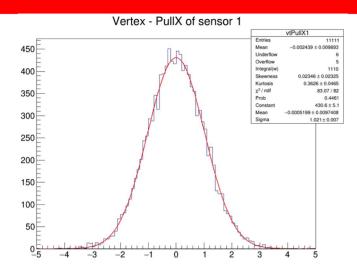
- went from 0.2 to 0.7 → error still overestimated
- Chi2 distribution show the fitting is still not perfect
- let's multiply $\sigma_{measurement}$ by 1/ sqrt(2) (which is 0.7) in order to obtain σ_{pull} close to 1

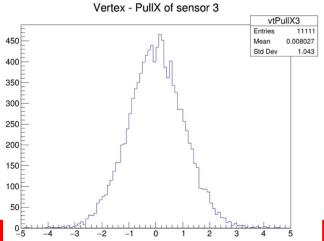
So I go from
$$\sigma_x = \sqrt{rac{\sum f_n (x_n - x)^2)}{\sum f_n}}$$
 to $\sigma_{\mu'} = rac{\sigma_x}{\sqrt{2n}}$

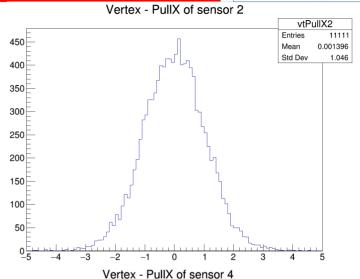
• In the following slide, I show the new pulls (omitting al the steps)

