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Hadron calorimetry issues
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Hadron calorimetry

due to π0 and η production, hadronic showers develop 2 main components:

hadronic component: p, n, π±, nuclear fission, … delayed photons, … 

typical size: λI ~ 35 g/cm2 · A1/3
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Hadronic showers

Many components w/ large fluctuations in relative yield

   1. Large non-gaussian fluctuations in em/non-em energy sharing
   2. Increase of em component with energy
   3. Large, non-gaussian fluctuations in “invisible” energy losses
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invisible energy

✦ in nuclear reactions, energy lost (binding energy) to free protons and neutrons
✦ no measurable signal (invisible energy)
✦ on average about 30-40% of non-em shower energy 

Large event-by-event fluctuations limit resolution

Correlation between invisible energy 
and kinetic energy carried by released 
nucleons

Evaporation nucleons: soft spectrum, 
mostly neutrons (2-3 MeV) 
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em fraction fem

energy fraction carried by mainly π0 (but also η)

fem, on average, large and energy dependent
fluctuations in fem large and non-poissonian

< fem> vs. pion energy fem for 150 GeV pions

E0 = average energy to produce a π0

k < ~ 1 (≈ 0.8)
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detector response

Response:
detected signal per unit energy deposit

 
e.g. number of scintillating (or Cherenkov) p.e. / deposited GeV

Hadronic showers:
em component → response e
hadronic component → response h

what about relative ratio (e/h) ?
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detector response to hadronic showers

Note:
e/h ratio: detector characteristic

typically, ~2 for crystals, in range 1-1.8 for sampling calorimeters

Nevertheless:

1) e/π depends on energy (fem depends on E and shower “age”)     
2) <fem> different for π,  K, p → response depends on particle type 

e ≠ h

e.g. (left plot): 
only 1/1.8 ≈ 56% of non-πo

energy accounted by signal
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e/mip ratio

mip : minimum ionising particle → only ionisation

dE/dx (mip) :
lead ~ 12.6 MeV/cm → 7.15 MeV/X0

copper ~ 12.7 MeV/cm → 18.0 MeV/X0

( PMMA ~ 2.3 MeV/cm → 78.2 MeV/X0 )

Moreover in high-Z absorbers :

Z5 dependence of photoelectric effect 
→ most soft-γ interact in absorber

photoelectrons have very short range
→ will contribute to signal only close to boundaries

→ response to em showers suppressed wrt. mips
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e/mip ratio

Non-linearity at low energy with high-Z absorber

Important for jet detection
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e/π ratio

calorimeter response to π :

response to π as function of E

→ 

Fe:Scint = 2:1

U:Scint = 6:5

U:Scint = 2:1
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e/h = 1 → compensating calorimeter

1) increase h → boost hadron response
e.g. by adding hydrogen or Uranium, both acting as “neutron converters”

→ large integration volume and time

2) decrease e → decrease em sampling fraction or frequency (i.e. spoil em performance)
→ tune active / passive material ratio 

compensation in hadron calorimetry
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what compensation does and does not

✦ NO guarantee for high resolution

✦ fluctuations in fem are canceled but others may be very large

✦ Has drawbacks

✦ high-Z absorber required → small e/mip → non linearity @ low energy

✦ low sampling fraction required → em resolution limited

✦ relies on neutrons → integration over large volume and time                                      

 SPACAL: to get 30%/√E ~15 tonnes of lead and ~50 ns integration time

✦ high-res em and high-res hadron calorimetry mutually exclusive:

✦ good jet energy resolution  compensation                                             ⇒             

 ⇒ small sampling fraction (∼3 %)  poor em resolution⇒
✦ good em resolution  high sampling fraction (100% crystals, 20% LAr) ⇒             

 ⇒ large non compensation  poor jet resolution⇒
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Dual-readout calorimetry
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dual-readout calorimetry

Disentangle relativistic (i.e. electromagnetic) and non relativistic (i.e. nuclear)
components of hadronic shower

→ get (compensate for) fem event by event 

both scintillation & Cherenkov light

almost only scintillation light
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Dual-readout algebra

S = E × [  fem + s × (1 – fem) ]
C = E × [  fem + c × (1 – fem) ]

fem = electromagnetic shower fraction
s = (h/e)S , c = (h/e)C : detector-specific constants

by solving the system, both E and fem can be reconstructed

E measured at em energy scale
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Dual-readout formulae

