Dual-readout calorimetry overview and development plans for future electroweak factories

Roberto Ferrari

INFN Pavia

Napoli, 25.05.2023

Hadron calorimetry issues

Dual-readout calorimetry

DREAM/RD52 prototype results

IDEA fibre calorimeter: exploit high granularity + timing

Hadron calorimetry issues

Hadron calorimetry

due to π^0 and η production, hadronic showers develop 2 main components:

hadronic component: p, n, π^{\pm} , nuclear fission, ... delayed photons, ...

typical size: $\lambda_1 \sim 35 \text{ g/cm}^2 \cdot A^{1/3}$

Hadronic showers

Many components w/ large fluctuations in relative yield

- 1. Large non-gaussian fluctuations in em/non-em energy sharing
- 2. Increase of *em* component with energy
- 3. Large, non-gaussian fluctuations in "invisible" energy losses

In nuclear reactions, energy lost (binding energy) to free protons and neutrons

- no measurable signal (invisible energy)
- on average about 30-40% of non-em shower energy

Large event-by-event fluctuations limit resolution

Correlation between invisible energy and kinetic energy carried by released nucleons

Evaporation nucleons: soft spectrum, mostly neutrons (2-3 MeV)

energy fraction carried by mainly π^0 (but also η)

$f_{\text{em}},$ on average, large and energy dependent fluctuations in f_{em} large and non-poissonian

ergy to produce a π^0 1 (≈ 0.8) Response:

detected signal per unit energy deposit

e.g. number of scintillating (or Cherenkov) p.e. / deposited GeV

Hadronic showers:

em component \rightarrow response e hadronic component \rightarrow response h

what about relative ratio (e/h) ?

detector response to hadronic showers

Note: e/h ratio: detector characteristic typically, ~2 for crystals, in range 1-1.8 for sampling calorimeters Nevertheless: 1) e/π depends on energy (f_{em} depends on E and shower "age") 2) $< f_{em} > different for \pi$, K, p \rightarrow response depends on particle type

e≠h

only 1/1.8 \approx 56% of non- π° energy accounted by signal mip : minimum ionising particle \rightarrow only ionisation

```
dE/dx (mip) :
     lead ~ 12.6 MeV/cm \rightarrow 7.15 MeV/X<sub>0</sub>
     copper ~ 12.7 MeV/cm \rightarrow 18.0 MeV/X<sub>0</sub>
     ( PMMA ~ 2.3 MeV/cm \rightarrow 78.2 MeV/X<sub>0</sub> )
```

Moreover in high-Z absorbers :

Z⁵ dependence of photoelectric effect \rightarrow most soft-y interact in absorber photoelectrons have very short range \rightarrow will contribute to signal only close to boundaries

 \rightarrow response to em showers suppressed wrt. mips

e/mip ratio

Non-linearity at low energy with high-Z absorber

Important for jet detection

e/π ratio

response to π as function of E

$e/h = 1 \rightarrow compensating calorimeter$

1) increase h \rightarrow boost hadron response e.g. by adding hydrogen or Uranium, both acting as "neutron converters" \rightarrow large integration volume and time

2) decrease $e \rightarrow$ decrease em sampling fraction or frequency (i.e. spoil em performance) \rightarrow tune active / passive material ratio

- NO guarantee for high resolution
 - + fluctuations in f_{em} are canceled but others may be very large
- Has drawbacks
 - + high-Z absorber required \rightarrow small e/mip \rightarrow non linearity @ low energy
 - low sampling fraction required \rightarrow em resolution limited \bigstar
 - \star relies on neutrons \rightarrow integration over large volume and time SPACAL: to get $30\%/\sqrt{E} \sim 15$ tonnes of lead and ~ 50 ns integration time

- high-res em and high-res hadron calorimetry mutually exclusive:
 - + good jet energy resolution \Rightarrow compensation
 - \Rightarrow small sampling fraction (\Box 3 %) \Rightarrow poor em resolution
 - ← good em resolution \Rightarrow high sampling fraction (100% crystals, 20% LAr)

 \Rightarrow large non compensation \Rightarrow poor jet resolution

Dual-readout calorimetry

Disentangle relativistic (i.e. electromagnetic) and non relativistic (i.e. nuclear) components of hadronic shower

