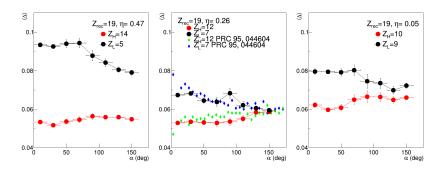
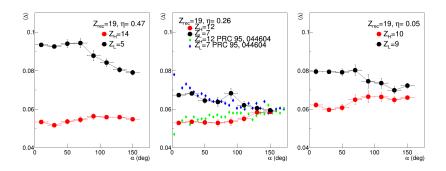

A possible PAC proposal on QP breakup in Zn+X reaction

Caterina Ciampi


Fazia Days June, 26th 2023

HF-LF equilibration in E789

We observe an evolution of the neutron content of HF and LF with α . We are somewhat limited around $\alpha \sim 90^\circ$ due to the fact that we are only using FAZIA.


HF-LF equilibration in E789

We observe an evolution of the neutron content of HF and LF with α . We are somewhat limited around $\alpha \sim 90^\circ$ due to the fact that we are only using FAZIA.

We can compare the configuration Z_L = 7, Z_H = 12 for 64 Ni+ 64 Ni with A. Rodriguez-Manso et al., PRC95, 044604 (2017)

HF-LF equilibration in E789

We observe an evolution of the neutron content of HF and LF with α . We are somewhat limited around $\alpha \sim 90^\circ$ due to the fact that we are only using FAZIA.

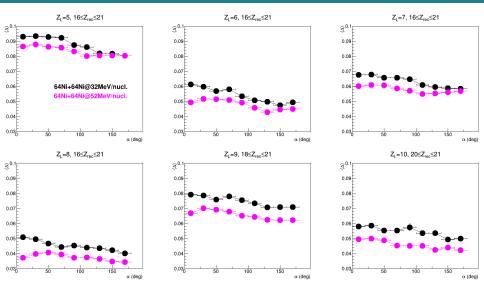
We can compare the configuration Z_L = 7, Z_H = 12 for ⁶⁴Ni+⁶⁴Ni with A. Rodriguez-Manso et al., PRC95, 044604 (2017)

Within the small charge asymmetries that we can probe the evolution of $\langle \Delta \rangle_L$ depends mostly on the identity of the LF, and less on the partner HF.

ightarrow consider $\langle \Delta \rangle_L$ for a larger interval of Z_H

 $\langle \Delta \rangle_L$ vs α for different systems and beam energies

We are still not able to extract an equilibration rate, but we can do a qualitative comparison among the eight systems that we have in E789.


 $\langle \Delta \rangle_L \ vs \ \alpha$ for different systems and beam energies

We are still not able to extract an equilibration rate, but we can do a qualitative comparison among the eight systems that we have in E789.

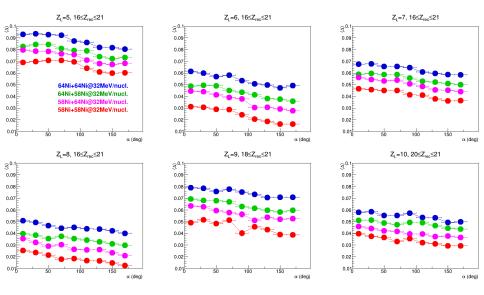
Different energies:

- The LF is more neutron rich at α ~ 0 at the lower beam energy
 → more effective isospin drift?
- The following evolution towards equilibration is not easy to compare

$\langle \Delta \rangle_L \ { m vs} \ \alpha$ for different systems and beam energies

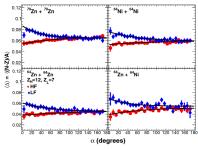
$\langle \Delta \rangle_L \text{ vs } \alpha \text{ for different systems and beam energies}$

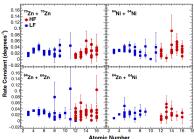
We are still not able to extract an equilibration rate, but we can do a qualitative comparison among the eight systems that we have in E789.


Different energies:

- The LF is more neutron rich at $\alpha \sim 0$ at the lower beam energy \rightarrow more effective isospin drift?
- The following evolution towards equilibration is not easy to compare

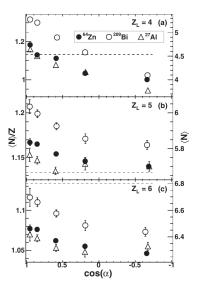
Different systems:


- The $\langle \Delta \rangle_L$ depends on the neutron content of both the projectile and the target
 - The $\langle \Delta \rangle_H$ vs α plots maintain the same hierarchy
- The evolution towards isospin equilibration seems to proceed in a similar way, independently of the system


$\langle \Delta \rangle_L \ vs \ \alpha$ for different systems and beam energies

Some literature

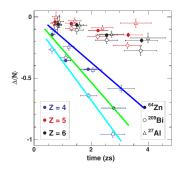
Previous studies with the same projectile on different targets


A. Rodriguez-Manso et al., PRC95, 044604 (2017):

two reactions with same projectile, i.e. ⁶⁴Zn+⁶⁴Zn, ⁶⁴Ni at 35MeV/nucl.