E =
S−χ ⋅C

1−χ
1− f em =

1

1−(
h
e
)
C

⋅
S−C
S−χ⋅C

measurable event by event, if χ known

(1-fem) can be reconstructed within (unknown) constant factor (>) O(1)

χ =
1−(

h
e )S

1−(
h
e )C

= E−S
E−C

χ measurable if E known

if (
h
e )S

> (
h
e )

C
⇒ χ < 1

χ can be extracted 
from testbeam data

measurable
if χ known 
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applying dual-readout formulae

C (GeV) vs. S (GeV) C/E vs. S/EGeV

Hadronic data points (S, C) located nearby straight lines

θ, χ independent of both:
i) energy (!)
ii) type of hadron (!!)

NIM A 537 (2005) 537
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before dual-readout corrections
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after dual-readout corrections



Napoli, 25.05.2023 22

80 GeV protons in Copper ↑ & Lead ↓

Geant4 simulations – (h/e) and χ factors

< χ > ≈ 0.39<(h/e)Č> ≈ 0.35 <(h/e)S> ≈ 0.75 

< χ > ≈ 0.30<(h/e)Č> ≈ 0.26 <(h/e)S> ≈ 0.78 
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Geant4 simulations

100 GeV hadrons
10-150 GeV π-
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fem

→ depends only on C/S → can use C/S to select fem subsamples

→ to get fem absolute value, at least one of (h/e) factors needs to be known
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fem fluctuations

NIM A 537 (2005) 537
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Invisible energy fraction – Geant4 simulations

f(E)neutron

Corr ~ 92 %

1 - fem

Copper

Iron

Lead

finv

Corr ~ 90 %

Corr ~ 94 %Corr ~ 76 %

Corr ~ 67 %

Corr ~ 66 %
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DREAM/RD52 prototype results
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DREAM/RD52 dual-readout spaghetti prototypes

2003
DREAM Cu: 19 towers, 2 PMT each

2 m long, 16.2 cm radius
Sampling fraction: 2%
Depth: ~10 λint 

Texas Tech Uni

2012
RD52

INFN Pisa

Cu, 2 modules
Each module: 9.2 × 9.2 × 250 cm3  
Fibers: 1024 S + 1024 C,  8 PMT 
Sampling fraction: ~4.6%
Depth: ~10 λint 

INFN Pavia

2012
RD52 Pb, 9 modules

Each module:  9.2 × 9.2 × 250 cm3  
Fibers: 1024 S + 1024 C,  8 PMT 
Sampling fraction: ~5.3%
Depth: ~10 λint
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RD52 dual-readout spaghetti prototypes

3×3 lead matrix 

2 Cu modules
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dual-readout at work (1)

NIM A 866 (2017) 76



Napoli, 25.05.2023 31

dual-readout at work (2)

NIM A 866 (2017) 76
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RD52 expected hadronic performance

Hadronic Resolution
W/Z separation

Geant4 simulations NIM A 824 (2016) 721
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Particle ID (electron/hadron discrimination)

RD52 lead calorimeter

(60 GeV) e- vs. π-

ε(e-) > 99%
R(π-) ~ 500

NIM A 735 (2014) 120

time-of-arrival distribution
measured w/ TDC
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(dual readout goes granular ...)
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RD52 SiPM module

Brass module, dimensions: ~ 112 cm long, 12 x 12 mm2

32 (S) + 32 (Č) fibres
X0 ~ 29 mm
RM ~ 31 mm

 
~ (0.4 RM)2 × 39 X0

shower cont.  ~ 45%
fsampl ~ 5-6%

Light sensors (SiPM)
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Lateral shower profile w/ SiPMs

10 / 40 GeV e-

θ, Φ = 0°

em shower very narrow:

~10% (~50%) within ~1 (~10) mm from shower axis
→ fibre readout can easily provide (powerful) input to PFA
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2D fibre imaging

Geant4 single-particle simulations80 GeV π-

50 GeV e- 100 GeV π0
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IDEA fibre calorimeter: exploit high granularity + timing
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IDEA: Innovative Detector for e+e- Accelerator
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IDEA baseline concept