 \rightarrow get (compensate for) f_{em} event by event

both scintillation & Cherenkov light

almost only scintillation light

 $S = E \times [f_{em} + S \times (1 - f_{em})]$ $\mathbf{C} = \mathbf{E} \times [\mathbf{f}_{em} + \mathbf{C} \times (1 - \mathbf{f}_{em})]$

f_{em} = electromagnetic shower fraction $s = (h/e)_s$, $c = (h/e)_c$: detector-specific constants

by solving the system, both E and f_{em} can be reconstructed

E measured at em energy scale

Dual-readout formulae

 $(1-f_{em})$ can be reconstructed within (unknown) constant factor (>) O(1)

$$> \left(\frac{h}{e}\right)_{c} \Rightarrow \chi < 1$$

χ measurable if E known — $\rightarrow \chi$ can be extracted from testbeam data

applying dual-readout formulae

Napoli, 25.05.2023

$$\cot g \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$$

before dual-readout corrections

after dual-readout corrections

Napoli, 25.05.2023

$\cot \theta = \frac{I - (h/e)_s}{I - (h/e)_c} = \chi$

Geant4 simulations – (h/e) and χ factors

80 GeV protons in Copper 1 & Lead 1

10-150 GeV π^{-}

 $f = \frac{c - s(C/S)}{(C/S)(1 - s) - (1 - c)}$

f_{em}

 \rightarrow depends only on C/S \rightarrow can use C/S to select f_{em} subsamples

 \rightarrow to get f_{em} absolute value, at least one of (h/e) factors needs to be known

$f_{\text{em}} \ fluctuations$

Napoli, 25.05.2023

DREAM: Effect of event selection based on fem

NIM A 537 (2005) 537

Invisible energy fraction – Geant4 simulations

 f_{inv}

Napoli, 25.05.2023

DREAM/RD52 prototype results

DREAM/RD52 dual-readout spaghetti prototypes

2003 DREAM	Cu: 19 towers, 2 PMT each 2 m long, 16.2 cm radius Sampling fraction: 2% Depth: ~10 λ _{int}	Copper \leftarrow 2.5 \leftarrow 4
2012 RD52	Cu, 2 modules Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$ Fibers: $1024 \text{ S} + 1024 \text{ C}$, 8 PMT Sampling fraction: ~4.6% Depth: ~10 λ_{int}	
2012 RD52	Pb, 9 modules Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: ~5.3% Depth: ~10 λ_{int}	

Napoli, 25.05.2023

RD52 dual-readout spaghetti prototypes

dual-readout at work (1)

Effects of the dual-readout method

Napoli, 25.05.2023

NIM A 866 (2017) 76

dual-readout at work (2)

$80 \text{ GeV } \pi$									
	140			Entri Mea RMS	es n S	6391 50.53 10.54	240 220 200 180		
ts per bin	100 80 60 40 20					v 21%	160 140 120 100 80 60 40 20		
ther of ever	240 220 200 180		1	⁰⁰ 12 Entries χ ² / ndf Mean Sigma	6.18	140 160 6391 139.1 / 111 75.1 ± 0.1 85 ± 0.060	300 250		
Num	140 120 100 80 60 40 20	c)	Kan	σ/E	= 8	8.2%			
	0	20 40 60 80	1	Calo	prin	neter	signa		

	Al 4	Al 3	Cu 4	Cu 3	
	Al 1	Al 2	Cu 1	Cu 2	
T1	Т2	Т3	Т4	Т5	Т6
Т7	Т8	Т9	Т10	T11	T12
Т13	T14	Т15	T16	T17	T18
T19	Т20	T21	T22	Т23	T24
Т25	Т26	T27	T28	Т29	Т30
T31	Т32	Т33	T34	Т35	Т36
	Ring 1	Rin	g 2	Ring 3	

NIM A 866 (2017) 76

Napoli, 25.05.2023

RD52 expected hadronic performance

NIM A 824 (2016) 721

Particle ID (electron/hadron discrimination)

Combination of cuts: >99% electron efficiency, <0.2% pion mis-ID

(dual readout goes granular ...)