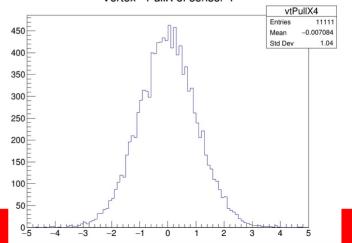
Pull X coordinate



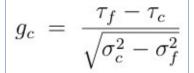


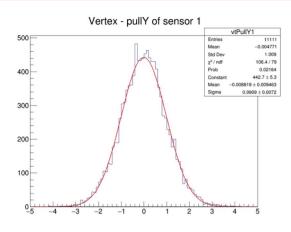


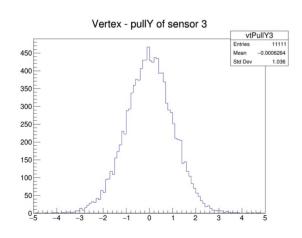


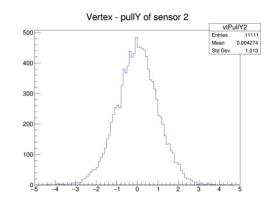


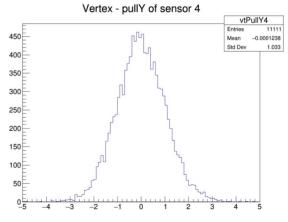
Pull Y coordinate



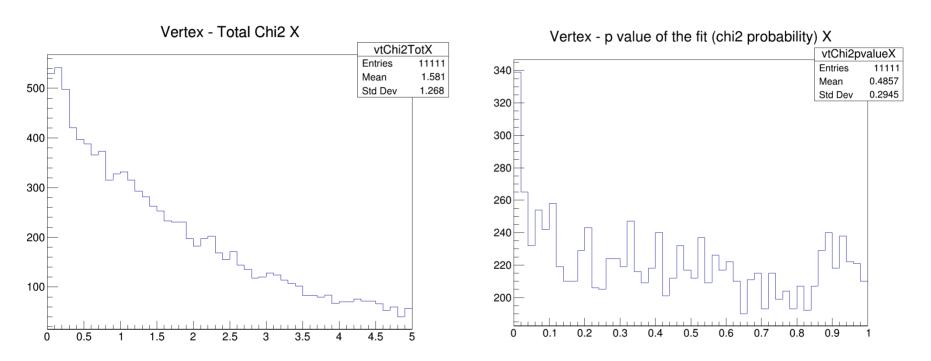






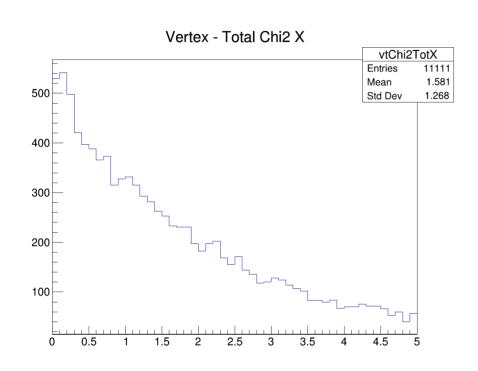


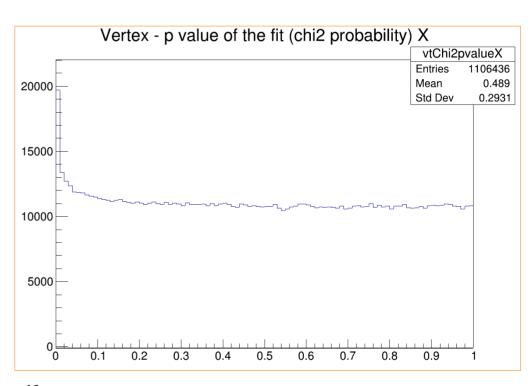
Chi2 Test X coordinate



The p-value distribution is now much more uniform

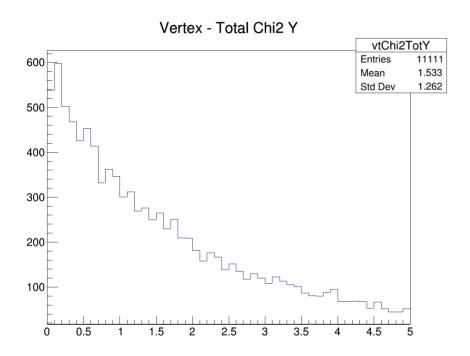
Chi2 Test X coordinate

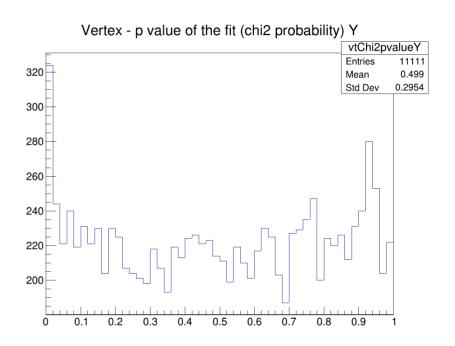




The p-value distribution is now much more uniform

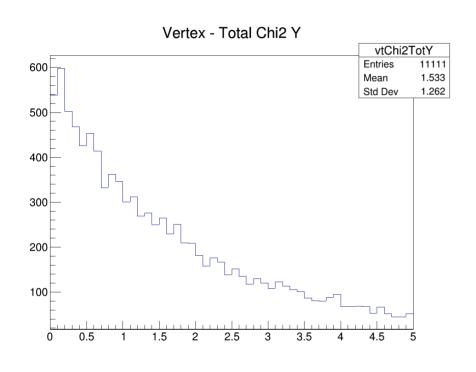
Chi2 Test Y coordinate

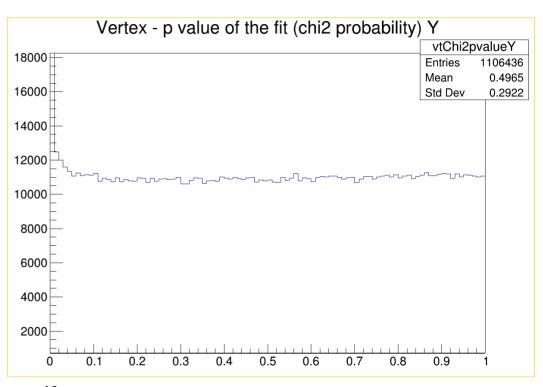




The p-value distribution is now much more uniform

Chi2 Test Y coordinate





The p-value distribution is now much more uniform

Observation

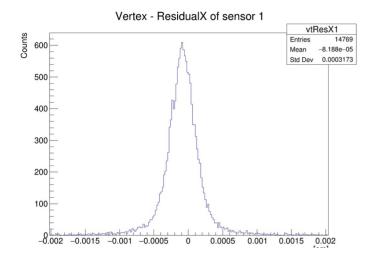
- According from pulls, the resolution associated to the cluster position is overestimated.
- Things become better if I use the following resolution associated to the position

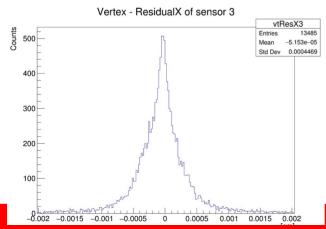
$$x=rac{\sum f_n x_n}{\sum f_n}$$
 $\sigma_{\mu'}=rac{\sigma_x}{\sqrt{2n}}$ where $\sigma_x=\sqrt{rac{\sum f_n (x_n-x)^2)}{\sum f_n}}$