✦ Muon chambers
✦ μ-RWELL in return yoke

✦ Dual-readout calorimetry 2 m / 7 λint

✦ μ-RWELL preshower

✦ Thin superconducting solenoid 
✦ 2 T, 30 cm, ~ 0.7 X0 , 0.16 λint @ 90°

✦ Highly transparent for tracking
✦ Si pixel vertex detector
✦ Drift Chamber 
✦ Si wrappers (strips)

✦ Beam pipe: r ~ 1.5 cm
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IDEA dual-readout calorimetry group

Three main activity pillars:

1) South Korea → projective fibre-sampling calorimeter

2) Europa: INFN, Sussex University → fibre-sampling calorimeter

3) U.S. (Calvision project) → mainly (but not only) on crystal em calorimeter
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IDEA all-fibre DR calorimeter option

✦ DR fibre calorimeter
✦ ~ 130 M fibres

✦ 1 mm , 1.5 mm pitch⌀
✦ copper absorber
✦ 75 projective towers × 36 slices

✦ Δϑ = 1.125°, Δϕ = 10.0°
✦ ϑ coverage: down to 100 mrad∼

✦ G4 simulation available
✦ tuned to RD52 TB data
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✦ Gaussian resolution

✦ Adequate separation of W / Z / H

e+e– → Z → jj

Geant4 simulations

Single jet resolution @ 45 GeV W/Z/H → jj invariant mass
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τ-decay tagging w/ DNNs

Testbeam module (brass absorber): dimensions: 133.2×133.2×250 cm3

Reduced granularity (1.2×1.2 cm2, 32 S & 32 C fibres): 111×111 modules

Simulation of both detector and SiPM response

Feature extraction: E(Q), Pk, ToP, ToA, ToT

→ each event represented by 111×111×5×2 tensor
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NN implementation

Two DNN architecture variants studied:
- VGG-11 like (VGG = Visual Geometry Group, Oxford Un.)
- Dynamic Graph CNN (DGCNN)

6 event classis (covering ~ 90% of τ decays)
Training set: 6 BR × 2000 evts

τ→ππ0ν

τ→μνν

τ→eνν

τ→πν

τ→πππν

τ→ππ0π0ν

VGG example

ROC curve (test sample)
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NN performance

         Confusion matrix on test set
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 DNN w/ IDEA layout (but no time info)

No SiPM response simulation

→ information: fibre signal output (# p.e.)

3-class classification:
τlep, τhad, QCD jet

8-class classification:
τ0, τ1, τ2, τ3, τ4, τ5, τ6, QCD jet

[ τ from Z→ττ decays ]

3-class 
label

8-class 
label

0 0 τ → μνν
0 1 τ →eνν
1 2 τ →πν
1 3 τ →ππ0ν
1 4 τ →ππ0π0ν
1 5 τ →πππν
1 6 τ →πππ0ν
2 7 Z →qq jets
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DGCNN w/ geometrical information only

                                             DGCNN optimised but w/o #pe as input feature
                                                                                     B field and material in

                          input: fibre coordinates only                                      input: fibre coordinates + type
                                          avg accuracy: 73.7%                                                            avg accuracy: 88.3% (w/ #p.e. 90.8%)



Napoli, 25.05.2023 49

Longitudinal segmentation w/ timing (U.S.)

3D imaging fibre DR calorimeter coupled to Graph DNN

Dual-readout fibre calorimeter → signal sampled at 20 GHz

Cu absorber (2 m deep)

Fibre axis aligned w/ beam direction: 1 mm Φ fibres, 1.5 mm spacing

Transverse segmentation: 1×1 cm2 for 2D analysis, 3×3 cm2 for 3D analysis

Preliminary results
No optimisation



Napoli, 25.05.2023 50

Longitudinal segmentation w/ timing (U.S.)

@ 100 GeV

only cherenkov fibres
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Longitudinal segmentation w/ timing (S.K.)

Full SiPM signal sampled at 10 GHz

FFT used to mitigate exponential tail

Unlocks full longitudinal information about energy 
deposit

Combined with DR information
allows in-shower cluster identification

Time domain Frequency domain
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Waveform digitisation (U.S.)