Brass module, dimensions: ~ 112 cm long, 12 x 12 mm²

32 (S) + 32 (Č) fibres $X_0 \sim 29 \text{ mm}$ $R_M \sim 31 \text{ mm}$ $\sim (0.4 \text{ R}_M)^2 \times 39 X_0$ shower cont. $\sim 45\%$ $f_{sampl} \sim 5-6\%$

Light sensors (SiPM)

Lateral shower profile w/ SiPMs

em shower very narrow:

~10% (~50%) within ~1 (~10) mm from shower axis \rightarrow fibre readout can easily provide (powerful) input to PFA

Napoli, 25.05.2023
2D fibre imaging

Geant4 single-particle simulations

IDEA fibre calorimeter: exploit high granularity + timing

IDEA: Innovative Detector for e+e- Accelerator

Napoli, 25.05.2023

IDEA baseline concept

- Muon chambers
 µ-RWELL in return yoke
- + Dual-readout calorimetry 2 m / 7 λ_{int}
- Thin superconducting solenoid
 - ◆ 2 T, 30 cm, ~ 0.7 X₀ , 0.16 λ_{int} @ 90°
- Highly transparent for tracking
 - Si pixel vertex detector
 - Drift Chamber
 - Si wrappers (strips)
- ✦ Beam pipe: r ~ 1.5 cm

Three main activity pillars:

- 1) South Korea \rightarrow projective fibre-sampling calorimeter
- 2) Europa: INFN, Sussex University \rightarrow fibre-sampling calorimeter
- 3) U.S. (Calvision project) \rightarrow mainly (but not only) on crystal em calorimeter

IDEA all-fibre DR calorimeter option

- DR fibre calorimeter
 - ~ 130 M fibres \blacklozenge
 - 1 mm ø, 1.5 mm pitch
 - copper absorber \blacklozenge
 - 75 projective towers × 36 slices +
 - $\Delta \vartheta = 1.125^\circ, \Delta \phi = 10.0^\circ$
 - ϑ coverage: down to ~100 mrad \blacklozenge
- G4 simulation available \blacklozenge
 - tuned to RD52 TB data \blacklozenge

5m

- Gaussian resolution
- Adequate separation of W / Z / H

Napoli, 25.05.2023

Testbeam module (brass absorber): dimensions: 133.2×133.2×250 cm³ Reduced granularity (1.2×1.2 cm², 32 S & 32 C fibres): 111×111 modules Simulation of both detector and SiPM response Feature extraction: E(Q), Pk, ToP, ToA, ToT \rightarrow each event represented by 111×111×5×2 tensor

Two DNN architecture variants studied:

- VGG-11 like (VGG = Visual Geometry Group, Oxford Un.)
- Dynamic Graph CNN (DGCNN)

6 event classis (covering ~ 90% of τ decays) Training set: 6 BR × 2000 evts

VGG example

NN performance

Confusion matrix on test set

Napoli, 25.05.2023

Predicted BR

No SiPM response simulation

 \rightarrow information: fibre signal output (# p.e.)

3-class classification: $\tau_{lep}, \tau_{had}, QCD$ jet

8-class classification:

 $\tau_0, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6, QCD jet$

[τ from Z $\rightarrow \tau\tau$ decays]

3-class label	8-class label			
0	0	$\tau \rightarrow \mu \nu \nu$		
0	1	$\tau \rightarrow evv$		
1	2	$T \rightarrow \pi V$		
1	3	$\tau \rightarrow \pi \pi^0 \nu$		
1	4	$\tau \rightarrow \pi \pi^0 \pi^0 \nu$		
1	5	$\tau \rightarrow \pi \pi \pi \nu$		
1	6	$\tau \rightarrow \pi \pi \pi^0 v$		
2	7	$Z \rightarrow qq$ jets		