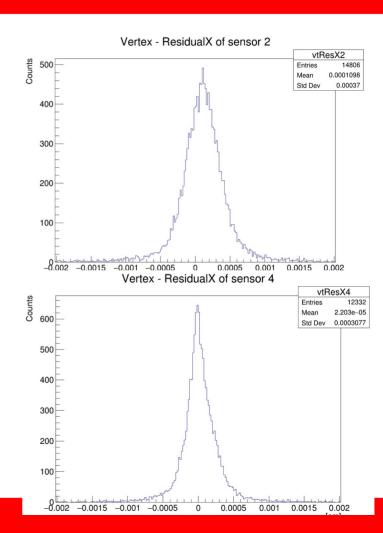
- How it can be explained physically?
- Is actually the mean the best estimator of the position of the cluster?
- How does it changes the performance of the reconstructed track?
 next time: track efficiency, purity etc

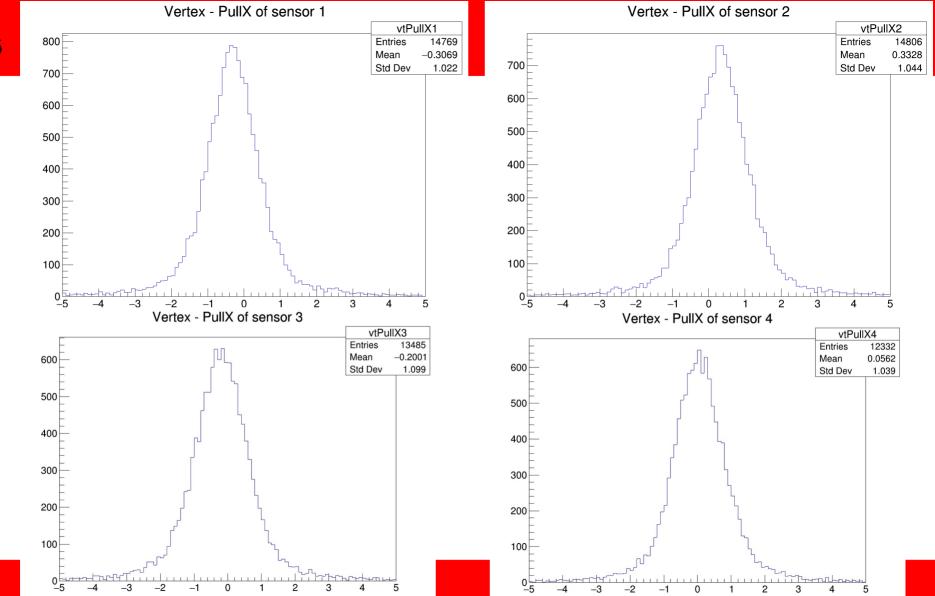
Observations

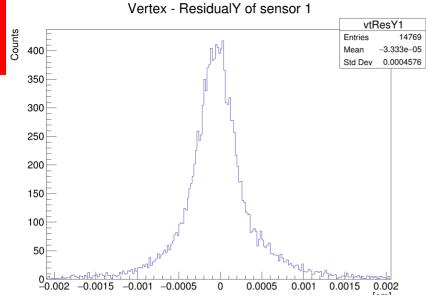
back up slides

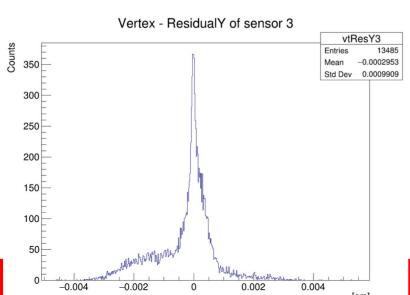


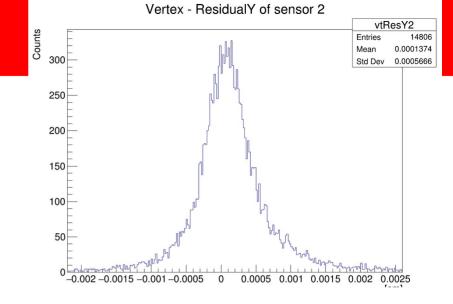


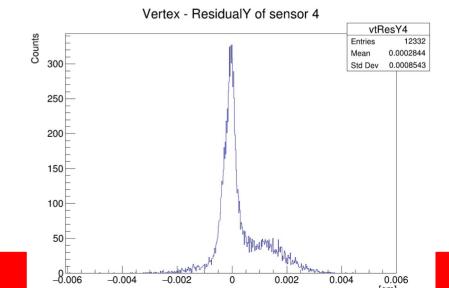


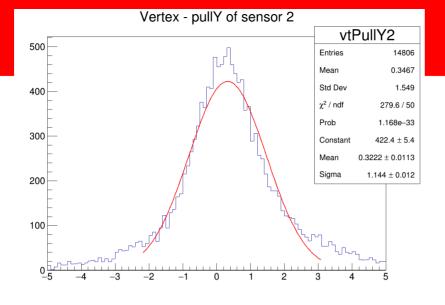