- initial $\langle \Delta \rangle_L$ depends on the system, $\langle \Delta \rangle_H$ is the same
- the equilibrium composition depends on the system, the average rate constant does not seem to depend on it
 - → "the rate constants ought to depend on the details of the NEoS, but not on the composition of the system or the chemical potentials involved"

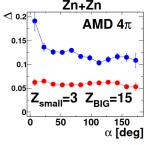
Some literature


Previous studies with the same projectile on different targets

K. Brown et al., PRC87, 061601 (2013):

study of HF-LF equilibration for the three reactions 64 Zn + 27 Al, 64 Zn, 209 Bi at 45MeV/nucl

- strong similarities in the emission angles
- the composition of the Z_L depends on the target, but also the LF equilibration rate


QP breakup in Zn+X reactions

A possible experiment: the systems

Study the evolution towards equilibration in three systems, using the same projectile on three targets with strongly different size and composition, e.g.:

- 70 Zn + 27 Al or 40 Ca
- ⁷⁰Zn + ⁷⁰Zn (as "reference" system)
- 70 Zn + 209 Bi or 208 Pb

These systems feature a stronger projectile-target asymmetry with respect to those of E789 and those of A. Rodriguez-Manso et al., PRC95, 044604 (2017), more similar to K. Brown et al., PRC87, 061601 (2013)

The different neutron reservoir provided by the targets will introduce a different initial isospin imbalance between the two sides of the deformed QP* \rightarrow i.e. different $\langle \Delta \rangle_{L,H}$ at low α values

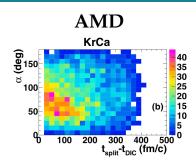
The aim is to probe the evolution of isospin equilibration inside the deformed QP* before its breakup in the three cases, to see to what extent it depends on the preceding step of the reaction.

QP breakup in Zn+X reactions

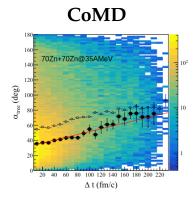
A possible experiment: the beam energy

- The beam energy could be 35 MeV/nucl., which allows to compare the results for the reference system ⁷⁰Zn+⁷⁰Zn with A. Rodriguez-Manso et al., PRC95, 044604 (2017).
- It could be interesting to have more than one beam energy for, e.g., the symmetric system.
 - In E789, we observe a different initial isospin content for the LF, but the comparison of the following evolutions is not clear.
 - In principle, the initial density on the LF side could be different.
- However, we need to collect a high statistics to study the breakup channel e.g. considering specific (Z_L, Z_H) pairs, and thus it may be better to focus on only three reactions, asking for an adequate amount of BTUs.
 - 70 Zn beam: ~8 BTUs ×3 =~24 BTUs
 - ¹²C beams for calibration, as in E818: 6 BTUs

QP breakup in Zn+X reactions

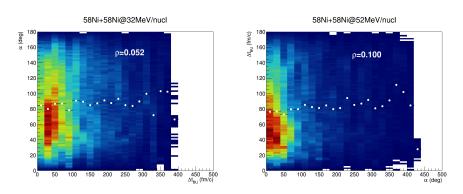

Exploiting the actual capabilities of the setup

- Thanks to the INDRA upgrade we can access the mass information up to Z = 10 for a larger forward angle (up to 45°) with respect to E789.
 - in E789 the breakup study was hindered by the fact that we could only use the events in which both fragments were collected by FAZIA
 - \rightarrow "transverse" breakups ($\alpha \sim 90$) could not be accessed easily
- Further evaluations that could be done on this dataset:
 - compare the distribution of the observables related to the dynamics of the breakup, e.g. α itself and the relative velocity between HF and LF
 - study how the probability to access the QP breakup channel evolves with the reaction centrality in the three systems
 - → The new Rutherford monitor could provide an absolute reference


Backup slides

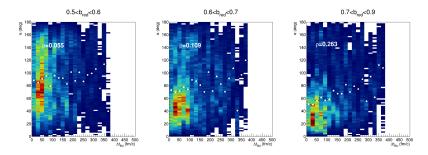
Correlation between time and angular alignment

Contrasting results

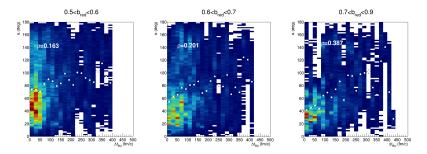

In S. Piantelli et al., PRC101, 034613 (2020) the correlation between α and Δt_{BU} is ot supported by the AMD model (80Kr+48Ca@35MeV/nucleon)

In B. Harvey et al., PRC102, 064625 (2020) they claim to find the $\alpha - \Delta t_{BU}$ correlation

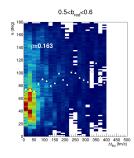
Following the assumption, in A. Jedele et al., PRC107, 024601 (2023) the possible sensitivity of the extracted equilibration time scale to the asy-stiffness of the NEoS is investigated.

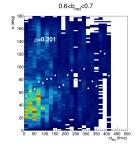

Correlation between time and angular alignment

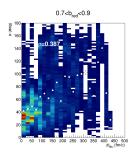
As expected, the same behavior as S. Piantelli et al., PRC101, 034613 (2020) is obtained also for Ni+Ni systems.


We can try to build the same correlations for different centrality intervals.

Correlation between time and angular alignment: centrality intervals

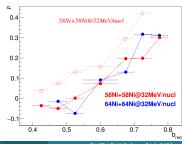

The correlation plot is slightly different in the three centrality intervals, both for 58Ni+58Ni @32MeV/nucl.


Correlation between time and angular alignment: centrality intervals



The correlation plot is slightly different in the three centrality intervals, both for 58Ni+58Ni @32MeV/nucl. and @52MeV/nucl.

Correlation between time and angular alignment: centrality intervals



The correlation plot is slightly different in the three centrality intervals, both for 58Ni+58Ni @32MeV/nucl. and @52MeV/nucl.

A *weak* correlation is visible for the most peripheral reactions, particularly at 52MeV/nucl.

 \rightarrow evolution of the Pearson corr. coeff. with b_{red}