DGCNN w/ geometrical information only

DGCNN optimised but w/o #pe as input feature B field and material in

Napoli, 25.05.2023

6.95	0.79	0.62	0.03	0.00	0.00	1.58	0.03	
3.09	89.03	3.48	0.41	2.02	0.39	1.44	0.14	
1.77	4.83	80.45	9.25	1.61	1.67	0.16	0.25	
0.30	0.38	10.43	84.55	0.16	3.87	0.05	0.25	
0.16	3.52	1.38	0.35	84.82	8.79	0.03	0.95	
0.11	0.24	1.98	2.60	10.19	82.60	0.08	2.20	
2.53	0.48	0.11	0.00	0.03	0.00	96.82	0.03	
0.08	0.25	0.19	1.05	2.54	4.08	0.06	91.75	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×1					~	<hr/> <th>2</th>	2
2	2 .		2 .	to to			5	9.0
	Predicted BR							

input: fibre coordinates + type
avg accuracy: 88.3% (w/ #p.e. 90.8%)

# Longitudinal segmentation w/ timing (U.S.)

Dual-readout fibre calorimeter  $\rightarrow$  signal sampled at 20 GHz

Cu absorber (2 m deep)

Fibre axis aligned w/ beam direction: 1 mm Φ fibres, 1.5 mm spacing

Transverse segmentation: 1×1 cm² for 2D analysis, 3×3 cm² for 3D analysis



### 3D imaging fibre DR calorimeter coupled to Graph DNN

Napoli, 25.05.2023

## Preliminary results No optimisation

# Longitudinal segmentation w/ timing (U.S.)



Table 1. The energy resolution of the 3D GNN reconstruction with various timing resolutions for longitudinal segmentation.

Timing Resolution $\Delta(t)$ , ps	Position Resolution $\Delta(z)$ , cm	Energy Resolution @ 100 GeV $\sigma/E$ , %
0	0.0	3.6
100	5.0	3.9 only charonkay fibra
150	7.5	4.0 Unity Cherenkov hbre
200	10.0	4.2

# Longitudinal segmentation w/ timing (S.K.)

Full SiPM signal sampled at 10 GHz

FFT used to mitigate exponential tail

Unlocks full longitudinal information about energy deposit

Combined with DR information allows in-shower cluster identification





## Waveform digitisation (U.S.)

Results with SensL (MicroFC-30020SMT): SiPM with both fast and standard outputs



**One-photon event** 

Two-photon event (simultaneous)

Two-photon event (5 ns apart)

### **NALU Scientific** AARDVARC v3

- Sampling rate 10-14 GS/s
- 12 bits ADC
- 4-8 ps timing resolution
- 32 k sampling buffer
- 2 GHz bandwidth
- System-on-Chip (CPU)



# Crystal option (IDEA++) and PFA

## Segmented Crystal EM Precision Calorimeter

## Ongoing efforts within US Calvision, IDEA and Crystal Clear collaborations

Proof-of-concept with lab measurements and prototypes (PWO, BGO, BSO, ... with SiPMs)

Ongoing simulation effort in DD4HEP and FCC software + DR-PFA developments



## Crystal option (IDEA++)

### ✦ ECAL ~20 cm PbWO₄

- ✤ 2 layers: 6+16 X₀
- DR with filters
- *o*_{EM} ≈ 3% /√E
- timing layer
  - LYSO:Ce crystals
  - $\sigma_t \sim 20 \text{ ps}$
- HCAL layer
  - $\sigma_{HAD}/E \sim 26\%/\sqrt{E}$



Geant4 simulation of  $Z \rightarrow jj$  events:

- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo



م [130] 100 م

-0.05

-0.

-0.15

-0.2⊫

0.6

Geant4 simulation of  $Z \rightarrow jj$  events:

- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius  $E_{\text{seed}}$ R

$$C_{\text{transverse}} = \frac{1}{\sum_{i} E_{\text{hit},i} (\Delta R_i < 0.013)}$$

remove and store photons (R<0.9)</li>



Geant4 simulation of  $Z \rightarrow jj$  events:

- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius  $E_{\text{seed}}$



- remove and store photons (R<0.9)</li>
- for each track, rank calo hits by distance



Geant4 simulation of  $Z \rightarrow jj$  events:

- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius  $E_{\text{seed}}$  $R_{\rm transverse} =$  $\overline{\sum_{i} E_{\text{hit},i} (\Delta R_i < 0.013)}$