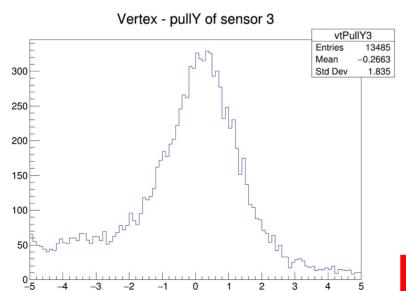


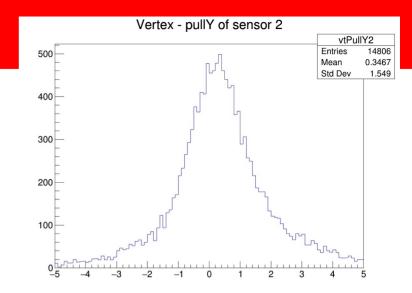


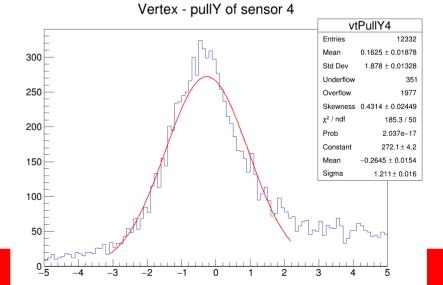






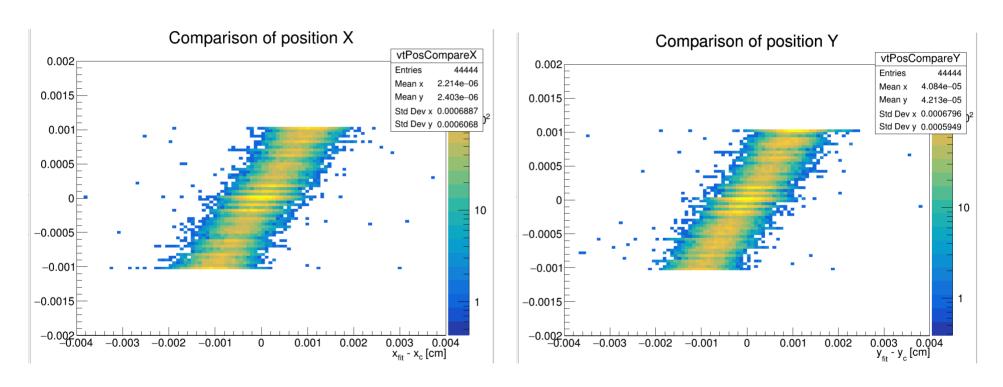






MC DATA

There is dependence between the measurement x_i and the center of the pixel x_c ?

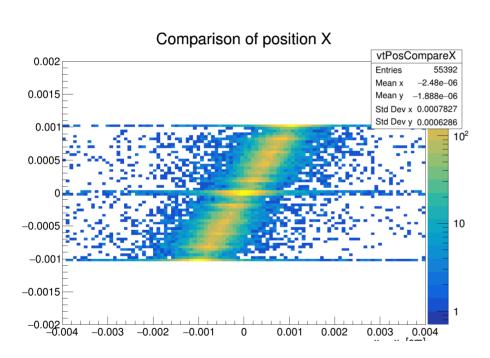


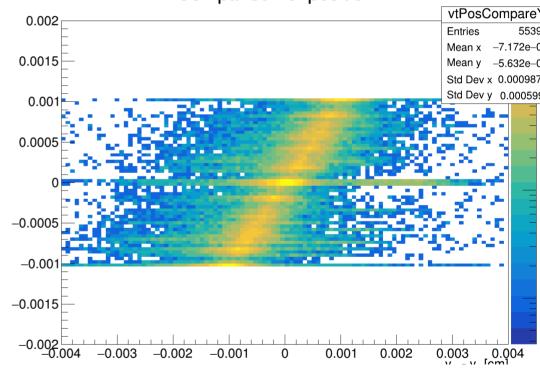
The relation seems linear. The fit has a shift of 1 pixel

REAL DATA

There is dependence between the measurement x_i and the center of the pixel x_c ?