Results with SensL (MicroFC-30020SMT):
SiPM with both fast and standard outputs

Two-photon event
   (simultaneous)

One-photon event Two-photon event
     (5 ns apart)

• Sampling rate 10-14 GS/s
• 12 bits ADC
• 4-8 ps timing resolution
• 32 k sampling buffer
• 2 GHz bandwidth
• System-on-Chip (CPU)

NALU Scientific 
AARDVARC v3

  Fast output

  Standard output 

2 mV

2 mV
4 mV

4 mV 4 mV

2 mV
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Crystal option (IDEA++) and PFA
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Dual-readout crystal options (IDEA++)

Segmented Crystal EM Precision Calorimeter
Ongoing efforts within US Calvision, IDEA and Crystal Clear collaborations

Proof-of-concept with lab measurements and prototypes (PWO, BGO, BSO, … with SiPMs)

Ongoing simulation effort in DD4HEP and FCC software + DR-PFA developments
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Crystal option (IDEA++)

✦ ECAL ~20 cm PbWO4

✦ 2 layers: 6+16 X0 
✦ DR with filters
✦ 𝜎EM ≈ 3% /√E

✦ timing layer
✦ LYSO:Ce crystals 
✦ σt ~ 20 ps

✦ HCAL layer
✦ σHAD/E ~ 26%/√E
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IDEA++ dual-readout-PFA

Geant4 simulation of Z→jj events:
● magnetic field ON but NO tracker
● Gaussian smearings of MC tracks according 

to expected IDEA tracker performance
● for each track extrapolate impact point
● remove and store tracks not reaching calo
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IDEA++ dual-readout-PFA

Geant4 simulation of Z→jj events:
● magnetic field ON but NO tracker
● Gaussian smearings of MC tracks according 

to expected IDEA tracker performance
● for each track extrapolate impact point
● remove and store tracks not reaching calo
● identify EM neutral clusters (photons) by 

cluster radius

● remove and store photons (R<0.9)
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IDEA++ dual-readout-PFA

Geant4 simulation of Z→jj events:
● magnetic field ON but NO tracker
● Gaussian smearings of MC tracks according 

to expected IDEA tracker performance
● for each track extrapolate impact point
● remove and store tracks not reaching calo
● identify EM neutral clusters (photons) by 

cluster radius

● remove and store photons (R<0.9)
● for each track, rank calo hits by distance

ΔRECAL
max = 0.05

ΔRHCAL
max = 0.30
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IDEA++ dual-readout-PFA

Geant4 simulation of Z→jj events:
● magnetic field ON but NO tracker
● Gaussian smearings of MC tracks according 

to expected IDEA tracker performance
● for each track extrapolate impact point
● remove and store tracks not reaching calo
● identify EM neutral clusters (photons) by 

cluster radius

● remove and store photons (R<0.9)
● for each track, rank calo hits by distance
● collect hits in cone(s)

ΔRECAL
max = 0.05

ΔRHCAL
max = 0.30
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IDEA++ dual-readout-PFA

Geant4 simulation of Z→jj events:
● magnetic field ON but NO tracker
● Gaussian smearings of MC tracks according 

to expected IDEA tracker performance
● for each track extrapolate impact point
● remove and store tracks not reaching calo
● identify EM neutral clusters (photons) by 

cluster radius

● remove and store photons (R<0.9)
● for each track, rank calo hits by distance
● collect hits in cone(s)
● compare with Etarget(track)
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IDEA++ dual-readout-PFA

Geant4 simulation of Z→jj events:
● magnetic field ON but NO tracker
● Gaussian smearings of MC tracks according 

to expected IDEA tracker performance
● for each track extrapolate impact point
● remove and store tracks not reaching calo
● identify EM neutral clusters (photons) by 

cluster radius

● remove and store photons (R<0.9)
● for each track, rank calo hits by distance
● collect hits in cone(s)
● compare with Etarget(track)
● if “good” agreement remove hits and track
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... continue
● apply kt algorithm (e.g. Durham) for two jets

IDEA++ dual-readout-PFA
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finally ...
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HiDRa – Highly granular Dual Readout demonstrator

~ 65 × 65 × 250 cm3

Hadronic-size prototype:
16 modules w/ highly granular core 1 Module: 5 MMs

~ 13 × 13 cm2

5120 fibres

1 MiniModule:
64 × 16 = 1024 fibres in total

512 S + 512  C

highly granular core:
10240 fibres to be read out with SiPMs
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Present design

• C and S fibres positioned per raw
• Fibre separation at calorimeter rear end
• Grouping for interfacing to PMTs

scintillating fibres Cherenkov fibres
Fibre disposal and grouping (pictures from 
previous prototype)
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Construction technique