- remove and store photons (R<0.9)</li>
- for each track, rank calo hits by distance
- collect hits in cone(s)





## IDEA++ dual-readout-PFA







- ... continue
- apply k_t algorithm (e.g. Durham) for two jets



## finally ...



## HiDRa – Highly granular Dual Readout demonstrator



Napoli, 25.05.2023

## Present design



- C and S fibres positioned per raw
- Fibre separation at calorimeter rear end
- Grouping for interfacing to PMTs



Fibre disposal and grouping (pictures from previous prototype)



scintillating fibres



### **Cherenkov fibres**

### ned per raw lorimeter rear end Ig to PMTs

## **Construction technique**



### tube aligned in reference tool





Stiffback-like technique for tube handling, gluing and positioning

Vacuum + double-sided tape for tube handling

Napoli, 25.05.2023



# Minimodule 0



Napoli, 25.05.2023

# Module handling and DQ





# Minimodule-0 QAQC



tube OD: 2.026 mm

h_nom: 28.351 mm

# **Production scheme**

- Day 0:
  - Preparation tubes and tooling
- Day 1:
  - Gluing of Minimodule N (~3h)
  - Preparation fibres for Minimodule N
- Day 2:
  - Preparation tubes for Minimodule N+1
  - Releasing Minimodule N
  - QAQC Minimodule N
- Day 3:
  - Gluing Minimodule N+1
  - Fibre insertion in Minimodule N
  - Preparation fibres for Minimodule N+1

## 1 FTE physicist + 1 FTE technician

## Students in PCTO

# Schedule (from available funds)

- Tubelet order ~ 3 week
- Delivery ~ 4 w production + 2 w import
- QAQC + cleaning  $\sim$  4 w

## $\rightarrow$ at least 3 months

- Expected production speed
  - 5 minimodules in 2 weeks  $\rightarrow$  80 minimodules in 8 months
  - Includes:
    - absorber gluing
    - fibre insertion
    - fibre gluing and milling (for PMT coupling)

## $\rightarrow$ ~ one year in total

New solution by Hamamatsu:

boards with 8 SiPMs dimension 1×1 mm² 10 or 15 µm cell size SiPMs selected such that  $\Delta V_{bd} < 100 \text{ mV}$ 

Our present best fit:

a) use 10 µm cell-size SiPMs for scintillating fibres b) use 15 µm cell-size SiPMs for clear fibres

Got 10 boards per cell-size type for testing







### 8x Effective photosensitive area ( $\phi$ 1.0)
# Highly granular modules

- 10240 SiPMs  $\rightarrow$  1280 SiPM boards + 5% spare = 1344 SiPM boards
- 1344 front-end boards
- 1344 grouping boards (+ cables)
- 22 patch panels
- 20-22 readout boards (A5202)
- 2 data concentrators



Dual-readout calorimetry excellent candidate for physics programme at EWK factories  $\rightarrow$  growing interest for CEPC/FCC-ee detectors

IDEA fibre calorimeter: dual-readout + single-fibre light sensors (SiPM) + timing  $\rightarrow$  high-granularity 3D information

em crystal option  $\rightarrow$  boost em performance without spoiling hadronic one

High-granularity 3D information

- $\rightarrow$  powerful input for deep-learning algorithms and/or PFA
- $\rightarrow$  highly performing final-state identification capabilities

R&D activities ongoing in Europe, S. Korea and U.S. exploiting all directions

Hadronic-scale demonstrators under construction in both Europe and S. Korea

- Assess physics performance for both single hadrons and jets (and electrons)
- Validate Geant4 shower modeling
- Assess scalable solutions concerning construction and signal readout
- Exploit DNN architectures for physics analysis
- Assess performance in relevant benchmark physics channels

## If you are interested, please join CERN e-group:

idea-dualreadout@cern.ch

and (by-weekly) meetings with scheduling at:

https://indico.cern.ch/category/10684/

# Backup

Napoli, 25.05.2023

Three main activity pillars:

- 1) South Korea  $\rightarrow$  projective fibre-sampling calorimeter
- 2) Europa: INFN, Sussex University  $\rightarrow$  fibre-sampling calorimeter
- 3) U.S. (Calvision project)  $\rightarrow$  mainly (but not only) on crystal em calorimeter