Comparison of position Y





The relation seems linear. The fit has a shift of 1 pixel

Observation

It is right to use the mean and its standard deviation as best estimator of the position of a cluster?

We are supposing that every fired pixel is a independent and identically distributed (IID) random variable, distributed as a gaussian.

We know actually that they are not independent, but fired according to the energy loss of the particle

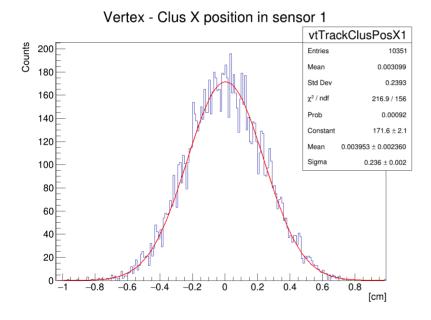
$$x = rac{\sum f_n x_n}{\sum f_n} \qquad \quad \sigma_x = \sqrt{rac{\sum f_n (x_n - x)^2)}{\sum f_n}}$$

Observations

another estimator of position is needed? → Let's try median

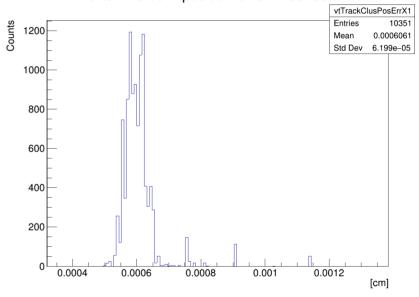
Position of the cluster

measure using median for cluster position



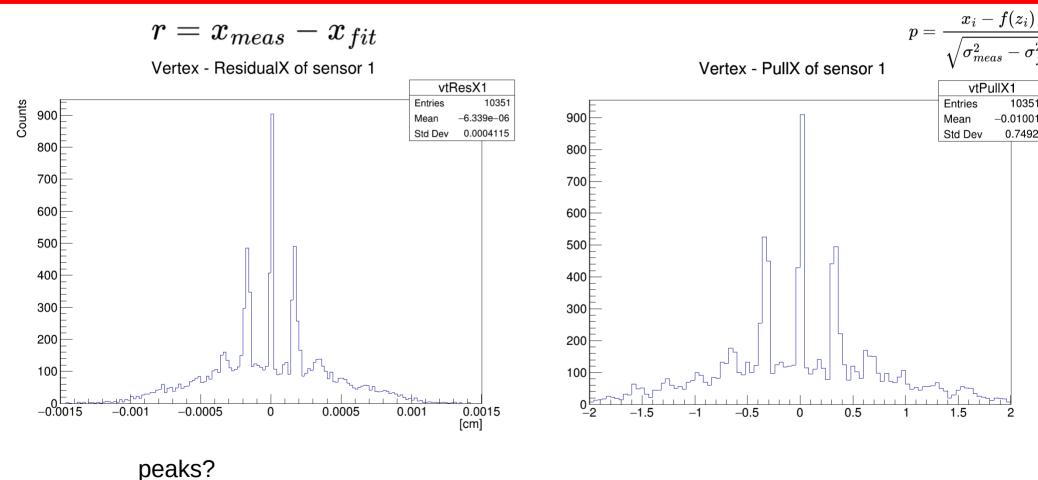
if n is odd, $\operatorname{median}(x) = x_{(n+1)/2}$ if n is even, $\operatorname{median}(x) = \frac{x_{(n/2)} + x_{((n/2)+1)}}{2}$

Vertex - Clus X position error in sensor 1



$$\sigma_{\mu} = rac{\sigma_x}{\sqrt{n}} \qquad \qquad \sigma_x = \sqrt{rac{\sum f_n(x_n-x)^2)}{\sum f_n}}$$

Residuals and pull X coordinate



10351

0.7492