Vacuum + double-sided tape for tube handling

tube aligned 
in reference tool

Stiffback-like technique for tube handling, gluing and positioning
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Minimodule 0
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Same stiffback used 
for module handling by
adding extra vacuum tool

Semi-automatic system
 for planarity QAQC

Module handling and DQ
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Minimodule-0 QAQC

tube OD: 
2.026 mm

h_nom: 
28.351 mm
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Production scheme

● Day 0:
– Preparation tubes and tooling

● Day 1:
– Gluing of Minimodule N  (~3h)
– Preparation fibres for Minimodule N

● Day 2:
– Preparation tubes for Minimodule N+1
– Releasing Minimodule N
– QAQC Minimodule N

● Day 3:
– Gluing Minimodule N+1
– Fibre insertion in Minimodule N
– Preparation fibres for Minimodule N+1

1 FTE physicist 
+ 1 FTE technician

Students in PCTO
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Schedule (from available funds)

● Tubelet order ~ 3 week
● Delivery ~ 4 w production + 2 w import
● QAQC + cleaning ~ 4 w

→ at least 3 months

● Expected production speed
– 5 minimodules in 2 weeks → 80 minimodules in  8 months
– Includes:

● absorber gluing
● fibre insertion
● fibre gluing and milling (for PMT coupling)

→ ~ one year in total
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SiPMs

New solution by Hamamatsu:

boards with 8 SiPMs
dimension 1×1 mm2

10 or 15 μm cell size
SiPMs selected such that ∆Vbd < 100 mV

Our present best fit:

a) use 10 μm cell-size SiPMs for scintillating fibres
b) use 15 μm cell-size SiPMs for clear fibres

Got 10 boards per cell-size type for testing
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• 10240 SiPMs → 1280 SiPM boards + 5% spare = 1344 SiPM boards
• 1344 front-end boards
• 1344 grouping boards (+ cables)
• 22 patch panels
• 20-22 readout boards (A5202)
• 2 data concentrators

Highly granular modules
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Summary

Dual-readout calorimetry excellent candidate for physics programme at EWK factories
→ growing interest for CEPC/FCC-ee detectors

IDEA fibre calorimeter:  dual-readout + single-fibre light sensors (SiPM) + timing
→ high-granularity 3D information

em crystal option → boost em performance without spoiling hadronic one

High-granularity 3D information 
→ powerful input for deep-learning algorithms and/or PFA
→ highly performing final-state identification capabilities

R&D activities ongoing in Europe, S. Korea and U.S. exploiting all directions

Hadronic-scale demonstrators under construction in both Europe and S. Korea
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Objectives

Assess physics performance for both single hadrons and jets (and electrons)

Validate Geant4 shower modeling

Assess scalable solutions concerning construction and signal readout

Exploit DNN architectures for physics analysis

Assess performance in relevant benchmark physics channels
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Advertising

If you are interested, please join CERN e-group:

idea-dualreadout@cern.ch

and (by-weekly) meetings with scheduling at:

https://indico.cern.ch/category/10684/

mailto:idea-dualreadout@cern.ch
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Backup 
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IDEA dual-readout group

Three main activity pillars:

1) South Korea → projective fibre-sampling calorimeter

2) Europa: INFN, Sussex University → fibre-sampling calorimeter

3) U.S. (Calvision project) → mainly (but not only) on crystal em calorimeter
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2022 Korean-prototype beam test

C channel S channel

Int. ADC Int. ADC

✦ Data analysis in progress
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IDEA 2020 em-size bucatini prototype (EU)

Nine ~3.5×3.3 cm2 towers

One tower (i.e. 360 fibres) w/ 
highly-granular (SiPM) readout
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IDEA 2020 em-size bucatini prototype (EU)

Lateral profile: average signal in fibre at distance r from shower barycentre

Measurement: for every event and every fibre populate plot of signal vs. distance

Lateral profiles extracted as average 
value for every x-bin

Data vs. Geant4 simulation
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Other results

Angular dependence (from MC) EM resolution

Need another beam test
Need beam purity
Need correct detector setup (angle, preshower)

Xrot: 0° 1.5° 2.5°
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✦ Good resolutions averaged over eta and phi

Geant4 simulation



Napoli, 25.05.2023 84

50 GeV e- 100 GeV π0 

Event displays



Napoli, 25.05.2023 85

Alternative to SiPMs?