## 2022 Korean-prototype beam test







Napoli, 25.05.2023

Module #2

Tower#1	Tower#2	Tower#3
Tower#4	Tower#5	Tower#6
Tower#7	Tower#8	Tower#9

# IDEA 2020 em-size bucatini prototype (EU)

### Nine $\sim$ 3.5 × 3.3 cm² towers



### One tower (i.e. 360 fibres) w/ highly-granular (SiPM) readout





### **Scintillation fibers**

**Cherenkov** fibers

Lateral profile: average signal in fibre at distance r from shower barycentre

Measurement: for every event and every fibre populate plot of signal vs. distance

Lateral profiles extracted as average value for every x-bin



### Data vs. Geant4 simulation



## Other results



Angular dependence (from MC)

**EM** resolution



Need another beam test Need beam purity Need correct detector setup (angle, preshower)

Good resolutions averaged over eta and phi



# Event displays



50 GeV e-

Napoli, 25.05.2023

### 100 GeV $\pi^0$

## Alternative to SiPMs?



- SPAD array in CMOS:
  - complex functions embedded in single substrate (e.g. SPAD masking, counting, TDCs)
  - front-end electronics optimised to preserve signal integrity ( $\rightarrow$  timing)
  - simplified assembly of large area detectors
  - R&D costs relatively low for design over standard process

### digital SiPMs (dSiPMs)

### no need for analogue signal post-processing

# Requirements

	Scintillating (Cherenkov)
Unit Area (mm²)	1 x 1
Micro-cell pitch (µm)	10 or 15
Macro-pixel	500 x 500 (or less)
PDE (%)	(20 - 50)
DCR (kHz)	Not crucial
AP (%)	As low as possible ( $\approx$ 1)
Xtalk (%)	As low as possible (few %)
Trigger	External
Data: light intensity	Number of fired cells in 1 or 2 time windows (tenths ns long)
Data: time	Time of Arrival in the time window (< 100 ps) possibly TOT
Final - Package	Strip with 8 units
Connection	BGA

## South Korea activities

Investigating:

- Absorber production and assembly procedure
- Fibre types (round, square, single/double cladding)
- Light sensors (PMTs, MCP-PMTs, SiPMs)

Absorber production:

- 3D printing  $\rightarrow$  excellent accuracy but pretty expensive
- Stacking (LEGO-like)  $\rightarrow$  good accuracy and quite cheap
- Skiving Fin Heat Sinks  $\rightarrow$  high accuracy and low cost

2025: full-size projective prototype

### Prototype Detector (2025)



### 5x5 (460 mm)

## 2 modules tested w/ beam in 2022



### **Configuration of Fibers & Readout detector for Test Beam**



	Tower #1	Tower #2	Tower #3	Tower #4
Scintillation fibers	Round	Round	Round	Square
	/	/	/	/
	Single cladding	Double cladding	Single cladding	Single cladding
Cherenkov fibers	Round	Round	Round	Round
	/	/	/	/
	Single cladding	Single cladding	Single cladding	Single cladding
Readout detector (2*4 ch)	2 PMTs	2 PMTs	2 MCP-PMTs	2 PMTs

10225		
BF 2	State of the second second	
and the second second	COULT COULT COULT	
ALC: NO.	CONTRACTOR OF STREET	
	2.2.0.0.0.0.0.0.0	
	and the second sec	
distant in	Training to the second second	
	E.S. Contraction of the local division of th	
0 F 5	entrower 6	
	Second Second Second	
10000	ACCOUNTS AND ADDRESS OF ADDRESS O	
CHARGE BOX	SACCESSION NOR LOCK	
Party and	CONTRACTOR OF TAXABLE PARTY.	
COLUMN TWO IS NOT	CONTRACTOR OF THE	
THE R. LEWIS	CHARLES STOLEN	
	Contractor of the local division of the loca	
and the second	STREET, DOGGEST & VOI	
description of	·····································	
A COLOR OF	COMPANY OF THE OWNER.	
		-
		G
		-
	1	
	1	

