

CYGNO simulation plans

Giulia D'Imperio

16/05/23 CYGNO simulation meeting

Simulation of Nal crystal

• 3"x3"cylindrical crystal with 0.5 mm Aluminum case

• Simulate decay of ⁴⁰K, ²³⁸U chain and ²³²Th chain (gamma emitters)

Event generation

 Radioactive decays from a spherical surface in air of R=20 cm

 Radioactive decays from a spherical shell of Rint = 20 cm and 40 cm thickness

Simulation on Nal crystal

- Energy deposits in the Nal detector
- Apply experimental resolution to the simulated spectra
- Dashed lines → templates from simulation from air sphere
- Solid lines → templates from simulations from rock sphere

There is a significant difference between templates from the 2 simulations

→ simulations from rock shell are more realistic

Fit data with simulated spectra (air sphere)

- Use dataset outside shielding (in LIME control room), ~6 days livetime
- Fit range from 300 keV to 2800 keV

Floating	Parameter	FinalValue +/- E	rror
N	N_K40 Th232 chain	7.0662e+06 +/- 4.2597e+06 +/-	5.97e+03 6.49e+03
1	N U238 chain	7.7580e+06 +/-	7.21e+03

Corresponding activities

- ⁴⁰K → 1.71 decays/cm2/sec (BR = 0.11)
- ²³⁸U → 0.64 decays/cm2/sec
- ²³²Th → 0.33 decays/cm2/sec

Correcting for branching ratios:

- ${}^{40}\text{K} \rightarrow 0.18 \text{ gammas/cm}^2/\text{s}$
- ²³⁸U → 0.64 gammas/cm2/s
- 232 Th \rightarrow 0.33 gammas/cm²/s
- Total 1.15 gammas/cm²/s

Fit data with simulated spectra (rock sphere)

- Use dataset outside shielding (in LIME control room), ~6 days livetime
- Fit range from 300 keV to 2800 keV

Floating Parameter		FinalValue +/- Error		
	N_K40	8.0768e+06 +/-	6.84e+03	
N	Th232_chain	2.7009e+06 +/-	4.95e+03	
1	N_U238_chain	8.3061e+06 +/-	8.64e+03	

Corresponding activities

- ⁴⁰K **→** 93.5 Bq/kg
- ²³⁸U → 7.9 Bq/kg
- ²³²Th → 4.1 Bq/kg

Counting gammas entering the air sphere

- ${}^{40}\text{K} \rightarrow 0.21 \text{ gammas/cm}^2/\text{s}$
- ²³⁸U → 0.25 gammas/cm2/s
- 232 Th + 0.12 gammas/cm²/s
- Total 0.58 gammas/cm²/s

Data/MC comparison

- Comparison on the full range (fit range [300-2800] keV)
- Agreement is quite good, considering statistics uncertainty of MC

Closure test

- Generate gammas according to the correct energy distribution
- Isotropic generation from a spherical surface of R=21 cm (10⁷ events)
- Normalized to 0.58 gammas/cm²/s
 - → t_eq = Ngen/(Flux Area) = 3112 sec
 - → MC rate is ~3.5 factor lower than data...

Comparison with literature

M. Haffke et al. / Nuclear Instruments and Methods in Physics Research A 643 (2011) 36–4138 https://doi.org/10.1016/j.nima.2011.04.027

Nal(TI) cylindrical detector 3", very similar to our detector

a

Fig. 3. Gamma spectrum of LNGS hall A (location 1). Top: measured data and the individual contributions of ^{23BU}, ²³²Th, and ⁴⁰K from of a Monte Carlo simulation of the setup. Bottom: measured data and Monte Carlo sum spectrum agree very well over a very large energy range.

Table 1

Gamma flux below 3000 keV, measured at several LNGS underground locations with a 3 in. Nal(Tl) detector.

Location	Time	Flux $(s^{-1} cm^{-2})$
1. Hall A	3 d	(0.28 ± 0.02)
2. Hall B	3 d	(0.33 ± 0.33)
3. Interferometer tunnel (XENON building)	2 d	(0.42 ± 0.06)
4. LVD Core Facility	10 d	(0.005 ± 0.001)

Table 2

Gamma activities of the primordial isotopes (in Bq/kg) as determined from measurements with a 3 in. Nal(Tl) detector.

Location	²³⁸ U	²³² Th	⁴⁰ K
1. Hall A	11.7 ± 3.9	14.8 ± 2.8	62 ± 14
2. Hall B	19.6 ± 4.9	13.2 ± 2.7	52 ± 10
3. Interferometer	37.8 ± 7.3	10.9 ± 2.8	206 ± 37
4. LVD CF	1.2 ± 0.4	0.34 ± 0.07	1.04 ± 0.32
Concrete (floor) ^a	26±5	8 ± 2	170 ± 27
Concrete (wall) ^a	15 ± 2	$\textbf{3.8} \pm \textbf{0.8}$	42 ± 6

^a These concrete samples taken from the interferometer tunnel were screened in a HPGe detector in order to directly measure the radioactive contamination. They are to be compared to the NaI(TI) results for location 3. *interferometer*.

Backup

External background in LIME

For LIME simulations we have **assumed a flux of 0.56 gammas/cm²/s** from environmental background.

Spectrum is taken from a NaI measurement by SABRE collaboration.

Summary of LIME MC rates (ER)

	External	Internal	Shield	Tot
	Rate Hz	Rate Hz	Rate Hz	Rate Hz
No shield	35.83	0.23	0.00	36.15
4 cm Cu	0.84	0.23	0.02	1.09
6 cm Cu	0.30	0.23	0.02	0.55
10 cm Cu	0.06	0.23	0.02	0.31
Full (water+Cu)	0.02	0.23	0.02	0.26

- Ratio between rates with different shielding options depends also on the internal background
- To compare LIME rates w/wo shielding with data we need to know the external (and internal) background more precisely
- Previous measurements with Nal suggest difference of factor 2 in gamma background between LNGS Halls

Nal data (3" crystal)

- We have direct measurements with Nal in LIME experimental area
- Raw data without shield (blue), 4 cm Cu shield (green), and 10 cm Cu shield (yellow)

- Previous measurements by SABRE made with a Nal larger detector (4"x 4" x 16")
- Difficult to compare directly these spectra (and rates) with previous Nal or LIME MC because:
 - → different detectors
 - non-negligible internal background component, especially when we compare shielded spectra
- → need a MC simulation of the Nal