digital SiPMs (dSiPMs)

no need for analogue signal post-processing

● SPAD array in CMOS:
● complex functions embedded in single substrate (e.g. SPAD masking, counting, TDCs)
● front-end electronics optimised to preserve signal integrity (→ timing) 
● simplified assembly of large area detectors
● R&D costs relatively low for design over standard process
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Requirements

Scintillating (Cherenkov)

Unit Area (mm2) 1 x 1

Micro-cell pitch (μm) 10 or 15

Macro-pixel 500 x 500 (or less)

PDE (%) (20 - 50)

DCR (kHz) Not crucial

AP (%) As low as possible (≈ 1)

Xtalk (%) As low as possible (few %)

Trigger External

Data: light intensity Number of fired cells in 1 or 2 time windows (tenths ns long) 

Data: time Time of Arrival in the time window (< 100 ps) possibly TOT

Final - Package Strip with 8 units

Connection BGA



Investigating:

- Absorber production and assembly procedure
- Fibre types (round, square, single/double cladding)
- Light sensors (PMTs, MCP-PMTs, SiPMs)

Absorber production:

- 3D printing → excellent accuracy but pretty expensive
- Stacking (LEGO-like) → good accuracy and quite cheap
- Skiving Fin Heat Sinks → high accuracy and low cost

2025: full-size projective prototype

South Korea activities



2 modules tested w/ beam in 2022



2 modules tested w/ beam in 2022



DAQ system



Napoli, 25.05.2023 91

HiDRa – Highly granular Dual-Readout demonstrator (INFN)

1 Module:
5 MMs

~ 13 × 13 cm2

1 MiniModule:

64 × 16 = 
1024 fibres in total

512 S + 512  C

highly granular core:
1024 fibres to be readout with SiPMsHiDRa

Hadronic-size prototype:
16 modules w/ highly granular core
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Capillary tube parameters

● Dimensions:
● External diameter: 2 (± 0.050) mm  from SiPM dimensions⟸
● Internal diameter: 1.1 (-0 +0.1) mm  from fibre dimensions⟸
● Length: 2.5 m  from containment studies⟸

→ 3% sampling fraction

● Material:
● Stainless steel 304  cheaper than brass, comparable performance⟸
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Geant4 simulations

steel

brass

χ2 / ndof Low-energy tails

Calorimeter depth

Absorber choice 
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Capillary QA/QC

● Straightness: rolling on plane surface

● Length: checking relative length of tubes

● ID: pass/fail test with inserting fibres
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Tube gluing

Stiffback-like technique for 
tube handling, gluing and 
positioning
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PMT readout: fibre grouping

3D-printed fibre and PMT holders
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SiPM integration and readout

●Custom designed module with 8 SiPMs (1x1 mm2) from Hamamatsu
●2 mm SiPM interspace
●Two options under study: 10 and 15 μm pitch

●Each SiPM bar operated at same voltage (Vbd<0.15V)

●Signals from 8 SiPMs summed up in grouping board
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SiPM integration and readout

Data concentrator delivered in September

Readout based on Caen FERS system (5200) and A5202 boards

● 64 channels on two Citiroc1A
● Signal preamplification, shaping and integration
● HV power supply with temperature compensation
● Two 12-bit  ADCs for charge measurement
● 64 TDCs implemented on FPGA (LSB = 500 ps)
● 2 high-resolution TDCs (LSB = 50 ps)
● Optical readout interface (6.25 Gbit/s)
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FERS readout integration in EUDAQ

Modular data acquisition framework, in C++

Open source, compatible with different OSs

Finite-State Machine implemented

HW-specific parts decoupled from core software

Raw data can be converted to LCIO format

Many detector prototypes at DESY II Test Beam Facility integrated in EUDAQ

EUDAQ used in several test setup at CERN: ALICE, ATLAS, Belle II, CALICE, CMS, and others

EUDAQ - A data acquisition software framework for common beam telescopes
P. Ahlburg et al 2020 JINST 15 P01038
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FERS readout integration in EUDAQ

ALREADY DONE

CAEN FERS library integrated in EUDAQ

FERS configuration implemented

TO  DO

Development in EUDAQ of DCR and multiphoton 
spectrum measurements for SiPM mass 
characterisation 

Handling (storing and then uploading) of FERS & 
SiPM configurations with DB

Setting up EUDAQ for test beam 
using FERS modules

INFN - Sezione di Catania & UNICT
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