	Tower #1~4 and #6~9	Tower #5
Scintillation fibers	Round / Single cladding	Round / Single cladding
Cherenkov fibers	Round / Single cladding	Round / Single cladding
Readout detector (400+16 ch)	16 PMTs	400 SiPMs

### - Optical fibers - Scintillation fibers & Cerenkov fibers (Kuraray SCSF-78) (Mitsubishi SK-40)



Module#2



### Module#2

Tower#1	Tower#2	Tower#3
Tower#4	Tower#5	Tower#6
Tower#7	Tower#8	Tower#9

### ombination of fibers for Module#2

## 2 modules tested w/ beam in 2022



- Read out information
- PMT (16ch) + SiPM (416ch, T.5)



MCP-PMT	Window	size	lig	ht	Q Effici	uantum inecy (Q.E.	.) ma	x. HV (V)	Rise time (ns)	Pulse width (ns)	photo	
PLANACON XP85012	53x53 m	$m^2$	scintillation		Cerenkov ~21%			2400	0.6	1.8		
PLANACON XP85112	55855 11		Cerenkov					2800	0.5	0.7		1
РМТ	Window size	Q.E.	for Ck.	Q.E. for	Sc. n	nax. HV (V)			Time response (ns)		photo	
							anode	pulse rise time	electron transit time	Transit time spread (FWH	(I)	
R8900 series (old)	23.5x23.5 mm²	35% r	at 420 nm	~7% at nm	550	1000		2.2	11.9	0.75		7
R11265-100 (new)	23x23 mm ²	~35 400	5% at D nm	~7% at nm	550	50		1.3	5.8	0.27		
SiPM	photosensitiv e area	ph	oto dete (	tion effic DE)	ciency	opera volta	iting age	Gain at V _{BD} +5V	Linearity of Q.	E. number of pixels	geo. Fill factor	
S14160-1310PS	1.3x1.3 (1.69 mm²)	~15%	% at 400 nm	~17% a	at 550 nm	Vbreaking Do	wn + 5 V	~1.75x10 ⁵	as incident photor	16675	31 % (0.524 mm²)	
fiber (Φ1 mm)	0.785 mm ²									~7745 (effectively)		

## DAQ system

1000

### System made of 15 DAQ Boards + 1 TCB Board

- DAQ Board:
  - One board covers 32 channels
  - DRS4 chip (from 0.7 Gsps to 5 Gsps with 1024 sampling points)
  - 16 pin Ribbon cable

### **TCB Board**

- Control the setting value of DAQ boards and the trigger system
- Connect DAQ boards with TCP/IP cable, cover 40 ch DAQ



All boards connected with PC using **USB3** line



# HiDRa – Highly granular Dual-Readout demonstrator (INFN)



Napoli, 25.05.2023

1 Module: 5 MMs ~ 13 × 13 cm²

1 MiniModule:

64 × 16 = 1024 fibres in total

512 S + 512 C

## Capillary tube parameters

### **Dimensions**:

- External diameter: 2 ( $\pm$  0.050) mm  $\leftarrow$  from SiPM dimensions
- Internal diameter: 1.1 (-0 +0.1) mm  $\leftarrow$  from fibre dimensions
- Length: 2.5 m  $\leftarrow$  from containment studies

 $\rightarrow$  3% sampling fraction

### Material:

• Stainless steel 304  $\leftarrow$  cheaper than brass, comparable performance

## **Geant4** simulations

Pion resolution in [10, 100] GeV Range



### χ2 / ndof



## Absorber choice

### Calorimeter depth

Napoli, 25.05.2023

### Low-energy tails

# Capillary QA/QC

- Straightness: rolling on plane surface
- Length: checking relative length of tubes
- ID: pass/fail test with inserting fibres



# Tube gluing







## Stiffback-like technique for tube handling, gluing and positioning

# PMT readout: fibre grouping



Napoli, 25.05.2023

# SiPM integration and readout



- 2 mm SiPM interspace
- Two options under study: 10 and 15 µm pitch



- Each SiPM bar operated at same voltage ( $V_{bd}$ <0.15V)
- Signals from 8 SiPMs summed up in grouping board

• Custom designed module with 8 SiPMs (1x1 mm²) from Hamamatsu

# SiPM integration and readout

Readout based on Caen FERS system (5200) and A5202 boards



# FERS readout integration in EUDAQ



- Modular data acquisition framework, in C++
- Open source, compatible with different OSs
- Finite-State Machine implemented
- HW-specific parts decoupled from core software
- Raw data can be converted to LCIO format
- Many detector prototypes at DESY II Test Beam Facility integrated in EUDAQ
- EUDAQ used in several test setup at CERN: ALICE, ATLAS, Belle II, CALICE, CMS, and others

EUDAQ - A data acquisition software framework for common beam telescopes P. Ahlburg et al 2020 JINST 15 P01038

# FERS readout integration in EUDAQ

### **ALREADY DONE**

- CAEN FERS library integrated in EUDAQ
- FERS configuration implemented

State:						
Curre	ent Si	tate: Co	onfigure	ed		
Control						
Init file:	/home/persia	ni/eudaq_rino/user	fers/misc/fers.ini		Load	Init
Config file:	/home/persia	ni/eudaq_rino/user		Load	Config	
Next RunN:					Start	Stop
			4%		Reset	Terminate
Log:					Log	✓ LogConfig
ScanFile	/home/persia	ni/eudaq/user/exar	nple/misc/scan/Exar	mpleScan.scan	Load	Start Scan
Run Number	-	19 (next run)	my_fers0	Producer:	0 Events	
Connections		ccp.//44305				
type	♠ name	state	connection	message	information	
						_

### TO DO

- Development in EUDAQ of DCR and multiphoton spectrum measurements for SiPM mass characterisation
- Handling (storing and then uploading) of FERS & SiPM configurations with DB
- Setting up EUDAQ for test beam using FERS modules



INFN - Sezione di Catania & UNICT

K EUDAQ Log Collector				$\times$
Level: From: 0-DEBUG ~ All ~	Search:			
Received Sent 16:50:57.207 16:50:57.106 16:50:57.207 16:50:57.107 16:50:58.538 16:50:58.538 16:51:11.779 16:51:11.778 16:51:11.779 16:51:11.779 16:51:11.779 16:51:11.779 16:51:11.779 16:51:11.779	Level Text 4-INFO Producer.my_fers0 is to be init 4-INFO Producer.my_fers0 is initialised 4-INFO Producer.my_fers0 is initialised 4-INFO Processing Configure comman 4-INFO Receive a CONF section 4-INFO Producer.my_fers0 is to be Producer.my_fers0 is configure	ialised 4. d figured rd.	From Producer.my Producer.my RunControl.R Producer.my Producer.my Producer.my	File Connu Connu RunCC Comm Produ Comm
				-
<pre>Persiani@LAPTOP-GA4KV2TA: -//</pre>	Eudag_rino LANE_ID> C> C> S> NE_JD> NE_JD> NE_STARABLE_TRIGERNUMBER> NE_JD> SCONF_VERS_CONF_FILS> RS_CONF_VERBOSE> rs@C/FERS_EOW_LOCK_PATH> MV_TWas> ./user/fers/misc/conf/conf_0.txt REO) [Producer.my_fers0 ]Producer.ms -29 16f51:11.779] (TMFO) [Producer.ms SNFO) [Producer.my_fers0 ]Producer.ms	y_fers0 is to be configured ndan]Producer.my_fers0 is con y_fers0 is configured.		×
NPSIANIØLAPTOP-GAAKV2TA:-//				TO Run1 Online CP(0)111 (A)   TO Run1 Online CP(0)111 (A)
5107				-
5000				
104	180 200 TI	220 246 Virenbidi	260	280 200
$10^{3} \xrightarrow{T = 20^{\circ}C} \\ T = 15^{\circ}C \\ T = 15^{\circ}C \\ T = 5^{\circ}C \\ T = 5^{\circ}C \\ T = -5^{\circ}C \\ T = -15^{\circ}C \\ T = -15^{\circ}C \\ T = -25^{\circ}C \\ T = -25^{\circ}C \\ T = -35^{\circ}C \\ T = -35^{\circ}C \\ T = -35^{\circ}C \\ T = -40^{\circ}C \\ T $				
10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 24		0 32	34	36